Network Working Group                    Internet Engineering Task Force
Request for Comments: 1123                             R. Braden, Editor
                                                           October 1989


      Requirements for Internet Hosts -- Application and Support

Status of This Memo

  This RFC is an official specification for the Internet community.  It
  incorporates by reference, amends, corrects, and supplements the
  primary protocol standards documents relating to hosts.  Distribution
  of this document is unlimited.

Summary

  This RFC is one of a pair that defines and discusses the requirements
  for Internet host software.  This RFC covers the application and
  support protocols; its companion RFC-1122 covers the communication
  protocol layers: link layer, IP layer, and transport layer.



                          Table of Contents




  1.  INTRODUCTION ...............................................    5
     1.1  The Internet Architecture ..............................    6
     1.2  General Considerations .................................    6
        1.2.1  Continuing Internet Evolution .....................    6
        1.2.2  Robustness Principle ..............................    7
        1.2.3  Error Logging .....................................    8
        1.2.4  Configuration .....................................    8
     1.3  Reading this Document ..................................   10
        1.3.1  Organization ......................................   10
        1.3.2  Requirements ......................................   10
        1.3.3  Terminology .......................................   11
     1.4  Acknowledgments ........................................   12

  2.  GENERAL ISSUES .............................................   13
     2.1  Host Names and Numbers .................................   13
     2.2  Using Domain Name Service ..............................   13
     2.3  Applications on Multihomed hosts .......................   14
     2.4  Type-of-Service ........................................   14
     2.5  GENERAL APPLICATION REQUIREMENTS SUMMARY ...............   15




Internet Engineering Task Force                                 [Page 1]




RFC1123                       INTRODUCTION                  October 1989


  3.  REMOTE LOGIN -- TELNET PROTOCOL ............................   16
     3.1  INTRODUCTION ...........................................   16
     3.2  PROTOCOL WALK-THROUGH ..................................   16
        3.2.1  Option Negotiation ................................   16
        3.2.2  Telnet Go-Ahead Function ..........................   16
        3.2.3  Control Functions .................................   17
        3.2.4  Telnet "Synch" Signal .............................   18
        3.2.5  NVT Printer and Keyboard ..........................   19
        3.2.6  Telnet Command Structure ..........................   20
        3.2.7  Telnet Binary Option ..............................   20
        3.2.8  Telnet Terminal-Type Option .......................   20
     3.3  SPECIFIC ISSUES ........................................   21
        3.3.1  Telnet End-of-Line Convention .....................   21
        3.3.2  Data Entry Terminals ..............................   23
        3.3.3  Option Requirements ...............................   24
        3.3.4  Option Initiation .................................   24
        3.3.5  Telnet Linemode Option ............................   25
     3.4  TELNET/USER INTERFACE ..................................   25
        3.4.1  Character Set Transparency ........................   25
        3.4.2  Telnet Commands ...................................   26
        3.4.3  TCP Connection Errors .............................   26
        3.4.4  Non-Default Telnet Contact Port ...................   26
        3.4.5  Flushing Output ...................................   26
     3.5.  TELNET REQUIREMENTS SUMMARY ...........................   27

  4.  FILE TRANSFER ..............................................   29
     4.1  FILE TRANSFER PROTOCOL -- FTP ..........................   29
        4.1.1  INTRODUCTION ......................................   29
        4.1.2.  PROTOCOL WALK-THROUGH ............................   29
           4.1.2.1  LOCAL Type ...................................   29
           4.1.2.2  Telnet Format Control ........................   30
           4.1.2.3  Page Structure ...............................   30
           4.1.2.4  Data Structure Transformations ...............   30
           4.1.2.5  Data Connection Management ...................   31
           4.1.2.6  PASV Command .................................   31
           4.1.2.7  LIST and NLST Commands .......................   31
           4.1.2.8  SITE Command .................................   32
           4.1.2.9  STOU Command .................................   32
           4.1.2.10  Telnet End-of-line Code .....................   32
           4.1.2.11  FTP Replies .................................   33
           4.1.2.12  Connections .................................   34
           4.1.2.13  Minimum Implementation; RFC-959 Section .....   34
        4.1.3  SPECIFIC ISSUES ...................................   35
           4.1.3.1  Non-standard Command Verbs ...................   35
           4.1.3.2  Idle Timeout .................................   36
           4.1.3.3  Concurrency of Data and Control ..............   36
           4.1.3.4  FTP Restart Mechanism ........................   36
        4.1.4  FTP/USER INTERFACE ................................   39



