Introduction
Introduction Statistics Contact Development Disclaimer Help
Add exercise: [30] Powers of the golden ratio - libzahl - big integer library
git clone git://git.suckless.org/libzahl
Log
Files
Refs
README
LICENSE
---
commit 802b2b18704f1b04ab3c3195d49333a546dc0ff4
parent 63bc4e141d2f28fcd11187413966235151a92c84
Author: Mattias Andrée <[email protected]>
Date: Mon, 25 Jul 2016 15:13:29 +0200
Add exercise: [30] Powers of the golden ratio
Signed-off-by: Mattias Andrée <[email protected]>
Diffstat:
M doc/exercises.tex | 38 +++++++++++++++++++++++++++++…
1 file changed, 38 insertions(+), 0 deletions(-)
---
diff --git a/doc/exercises.tex b/doc/exercises.tex
@@ -188,6 +188,14 @@ than or equal to a preselected number.
+\item {[\textit{30}]} \textbf{Powers of the golden ratio}
+
+Implement function that returns $\varphi^n$ rounded
+to the nearest integer, where $n$ is the input and
+$\varphi$ is the golden ratio.
+
+
+
\end{enumerate}
@@ -477,5 +485,35 @@ the set of pseudoprimes.
+\item \textbf{Powers of the golden ratio}
+
+This was an information gathering exercise.
+For $n \ge 1$, $L_n = [\varphi^n]$, where
+$L_n$ is the $n^\text{th}$ Lucas number.
+
+\( \displaystyle{
+ L_n \stackrel{\text{\tiny{def}}}{\text{=}} \left \{ \begin{array}{ll}
+ 2 & \text{if} ~ n = 0 \\
+ 1 & \text{if} ~ n = 1 \\
+ L_{n - 1} + L_{n + 1} & \text{otherwise}
+ \end{array} \right .
+}\)
+
+\noindent
+but for efficiency and briefness, we will use
+\texttt{lucas} from \secref{sec:Lucas numbers}.
+
+\vspace{-1em}
+\begin{alltt}
+void golden_pow(z_t r, z_t p)
+\{
+ if (zsignum(p) <= 0)
+ zsetu(r, zzero(p));
+ else
+ lucas(r, p);
+\}
+\end{alltt}
+
+
\end{enumerate}
You are viewing proxied material from suckless.org. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.