| On greatest common divisor - libzahl - big integer library | |
| git clone git://git.suckless.org/libzahl | |
| Log | |
| Files | |
| Refs | |
| README | |
| LICENSE | |
| --- | |
| commit 7214b27058765ea3892061e846c601499892c48d | |
| parent 8c2c44669b49e9f6bc95f08b2505b11b9b66082f | |
| Author: Mattias Andrée <[email protected]> | |
| Date: Fri, 13 May 2016 18:39:07 +0200 | |
| On greatest common divisor | |
| Signed-off-by: Mattias Andrée <[email protected]> | |
| Diffstat: | |
| M doc/number-theory.tex | 70 +++++++++++++++++++++++++++++… | |
| 1 file changed, 69 insertions(+), 1 deletion(-) | |
| --- | |
| diff --git a/doc/number-theory.tex b/doc/number-theory.tex | |
| @@ -109,7 +109,75 @@ being any other value than 0 or 1. | |
| \section{Greatest common divisor} | |
| \label{sec:Greatest common divisor} | |
| -TODO % zgcd | |
| +There is no single agreed upon definition | |
| +for the greatest common divisor of two | |
| +integer, that cover non-positive integers. | |
| +In libzahl we define it as | |
| + | |
| +\vspace{1em} | |
| +\( \displaystyle{ | |
| + \gcd(a, b) = \left \lbrace \begin{array}{rl} | |
| + -k & \textrm{if}~ a < 0, b < 0 \\ | |
| + b & \textrm{if}~ a = 0 \\ | |
| + a & \textrm{if}~ b = 0 \\ | |
| + k & \textrm{otherwise} | |
| + \end{array} \right . | |
| +}\), | |
| +\vspace{1em} | |
| + | |
| +\noindent | |
| +where $k$ is the largest integer that divides | |
| +both $\lvert a \rvert$ and $\lvert b \rvert$. This | |
| +definion ensures | |
| + | |
| +\vspace{1em} | |
| +\( \displaystyle{ | |
| + {a \over \gcd(a, b)} \left \lbrace \begin{array}{rl} | |
| + > 0 & \textrm{if}~ a < 0, b < 0 \\ | |
| + < 0 & \textrm{if}~ a < 0, b > 0 \\ | |
| + = 1 & \textrm{if}~ b = 0, a \neq 0 \\ | |
| + = 0 & \textrm{if}~ a = 0, b \neq 0 \\ | |
| + \in \textbf{N} & \textrm{otherwise if}~ a \neq 0, b \neq 0 | |
| + \end{array} \right . | |
| +}\), | |
| +\vspace{1em} | |
| + | |
| +\noindent | |
| +and analogously for $b \over \gcd(a,\,b)$. Note however, | |
| +the convension $\gcd(0, 0) = 0$ is adhered. Therefore, | |
| +before dividing with $\gcd{a, b}$ you may want to check | |
| +whether $\gcd(a, b) = 0$. $\gcd(a, b)$ is calculated | |
| +with {\tt zgcd(a, b)}. | |
| + | |
| +{\tt zgcd} calculates the greatest common divisor using | |
| +the Binary GCD algorithm. | |
| + | |
| +\vspace{1em} | |
| +\hspace{-2.8ex} | |
| +\begin{minipage}{\linewidth} | |
| +\begin{algorithmic} | |
| + \IF{$ab = 0$} | |
| + \RETURN $a + b$ | |
| + \ELSIF{$a < 0$ \AND $b < 0$} | |
| + \RETURN $-\gcd(\lvert a \rvert, \lvert b \rvert)$ | |
| + \ENDIF | |
| + \STATE $s \gets \max s : 2^s \vert a, b$ | |
| + \STATE $u, v \gets \lvert a \rvert \div 2^s, \lvert b \rvert \div 2^s$ | |
| + \WHILE{$u \neq v$} | |
| + \IF{$u > v$} | |
| + \STATE $u \leftrightarrow v$ | |
| + \ENDIF | |
| + \STATE $v \gets v - u$ | |
| + \STATE $v \gets v \div 2^x$, where $x = \max x : 2^x \vert v$ | |
| + \ENDWHILE | |
| + \RETURN $u \cdot 2^s$ | |
| +\end{algorithmic} | |
| +\end{minipage} | |
| +\vspace{1em} | |
| + | |
| +\noindent | |
| +$\max x : 2^x \vert z$ is returned by {\tt zlsb(z)} | |
| +\psecref{sec:Boundary}. | |
| \newpage |