Internet Engineering Task Force                                 [Page 2]




RFC1123                       INTRODUCTION                  October 1989


           4.1.4.1  Pathname Specification .......................   39
           4.1.4.2  "QUOTE" Command ..............................   40
           4.1.4.3  Displaying Replies to User ...................   40
           4.1.4.4  Maintaining Synchronization ..................   40
        4.1.5   FTP REQUIREMENTS SUMMARY .........................   41
     4.2  TRIVIAL FILE TRANSFER PROTOCOL -- TFTP .................   44
        4.2.1  INTRODUCTION ......................................   44
        4.2.2  PROTOCOL WALK-THROUGH .............................   44
           4.2.2.1  Transfer Modes ...............................   44
           4.2.2.2  UDP Header ...................................   44
        4.2.3  SPECIFIC ISSUES ...................................   44
           4.2.3.1  Sorcerer's Apprentice Syndrome ...............   44
           4.2.3.2  Timeout Algorithms ...........................   46
           4.2.3.3  Extensions ...................................   46
           4.2.3.4  Access Control ...............................   46
           4.2.3.5  Broadcast Request ............................   46
        4.2.4  TFTP REQUIREMENTS SUMMARY .........................   47

  5.  ELECTRONIC MAIL -- SMTP and RFC-822 ........................   48
     5.1  INTRODUCTION ...........................................   48
     5.2  PROTOCOL WALK-THROUGH ..................................   48
        5.2.1  The SMTP Model ....................................   48
        5.2.2  Canonicalization ..................................   49
        5.2.3  VRFY and EXPN Commands ............................   50
        5.2.4  SEND, SOML, and SAML Commands .....................   50
        5.2.5  HELO Command ......................................   50
        5.2.6  Mail Relay ........................................   51
        5.2.7  RCPT Command ......................................   52
        5.2.8  DATA Command ......................................   53
        5.2.9  Command Syntax ....................................   54
        5.2.10  SMTP Replies .....................................   54
        5.2.11  Transparency .....................................   55
        5.2.12  WKS Use in MX Processing .........................   55
        5.2.13  RFC-822 Message Specification ....................   55
        5.2.14  RFC-822 Date and Time Specification ..............   55
        5.2.15  RFC-822 Syntax Change ............................   56
        5.2.16  RFC-822  Local-part ..............................   56
        5.2.17  Domain Literals ..................................   57
        5.2.18  Common Address Formatting Errors .................   58
        5.2.19  Explicit Source Routes ...........................   58
     5.3  SPECIFIC ISSUES ........................................   59
        5.3.1  SMTP Queueing Strategies ..........................   59
           5.3.1.1 Sending Strategy ..............................   59
           5.3.1.2  Receiving strategy ...........................   61
        5.3.2  Timeouts in SMTP ..................................   61
        5.3.3  Reliable Mail Receipt .............................   63
        5.3.4  Reliable Mail Transmission ........................   63
        5.3.5  Domain Name Support ...............................   65



Internet Engineering Task Force                                 [Page 3]




RFC1123                       INTRODUCTION                  October 1989


        5.3.6  Mailing Lists and Aliases .........................   65
        5.3.7  Mail Gatewaying ...................................   66
        5.3.8  Maximum Message Size ..............................   68
     5.4  SMTP REQUIREMENTS SUMMARY ..............................   69

