| refsheet.tex - libzahl - big integer library | |
| git clone git://git.suckless.org/libzahl | |
| Log | |
| Files | |
| Refs | |
| README | |
| LICENSE | |
| --- | |
| refsheet.tex (7771B) | |
| --- | |
| 1 \documentclass[10pt]{article} | |
| 2 \usepackage[margin=1in]{geometry} | |
| 3 \usepackage{amsmath, amssymb, mathtools} | |
| 4 \usepackage{microtype} | |
| 5 \DeclarePairedDelimiter\ab{\lvert}{\rvert} | |
| 6 | |
| 7 \newcommand{\size}{{\tt size\_t}} | |
| 8 \newcommand{\ullong}{{\tt unsigned long long int}} | |
| 9 | |
| 10 \newcommand{\entry}[3]{ #2 & {\tt #1} & #3 \\ } | |
| 11 \newcommand{\cont}[1]{ & & #1 \\ } | |
| 12 | |
| 13 \begin{document} | |
| 14 | |
| 15 | |
| 16 | |
| 17 {\Huge libzahl} | |
| 18 \vspace{1ex} | |
| 19 | |
| 20 Unless specified otherwise, returns are {\tt void} and all parameters ar… | |
| 21 \vspace{1.5em} | |
| 22 | |
| 23 | |
| 24 | |
| 25 \hspace{-2ex} | |
| 26 \begin{tabular}{lll} | |
| 27 | |
| 28 | |
| 29 | |
| 30 \textbf{Initialisation} \\ | |
| 31 \entry{zsetup(env)} {Initialise libzahl} {must be called before any ot… | |
| 32 \cont {used, {\tt env} is a {\tt jm… | |
| 33 \cont {{\tt longjmp} to --- with va… | |
| 34 \entry{zunsetup()} {Deinitialise libzahl} {will free any pooled memory} | |
| 35 \entry{zinit(a)} {Initialise $a$} {call once before use in any … | |
| 36 \entry{zfree(a)} {Deinitialise $a$} {must not be used again befor… | |
| 37 \\ | |
| 38 | |
| 39 \textbf{Error handling} \\ | |
| 40 \entry{zerror(a)} {Get error code} {returns {\tt enum zerror},… | |
| 41 \cont {description in {\tt const … | |
| 42 \entry{zperror(a)} {Print error description} {behaves like {\tt perror(a… | |
| 43 \cont {possibly {\tt NULL} or $\v… | |
| 44 %\\ | |
| 45 | |
| 46 \textbf{Arithmetic} \\ | |
| 47 \entry{zadd(a, b, c)} {$a \gets b + c$} {} | |
| 48 \entry{zsub(a, b, c)} {$a \gets b - c$} {} | |
| 49 \entry{zmul(a, b, c)} {$a \gets b \cdot c$} {} | |
| 50 \entry{zmodmul(a, b, c, d)} {$a \gets b \cdot c \mod d$} {$0 \le a~\mbo… | |
| 51 \entry{zdiv(a, b, c)} {$a \gets b / c$} {rounded towar… | |
| 52 \entry{zdivmod(a, b, c, d)} {$a \gets c / d$} {rounded towar… | |
| 53 \entry{zdivmod(a, b, c, d)} {$b \gets c \mod d$} {$0 \le b~\mbo… | |
| 54 \entry{zmod(a, b, c)} {$a \gets b \mod c$} {$0 \le a~\mbo… | |
| 55 %\entry{zdiv\_exact(a, b, c)} {$a \gets b / c$} {assumes $c \… | |
| 56 \entry{zsqr(a, b)} {$a \gets b^2$} {} | |
| 57 \entry{zmodsqr(a, b, c)} {$a \gets b^2 \mod c$} {$0 \le a < \a… | |
| 58 \entry{zsqr(a, b)} {$a \gets b^2$} {} | |
| 59 \entry{zpow(a, b, c)} {$a \gets b^c$} {} | |
| 60 \entry{zpowu(a, b, c)} {$a \gets b^c$} {{\tt c} is an… | |
| 61 \entry{zmodpow(a, b, c, d)} {$a \gets b^c \mod d$} {$0 \le a~\mbo… | |
| 62 \entry{zmodpowu(a, b, c, d)} {$a \gets b^c \mod d$} {ditto, {\tt c… | |
| 63 \entry{zabs(a, b)} {$a \gets \ab{b}$} {} | |
| 64 \entry{zneg(a, b)} {$a \gets -b$} {} | |
| 65 \\ | |
| 66 | |
| 67 \textbf{Assignment} \\ | |
| 68 \entry{zset(a, b)} {$a \gets b$} {} | |
| 69 \entry{zseti(a, b)} {$a \gets b$} {{\tt b} is an {\t… | |
| 70 \entry{zsetu(a, b)} {$a \gets b$} {{\tt b} is a {\tt… | |
| 71 \entry{zsets(a, b)} {$a \gets b$} {{\tt b} is a deci… | |
| 72 %\entry{zsets\_radix(a, b, c)} {$a \gets b$} {{\tt b} is a rad… | |
| 73 %\cont {{\tt c} is an \u… | |
| 74 \entry{zswap(a, b)} {$a \leftrightarrow b$} {} | |
| 75 \\ | |
| 76 | |
| 77 \textbf{Comparison} \\ | |
| 78 \entry{zcmp(a, b)} {Compare $a$ and $b$} {returns {\tt int}… | |
