TITLE: Calculating NDVI from Sentinel 2 images for Bicuar National Park
DATE: 2018-11-20
AUTHOR: John L. Godlee
====================================================================


I recently ventured into trying to make sense of sentinel 2 data,
multispectral remote sensing imagery. I wanted to calculate NDVI for
Bicuar National Park, so I could see whether it’s possible to
identify areas of miombo woodland within the park using variation in
the NDVI, which you would expect is higher in woodland and lower in
grassland.

I got some cloud free images for the area covering Bicuar and wrote
a Python script which calculates NDVI, from the red band and near
infra-red band:

   # Import libraries
   import glob
   import gdal
   import os
   import fnmatch
   import re
   import cv2

   # Define a function to find files given a pattern
   def find(pattern, path):
       result = []
       for root, dirs, files in os.walk(path):
           for name in files:
               if fnmatch.fnmatch(name, pattern):
                   result.append(os.path.join(root, name))
       return result

   # Set working directory for images
   rootdir = '/sentinel_bicuar'
   os.chdir(rootdir)

   # Create a list of folders
   folders = next(os.walk(os.getcwd()))[1]

   # Loop through each folder in turn
   for i in folders:
     # Set input directory
     in_dir =  rootdir +  '/' + i

     # Search directory for desired bands
     red_file = find('*B04.jp2', in_dir)[0]
     print("Processing: " + red_file)
     nir_file = find('*B08.jp2', in_dir)[0]

     # Open each band using gdal
     red_link = gdal.Open(red_file)
     nir_link = gdal.Open(nir_file)

     # Store as an array
     red_array = red_link.GetRasterBand(1).ReadAsArray() * 0.0001
     nir_array = nir_link.GetRasterBand(1).ReadAsArray() * 0.0001

     # Create a mask filled with zeroes
     mask = red_array == 0.

     # Calculate NDVI
     ndvi2 = (nir_array - red_array) / (nir_array + red_array)

     # Set mask values back to 0
     ndvi2[mask] = 0.

     # Create output filename based on input name
     out_string_a = re.search('A004323_(.*)/IMG_DATA', red_file).group(1)
     out_string_b = re.search('IMG_DATA/(.*)_B04.', red_file).group(1)
     out_file = rootdir + '/' + out_string_a + '_' + out_string_b + '_NDVI.tif'
     print('Creating file: ' + out_file)

     # Get dimensions
     x_pixels = ndvi2.shape[0] # number of pixels in x
     y_pixels = ndvi2.shape[1] # number of pixels in y

     # Set up output GeoTIFF
     driver = gdal.GetDriverByName('GTiff')

     # Create driver using output filename, x and y pixels, # of bands, and datatype
     ndvi_data = driver.Create(out_file,x_pixels, y_pixels, 1, gdal.GDT_Float32)

     # Set nodata value
     ndvi_data.GetRasterBand(1).SetNoDataValue(0.)

     # Set NDVI array as the 1 output raster band
     ndvi_data.GetRasterBand(1).WriteArray(ndvi2)

     # Setting up the coordinate reference system of the output GeoTIFF
     geotrans=red_link.GetGeoTransform() # Grab input GeoTranform information
     print(geotrans)
     proj=red_link.GetProjection() # Grab projection information from input file

     # now set GeoTransform parameters and projection on the output file
     ndvi_data.SetGeoTransform(geotrans)
     ndvi_data.SetProjection(proj)
     ndvi_data.FlushCache()
     ndvi_data=None

     print("DONE")

Then I use gdal to merge each of the resultant .tif files with an
NDVI band into a single file, then clip that file with the outline
of [Bicuar National Park].

 [Bicuar National Park]: https://www.protectedplanet.net/#thematic-areas

   #!/bin/bash

   echo "Merging tif files"

   gdal_merge.py -n 0 -a_nodata 0 *_NDVI.tif -o ndvi_merge_o.tif

   gdalwrap -t_srs '+proj=longlat +datum=WGS84' ndvi_merge_0.tif ndvi_merge_0_longlat.tif

   gdalwarp -cutline  'bicuar_shp/WDPA_Mar2018_protected_area_350-shapefile-polygons.shp' -crop_to_cutline -dstalpha ndvi_merge_0_longlat.tif ndvi_merge_0_longlat_bicuar.tif

 {IMAGE}


Then I can use an R script to look at the distribution of NDVI
across the park

   # Packages
   library(raster)
   library(rgdal)


   # Import data ----
   ndvi_tif_bicuar <- raster("ndvi_merge_0_longlat_bicuar.tif")

   ndvi_vec <- getValues(ndvi_tif_bicuar)

   hist(ndvi_vec, breaks = 100)

 {IMAGE}


I can also experiment with plotting areas of the park within a
certain threshold of NDVI

   ndvi_thresh <- ndvi_tif_bicuar[ndvi_tif_bicuar < 0.6] <- NA

   plot(ndvi_thresh)

 {IMAGE}