  6. SUPPORT SERVICES ............................................   72
     6.1 DOMAIN NAME TRANSLATION .................................   72
        6.1.1 INTRODUCTION .......................................   72
        6.1.2  PROTOCOL WALK-THROUGH .............................   72
           6.1.2.1  Resource Records with Zero TTL ...............   73
           6.1.2.2  QCLASS Values ................................   73
           6.1.2.3  Unused Fields ................................   73
           6.1.2.4  Compression ..................................   73
           6.1.2.5  Misusing Configuration Info ..................   73
        6.1.3  SPECIFIC ISSUES ...................................   74
           6.1.3.1  Resolver Implementation ......................   74
           6.1.3.2  Transport Protocols ..........................   75
           6.1.3.3  Efficient Resource Usage .....................   77
           6.1.3.4  Multihomed Hosts .............................   78
           6.1.3.5  Extensibility ................................   79
           6.1.3.6  Status of RR Types ...........................   79
           6.1.3.7  Robustness ...................................   80
           6.1.3.8  Local Host Table .............................   80
        6.1.4  DNS USER INTERFACE ................................   81
           6.1.4.1  DNS Administration ...........................   81
           6.1.4.2  DNS User Interface ...........................   81
           6.1.4.3 Interface Abbreviation Facilities .............   82
        6.1.5  DOMAIN NAME SYSTEM REQUIREMENTS SUMMARY ...........   84
     6.2  HOST INITIALIZATION ....................................   87
        6.2.1  INTRODUCTION ......................................   87
        6.2.2  REQUIREMENTS ......................................   87
           6.2.2.1  Dynamic Configuration ........................   87
           6.2.2.2  Loading Phase ................................   89
     6.3  REMOTE MANAGEMENT ......................................   90
        6.3.1  INTRODUCTION ......................................   90
        6.3.2  PROTOCOL WALK-THROUGH .............................   90
        6.3.3  MANAGEMENT REQUIREMENTS SUMMARY ...................   92

  7.  REFERENCES .................................................   93












Internet Engineering Task Force                                 [Page 4]




RFC1123                       INTRODUCTION                  October 1989


1.  INTRODUCTION

  This document is one of a pair that defines and discusses the
  requirements for host system implementations of the Internet protocol
  suite.  This RFC covers the applications layer and support protocols.
  Its companion RFC, "Requirements for Internet Hosts -- Communications
  Layers" [INTRO:1] covers the lower layer protocols: transport layer,
  IP layer, and link layer.

  These documents are intended to provide guidance for vendors,
  implementors, and users of Internet communication software.  They
  represent the consensus of a large body of technical experience and
  wisdom, contributed by members of the Internet research and vendor
  communities.

  This RFC enumerates standard protocols that a host connected to the
  Internet must use, and it incorporates by reference the RFCs and
  other documents describing the current specifications for these
  protocols.  It corrects errors in the referenced documents and adds
  additional discussion and guidance for an implementor.

  For each protocol, this document also contains an explicit set of
  requirements, recommendations, and options.  The reader must
  understand that the list of requirements in this document is
  incomplete by itself; the complete set of requirements for an
  Internet host is primarily defined in the standard protocol
  specification documents, with the corrections, amendments, and
  supplements contained in this RFC.

  A good-faith implementation of the protocols that was produced after
  careful reading of the RFC's and with some interaction with the
  Internet technical community, and that followed good communications
  software engineering practices, should differ from the requirements
  of this document in only minor ways.  Thus, in many cases, the
  "requirements" in this RFC are already stated or implied in the
  standard protocol documents, so that their inclusion here is, in a
  sense, redundant.  However, they were included because some past
  implementation has made the wrong choice, causing problems of
  interoperability, performance, and/or robustness.

  This document includes discussion and explanation of many of the
  requirements and recommendations.  A simple list of requirements
  would be dangerous, because:

  o    Some required features are more important than others, and some
       features are optional.

  o    There may be valid reasons why particular vendor products that



Internet Engineering Task Force                                 [Page 5]




RFC1123                       INTRODUCTION                  October 1989


       are designed for restricted contexts might choose to use
       different specifications.

  However, the specifications of this document must be followed to meet
  the general goal of arbitrary host interoperation across the
  diversity and complexity of the Internet system.  Although most
  current implementations fail to meet these requirements in various
  ways, some minor and some major, this specification is the ideal
  towards which we need to move.

  These requirements are based on the current level of Internet
  architecture.  This document will be updated as required to provide
  additional clarifications or to include additional information in
  those areas in which specifications are still evolving.

  This introductory section begins with general advice to host software
  vendors, and then gives some guidance on reading the rest of the
  document.  Section 2 contains general requirements that may be
  applicable to all application and support protocols.  Sections 3, 4,
  and 5 contain the requirements on protocols for the three major
  applications: Telnet, file transfer, and electronic mail,
  respectively. Section 6 covers the support applications: the domain
  name system, system initialization, and management.  Finally, all
  references will be found in Section 7.

