zmodmul.3 - libzahl - big integer library | |
git clone git://git.suckless.org/libzahl | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
zmodmul.3 (905B) | |
--- | |
1 .TH ZMODMUL 3 libzahl | |
2 .SH NAME | |
3 zmodmul - Calculate a modular product of two big integer | |
4 .SH SYNOPSIS | |
5 .nf | |
6 #include <zahl.h> | |
7 | |
8 void zmodmul(z_t \fIproduct\fP, z_t \fImultiplier\fP, z_t \fImultiplican… | |
9 .fi | |
10 .SH DESCRIPTION | |
11 .B zmodmul | |
12 calculates the product of a | |
13 .I multiplier | |
14 and a | |
15 .IR multiplicand , | |
16 modulus a | |
17 .IR modulator , | |
18 and stores the result in | |
19 .IR product . | |
20 That is, | |
21 .I product | |
22 gets | |
23 .RI ( multiplier | |
24 ⋅ | |
25 .IR multiplicand ) | |
26 Mod | |
27 .IR modulator . | |
28 .P | |
29 It is safe to call | |
30 .B zmodmul | |
31 with non-unique parameters. | |
32 .P | |
33 See | |
34 .BR zmod (3) | |
35 for details on modulation. | |
36 .SH RATIONALE | |
37 It is possible to calculate the modular product | |
38 with a faster algorithm than calculating the | |
39 product and than the modulus of that product. | |
40 .SH SEE ALSO | |
41 .BR zmodsqr (3), | |
42 .BR zmodpow (3), | |
43 .BR zstr (3), | |
44 .BR zadd (3), | |
45 .BR zsub (3), | |
46 .BR zmul (3), | |
47 .BR zdiv (3), | |
48 .BR zmod (3), | |
49 .BR zneg (3), | |
50 .BR zabs (3), | |
51 .BR zpow (3) |