Introduction
Introduction Statistics Contact Development Disclaimer Help
φ(−n) = φ(n), φ(1) = 1, φ(0) = 0 - libzahl - big integer library
git clone git://git.suckless.org/libzahl
Log
Files
Refs
README
LICENSE
---
commit 8092c767cb5f872b62a0cabbef793a08643497db
parent dd753f78b0c39d86a4cccca08996df303762e532
Author: Mattias Andrée <[email protected]>
Date: Thu, 28 Jul 2016 22:55:43 +0200
φ(−n) = φ(n), φ(1) = 1, φ(0) = 0
Signed-off-by: Mattias Andrée <[email protected]>
Diffstat:
M doc/exercises.tex | 8 ++++++--
1 file changed, 6 insertions(+), 2 deletions(-)
---
diff --git a/doc/exercises.tex b/doc/exercises.tex
@@ -262,10 +262,13 @@ which calculates the totient of $n$. Its
formula is
\( \displaystyle{
- \varphi(n) = n \prod_{p \in \textbf{P} : p | n}
+ \varphi(n) = |n| \prod_{p \in \textbf{P} : p | n}
\left ( 1 - \frac{1}{p} \right ).
}\)
+Note that, $\varphi(-n) = \varphi(n)$, $\varphi(0) = 0$,
+and $\varphi(1) = 1$.
+
\end{enumerate}
@@ -671,7 +674,8 @@ So, if we set $a = n$ and $b = 1$, then we iterate
of all integers $p$, $2 \le p \le n$. For which $p$
that is prime, we set $a \gets a \cdot (p - 1)$ and
$b \gets b \cdot p$. After the iteration, $b | a$,
-and $\varphi(n) = \frac{a}{b}$.
+and $\varphi(n) = \frac{a}{b}$. However, if $n < 0$,
+then, $\varphi(n) = \varphi|n|$.
You are viewing proxied material from suckless.org. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.