zmodpowu.3 - libzahl - big integer library | |
git clone git://git.suckless.org/libzahl | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
zmodpowu.3 (897B) | |
--- | |
1 .TH ZMODPOWU 3 libzahl | |
2 .SH NAME | |
3 zmodpowu - Calculate a modular power of a big integer | |
4 .SH SYNOPSIS | |
5 .nf | |
6 #include <zahl.h> | |
7 | |
8 void zmodpowu(z_t \fIpower\fP, z_t \fIbase\fP, unsigned long long int \f… | |
9 .fi | |
10 .SH DESCRIPTION | |
11 .B zmodpowu | |
12 calculates the | |
13 .IR exponent :th | |
14 power of a | |
15 .IR base , | |
16 modulus a | |
17 .IR modulator , | |
18 and stores the result in | |
19 .IR power . | |
20 That is, | |
21 .I power | |
22 gets | |
23 .RI ( base | |
24 ↑ | |
25 .IR exponent ) | |
26 Mod | |
27 .IR modulator . | |
28 .P | |
29 It is safe to call | |
30 .B zmodpowu | |
31 with non-unique parameters. | |
32 .P | |
33 See | |
34 .BR zmod (3) | |
35 for details on modulation. | |
36 .SH RATIONALE | |
37 It is possible to calculate the modular power | |
38 with a faster algorithm than calculating the | |
39 power and than the modulus of that power. | |
40 .SH SEE ALSO | |
41 .BR zmodpow (3), | |
42 .BR zmodsqr (3), | |
43 .BR zmodmul (3), | |
44 .BR zsqr (3), | |
45 .BR zstr (3), | |
46 .BR zadd (3), | |
47 .BR zsub (3), | |
48 .BR zmul (3), | |
49 .BR zdiv (3), | |
50 .BR zmod (3), | |
51 .BR zneg (3), | |
52 .BR zabs (3) |