| zsqr.3 - libzahl - big integer library | |
| git clone git://git.suckless.org/libzahl | |
| Log | |
| Files | |
| Refs | |
| README | |
| LICENSE | |
| --- | |
| zsqr.3 (640B) | |
| --- | |
| 1 .TH ZSQR 3 libzahl | |
| 2 .SH NAME | |
| 3 zsqr - Calculate the square of a big integer | |
| 4 .SH SYNOPSIS | |
| 5 .nf | |
| 6 #include <zahl.h> | |
| 7 | |
| 8 void zsqr(z_t \fIsquare\fP, z_t \fIinteger\fP); | |
| 9 .fi | |
| 10 .SH DESCRIPTION | |
| 11 .B zsqr | |
| 12 calculates the square of an | |
| 13 .IR integer , | |
| 14 and stores the result in | |
| 15 .IR square . | |
| 16 That is, | |
| 17 .I square | |
| 18 gets | |
| 19 .IR integer ². | |
| 20 .P | |
| 21 It is safe to call | |
| 22 .B zsqr | |
| 23 with non-unique parameters. | |
| 24 .SH RATIONALE | |
| 25 Multiplication algorithm can be optimised if | |
| 26 we know that the multiplier and the multiplicand | |
| 27 are equal. | |
| 28 .SH SEE ALSO | |
| 29 .BR zmodmul (3), | |
| 30 .BR zmodpow (3), | |
| 31 .BR zstr (3), | |
| 32 .BR zadd (3), | |
| 33 .BR zsub (3), | |
| 34 .BR zdiv (3), | |
| 35 .BR zmod (3), | |
| 36 .BR zneg (3), | |
| 37 .BR zabs (3), | |
| 38 .BR zpow (3) |