Introduction
Introduction Statistics Contact Development Disclaimer Help
Manual: how to calculate the legendre symbol - libzahl - big integer library
git clone git://git.suckless.org/libzahl
Log
Files
Refs
README
LICENSE
---
commit 243a542dce0f8da6fc3ac43d5e5fcb144559b507
parent 802b2b18704f1b04ab3c3195d49333a546dc0ff4
Author: Mattias Andrée <[email protected]>
Date: Mon, 25 Jul 2016 15:40:04 +0200
Manual: how to calculate the legendre symbol
Signed-off-by: Mattias Andrée <[email protected]>
Diffstat:
M doc/not-implemented.tex | 18 +++++++++++++++++-
1 file changed, 17 insertions(+), 1 deletion(-)
---
diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex
@@ -136,7 +136,23 @@ TODO
\subsection{Legendre symbol}
\label{sec:Legendre symbol}
-TODO
+\( \displaystyle{
+ \left ( \frac{a}{p} \right ) \equiv a^{\frac{p - 1}{2}} ~(\text{Mod}~p),~
+ \left ( \frac{a}{p} \right ) \in \{-1,~0,~1\},~
+ p \in \textbf{P},~ p > 2
+}\)
+
+\noindent
+That is, unless $\displaystyle{a^{\frac{p - 1}{2}} ~\text{Mod}~ p \le 1}$,
+$\displaystyle{a^{\frac{p - 1}{2}} ~\text{Mod}~ p = p - 1}$, so
+$\displaystyle{\left ( \frac{a}{p} \right ) = -1}$.
+
+It should be noted that
+\( \displaystyle{
+ \left ( \frac{a}{p} \right ) =
+ \left ( \frac{a ~\text{Mod}~ p}{p} \right ),
+}\)
+so a compressed lookup table can be used for small $p$.
\subsection{Jacobi symbol}
You are viewing proxied material from suckless.org. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.