| 79 \entry{zcmpi(a, b)} {Compare $a$ and $b$} {ditto, {\tt b} is… | |
| 80 \entry{zcmpu(a, b)} {Compare $a$ and $b$} {ditto, {\tt b} is… | |
| 81 \entry{zcmpmag(a, b)} {Compare $\ab{a}$ and $\ab{b}$} {returns {\tt int}… | |
| 82 \\ | |
| 83 | |
| 84 | |
| 85 | |
| 86 \end{tabular} | |
| 87 \newpage | |
| 88 \hspace{-2ex} | |
| 89 \begin{tabular}{lll} | |
| 90 | |
| 91 | |
| 92 | |
| 93 \textbf{Bit operation} \\ | |
| 94 \entry{zand(a, b, c)} {$a \gets b \wedge c$} {bitwise} | |
| 95 \entry{zor(a, b, c)} {$a \gets b \vee c$} {bitwise} | |
| 96 \entry{zxor(a, b, c)} {$a \gets b \oplus c$} {bitwise} | |
| 97 \entry{znot(a, b, c)} {$a \gets \lnot b$} {bitwise, cut … | |
| 98 \entry{zlsh(a, b, c)} {$a \gets b \cdot 2^c$} {{\tt c} is a … | |
| 99 \entry{zrsh(a, b, c)} {$a \gets b / 2^c$} {ditto, rounde… | |
| 100 \entry{ztrunc(a, b, c)} {$a \gets b \mod 2^c$} {ditto, $a$ sh… | |
| 101 \entry{zbits(a)} {Get number of used bits} {returns \size… | |
| 102 \entry{zlsb(a)} {Get index of lowest set bit} {returns \size… | |
| 103 \entry{zbtest(a, b)} {Is bit $b$ in $a$ set?} {{\tt b} is a … | |
| 104 \entry{zbset(a, b, c, 1)} {$a \gets b$, set bit $c$} {{\tt c} is a … | |
| 105 \entry{zbset(a, b, c, 0)} {$a \gets b$, clear bit $c$} {ditto} | |
| 106 \entry{zbset(a, b, c, -1)} {$a \gets b$, flip bit $c$} {ditto} | |
| 107 \entry{zsplit(a, b, c, d)} {$a \gets c / 2^d$} {{\tt d} is a … | |
| 108 \entry{zsplit(a, b, c, d)} {$b \gets c \mod 2^d$} {ditto, $b$ sh… | |
| 109 \\ | |
| 110 | |
| 111 \textbf{Conversion to string} \\ | |
| 112 \entry{zstr(a, b, c)} {Convert $a$ to decimal} {returns the … | |
| 113 \cont {--- {\tt b} … | |
| 114 {\tt NUL… | |
| 115 \cont {either 0 or … | |
| 116 \cont {resulting st… | |
| 117 \cont {allocation s… | |
| 118 %\entry{zstr\_radix(a, b, c, d)} {Convert $a$ to radix $d$} {ditto, {\tt… | |
| 119 \entry{zstr\_length(a, b)} {Get string length of $a$} {returns \siz… | |
| 120 \\ | |
| 121 | |
| 122 \textbf{Marshallisation} \\ | |
| 123 \entry{zsave(a, b)} {Marshal $a$ into $b$} {returns \size{} number… | |
| 124 \cont {{\tt b} is a {\tt void… | |
| 125 \entry{zsave(a, NULL)} {Get marshal-size of $a$} {returns \size{}} | |
| 126 \entry{zload(a, b)} {Unmarshal $a$ from $b$} {returns \size{} number… | |
| 127 \cont {{\tt b} is a {\tt cons… | |
| 128 %\\ | |
| 129 | |
| 130 \textbf{Number theory} \\ | |
| 131 \entry{zsignum(a, b)} {$a \gets \mbox{sgn}~b$} {} | |
| 132 \entry{zeven(a)} {Is $a$ even?} {returns {\tt int} 1 … | |
| 133 \entry{zeven\_nonzero(a)} {Is $a$ even?} {ditto, assumes $a \n… | |
| 134 \entry{zodd(a)} {Is $a$ odd?} {returns {\tt int} 1 … | |
| 135 \entry{zodd\_nonzero(a)} {Is $a$ odd?} {ditto, assumes $a \n… | |
| 136 \entry{zzero(a)} {Is $a$ zero?} {returns {\tt int} 1 … | |
| 137 \entry{zgcd(a, b, c)} {$a \gets \gcd(c, b)$} {$a < 0$ if $b < 0 \w… | |
| 138 \entry{zptest(a, b, c)} {Is $b$ a prime?} {$c$ runs of Miller--… | |
| 139 \cont {{\tt enum zprimality… | |
| 140 \cont {(and stores the witn… | |
| 141 \cont {{\tt a} is {\tt NULL… | |
| 142 \cont {{\tt PRIME} (2)} | |
| 143 %\\ | |
| 144 | |
| 145 \textbf{Randomness} \\ | |
| 146 \entry{zrand(a, b, UNIFORM, d)} {$a \xleftarrow{\$} \textbf{Z}_d$} | |
| 147 {{\tt b} is a {\tt enum zranddev}, e.g.} | |
| 148 \cont {{\tt DEFAULT\_RANDOM}, {\tt FASTEST\_RANDOM}} | |
| 149 \\ | |
| 150 | |
| 151 | |
| 152 | |
| 153 \end{tabular} | |
| 154 \end{document} |