Table of Contents

 • 1. Affine transformation
 • 2. Solve linear equations
 • 3. Norm in

    n
   ℂ

 • 4. Polynomial functions
 • 5. Determinant, Generalized
 • Bibliography

1. Affine transformation

  u         a b c      x
[ v ]  =  [ d e f ]  [ y ]
  1         0 0 1      1

Equation 1. Affine equations

Where

( u , v )

is the new coordinate and

( x , y )

is the old coordinate.

The APL code mapping an image by this transformation is like:

 | affine←{
 |     ⍝ affine transformation
 |     ⎕IO←0 ⋄ s←⍴⍵
 |     g←¯1↓⍉⌊0.5+⍺+.×⍤2 1⊢1,⍨⍉s⊤⍳×/s
5 |     m←∧⌿(s>⍤0 1⊢g)∧0<g
 |     s⍴(0,,⍵)[m×1+s⊥g]
 | }

2. Solve linear equations

For coefficient matrix

A

, variable matrix

X

and constant matrix

B

, then

AX  = B
          − 1
X  =  ( A     ) B

Then the APL code is just (⌹A)+.×B, or even simpler, B⌹A. As the APL2
specification writes:

   If Z←L⌹R is executable, Z is determined to minimize the value of the least
   squares expression:

     |+/,(L-R+.×Z)*2

In J the matrix division is B %. A. Note that, if possible, using exact number
can produce more accurate result.

3. Norm in

n


The norm of inner product space,

              _______________
   ‾       _ |    ‾     ‾
‖  a  ‖  =  \| ⟨  a  ,  a  ⟩

, is:

 |2*∘÷⍨+.×⍨

4. Use linear transformation to define polynomial functions

Due to the "superposition" principle, for


4

that basis

               2    3
B =  [ 1 , x , x  , x  ]

,

           '    ''
L ( p )  = x  + x

find

M

that

[ L ( p )  ]   = M [ p ]
             B           B