Fix small error in solution for [13] The totient - libzahl - big integer library | |
git clone git://git.suckless.org/libzahl | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
commit dd753f78b0c39d86a4cccca08996df303762e532 | |
parent 32f59d5fbed9dbfa913221ef37d8df9364b9963a | |
Author: Mattias Andrée <[email protected]> | |
Date: Thu, 28 Jul 2016 20:24:46 +0200 | |
Fix small error in solution for [13] The totient | |
Signed-off-by: Mattias Andrée <[email protected]> | |
Diffstat: | |
M doc/exercises.tex | 2 +- | |
1 file changed, 1 insertion(+), 1 deletion(-) | |
--- | |
diff --git a/doc/exercises.tex b/doc/exercises.tex | |
@@ -668,7 +668,7 @@ of \texttt{b} with its absolute value. | |
\noindent | |
So, if we set $a = n$ and $b = 1$, then we iterate | |
-of all integers $p$, $2 \le p < n$. For which $p$ | |
+of all integers $p$, $2 \le p \le n$. For which $p$ | |
that is prime, we set $a \gets a \cdot (p - 1)$ and | |
$b \gets b \cdot p$. After the iteration, $b | a$, | |
and $\varphi(n) = \frac{a}{b}$. |