φ(−n) = φ(n), φ(1) = 1, φ(0) = 0 - libzahl - big integer library | |
git clone git://git.suckless.org/libzahl | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
commit 8092c767cb5f872b62a0cabbef793a08643497db | |
parent dd753f78b0c39d86a4cccca08996df303762e532 | |
Author: Mattias Andrée <[email protected]> | |
Date: Thu, 28 Jul 2016 22:55:43 +0200 | |
φ(−n) = φ(n), φ(1) = 1, φ(0) = 0 | |
Signed-off-by: Mattias Andrée <[email protected]> | |
Diffstat: | |
M doc/exercises.tex | 8 ++++++-- | |
1 file changed, 6 insertions(+), 2 deletions(-) | |
--- | |
diff --git a/doc/exercises.tex b/doc/exercises.tex | |
@@ -262,10 +262,13 @@ which calculates the totient of $n$. Its | |
formula is | |
\( \displaystyle{ | |
- \varphi(n) = n \prod_{p \in \textbf{P} : p | n} | |
+ \varphi(n) = |n| \prod_{p \in \textbf{P} : p | n} | |
\left ( 1 - \frac{1}{p} \right ). | |
}\) | |
+Note that, $\varphi(-n) = \varphi(n)$, $\varphi(0) = 0$, | |
+and $\varphi(1) = 1$. | |
+ | |
\end{enumerate} | |
@@ -671,7 +674,8 @@ So, if we set $a = n$ and $b = 1$, then we iterate | |
of all integers $p$, $2 \le p \le n$. For which $p$ | |
that is prime, we set $a \gets a \cdot (p - 1)$ and | |
$b \gets b \cdot p$. After the iteration, $b | a$, | |
-and $\varphi(n) = \frac{a}{b}$. | |
+and $\varphi(n) = \frac{a}{b}$. However, if $n < 0$, | |
+then, $\varphi(n) = \varphi|n|$. | |