Introduction
Introduction Statistics Contact Development Disclaimer Help
Manual: The Kronecker symbol - libzahl - big integer library
git clone git://git.suckless.org/libzahl
Log
Files
Refs
README
LICENSE
---
commit 019da3a9e7f81cd882d0383ac707ce098013b4a9
parent 60dd5110e21d1aedc047f2033af74330df552e40
Author: Mattias Andrée <[email protected]>
Date: Mon, 25 Jul 2016 16:38:43 +0200
Manual: The Kronecker symbol
Signed-off-by: Mattias Andrée <[email protected]>
Diffstat:
M doc/not-implemented.tex | 60 +++++++++++++++++++++++++++++…
1 file changed, 56 insertions(+), 4 deletions(-)
---
diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex
@@ -163,7 +163,8 @@ so a compressed lookup table can be used for small $p$.
\left ( \frac{a}{n} \right ) =
\prod_k \left ( \frac{a}{p_k} \right )^{n_k},
}\)
-where $n$ = $\displaystyle{\prod_k p_k^{n_k}}$, and $p_k \in \textbf{P}$.
+where $\displaystyle{n = \prod_k p_k^{n_k} > 0}$,
+and $p_k \in \textbf{P}$.
\vspace{1em}
Like the Legendre symbol, the Jacobi symbol is $n$-period over $a$.
@@ -197,14 +198,65 @@ Use the following algorithm to calculate the Jacobi symbo…
\STATE \textbf{start over}
\end{algorithmic}
\end{minipage}
-\vspace{1em}
-
\subsection{Kronecker symbol}
\label{sec:Kronecker symbol}
-TODO
+The Kronecker symbol
+$\displaystyle{\left ( \frac{a}{n} \right )}$
+is a generalisation of the Jacobi symbol,
+where $n$ can be any integer. For positive
+odd $n$, the Kronecker symbol is equal to
+the Jacobi symbol. For even $n$, the
+Kronecker symbol is $2n$-periodic over $a$,
+the Kronecker symbol is zero for all
+$(a, n)$ with both $a$ and $n$ are even.
+
+\vspace{1em}
+\noindent
+\( \displaystyle{
+ \left ( \frac{a}{2^k \cdot n} \right ) =
+ \left ( \frac{a}{n} \right ) \cdot \left ( \frac{a}{2} \right )^k,
+}\)
+where
+\( \displaystyle{
+ \left ( \frac{a}{2} \right ) =
+ \left \lbrace \begin{array}{rl}
+ 1 & \text{if}~ a \equiv 1, 7 ~(\text{Mod}~ 8) \\
+ -1 & \text{if}~ a \equiv 3, 5 ~(\text{Mod}~ 8) \\
+ 0 & \text{otherwise}
+ \end{array} \right .
+}\)
+
+\vspace{1em}
+\noindent
+\( \displaystyle{
+ \left ( \frac{-a}{n} \right ) =
+ \left ( \frac{a}{n} \right ) \cdot \left ( \frac{a}{-1} \right ),
+}\)
+where
+\( \displaystyle{
+ \left ( \frac{a}{-1} \right ) =
+ \left \lbrace \begin{array}{rl}
+ 1 & \text{if}~ a \ge 0 \\
+ -1 & \text{if}~ a < 0
+ \end{array} \right .
+}\)
+\vspace{1em}
+
+\noindent
+However, for $n = 0$, the symbol is defined as
+
+\vspace{1em}
+\noindent
+\( \displaystyle{
+ \left ( \frac{a}{0} \right ) =
+ \left \lbrace \begin{array}{rl}
+ 1 & \text{if}~ a = \pm 1 \\
+ 0 & \text{otherwise.}
+ \end{array} \right .
+}\)
\subsection{Power residue symbol}
You are viewing proxied material from suckless.org. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.