Fix another error in the solution for Powers of the golden ratio - libzahl - bi… | |
git clone git://git.suckless.org/libzahl | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
commit a5ae82e67f914d9339ac22e0c2df9fe9b79b0f57 | |
parent 89898de3bfa38d39494555a3e109253489a0e0b6 | |
Author: Mattias Andrée <[email protected]> | |
Date: Mon, 25 Jul 2016 17:03:54 +0200 | |
Fix another error in the solution for Powers of the golden ratio | |
Signed-off-by: Mattias Andrée <[email protected]> | |
Diffstat: | |
M doc/exercises.tex | 12 +++++++----- | |
1 file changed, 7 insertions(+), 5 deletions(-) | |
--- | |
diff --git a/doc/exercises.tex b/doc/exercises.tex | |
@@ -488,7 +488,7 @@ the set of pseudoprimes. | |
\item \textbf{Powers of the golden ratio} | |
This was an information gathering exercise. | |
-For $n \ge 1$, $L_n = [\varphi^n]$, where | |
+For $n \ge 2$, $L_n = [\varphi^n]$, where | |
$L_n$ is the $n^\text{th}$ Lucas number. | |
\( \displaystyle{ | |
@@ -505,12 +505,14 @@ but for efficiency and briefness, we will use | |
\vspace{-1em} | |
\begin{alltt} | |
-void golden_pow(z_t r, z_t p) | |
+void golden_pow(z_t r, z_t n) | |
\{ | |
- if (zsignum(p) <= 0) | |
- zsetu(r, zcmpi(p, -1) >= 0); | |
+ if (zsignum(n) <= 0) | |
+ zsetu(r, zcmpi(n, -1) >= 0); | |
+ else if (!zcmpu(n, 1)) | |
+ zsetu(r, 2); | |
else | |
- lucas(r, p); | |
+ lucas(r, n); | |
\} | |
\end{alltt} | |