  1.1  The Internet Architecture

     For a brief introduction to the Internet architecture from a host
     viewpoint, see Section 1.1 of [INTRO:1].  That section also
     contains recommended references for general background on the
     Internet architecture.

  1.2  General Considerations

     There are two important lessons that vendors of Internet host
     software have learned and which a new vendor should consider
     seriously.

     1.2.1  Continuing Internet Evolution

        The enormous growth of the Internet has revealed problems of
        management and scaling in a large datagram-based packet
        communication system.  These problems are being addressed, and
        as a result there will be continuing evolution of the
        specifications described in this document.  These changes will
        be carefully planned and controlled, since there is extensive
        participation in this planning by the vendors and by the
        organizations responsible for operations of the networks.



Internet Engineering Task Force                                 [Page 6]




RFC1123                       INTRODUCTION                  October 1989


        Development, evolution, and revision are characteristic of
        computer network protocols today, and this situation will
        persist for some years.  A vendor who develops computer
        communication software for the Internet protocol suite (or any
        other protocol suite!) and then fails to maintain and update
        that software for changing specifications is going to leave a
        trail of unhappy customers.  The Internet is a large
        communication network, and the users are in constant contact
        through it.  Experience has shown that knowledge of
        deficiencies in vendor software propagates quickly through the
        Internet technical community.

     1.2.2  Robustness Principle

        At every layer of the protocols, there is a general rule whose
        application can lead to enormous benefits in robustness and
        interoperability:

               "Be liberal in what you accept, and
                conservative in what you send"

        Software should be written to deal with every conceivable
        error, no matter how unlikely; sooner or later a packet will
        come in with that particular combination of errors and
        attributes, and unless the software is prepared, chaos can
        ensue.  In general, it is best to assume that the network is
        filled with malevolent entities that will send in packets
        designed to have the worst possible effect.  This assumption
        will lead to suitable protective design, although the most
        serious problems in the Internet have been caused by
        unenvisaged mechanisms triggered by low-probability events;
        mere human malice would never have taken so devious a course!

        Adaptability to change must be designed into all levels of
        Internet host software.  As a simple example, consider a
        protocol specification that contains an enumeration of values
        for a particular header field -- e.g., a type field, a port
        number, or an error code; this enumeration must be assumed to
        be incomplete.  Thus, if a protocol specification defines four
        possible error codes, the software must not break when a fifth
        code shows up.  An undefined code might be logged (see below),
        but it must not cause a failure.

        The second part of the principle is almost as important:
        software on other hosts may contain deficiencies that make it
        unwise to exploit legal but obscure protocol features.  It is
        unwise to stray far from the obvious and simple, lest untoward
        effects result elsewhere.  A corollary of this is "watch out



Internet Engineering Task Force                                 [Page 7]




RFC1123                       INTRODUCTION                  October 1989


        for misbehaving hosts"; host software should be prepared, not
        just to survive other misbehaving hosts, but also to cooperate
        to limit the amount of disruption such hosts can cause to the
        shared communication facility.

     1.2.3  Error Logging

        The Internet includes a great variety of host and gateway
        systems, each implementing many protocols and protocol layers,
        and some of these contain bugs and mis-features in their
        Internet protocol software.  As a result of complexity,
        diversity, and distribution of function, the diagnosis of user
        problems is often very difficult.

        Problem diagnosis will be aided if host implementations include
        a carefully designed facility for logging erroneous or
        "strange" protocol events.  It is important to include as much
        diagnostic information as possible when an error is logged.  In
        particular, it is often useful to record the header(s) of a
        packet that caused an error.  However, care must be taken to
        ensure that error logging does not consume prohibitive amounts
        of resources or otherwise interfere with the operation of the
        host.

        There is a tendency for abnormal but harmless protocol events
        to overflow error logging files; this can be avoided by using a
        "circular" log, or by enabling logging only while diagnosing a
        known failure.  It may be useful to filter and count duplicate
        successive messages.  One strategy that seems to work well is:
        (1) always count abnormalities and make such counts accessible
        through the management protocol (see Section 6.3); and (2)
        allow the logging of a great variety of events to be
        selectively enabled.  For example, it might useful to be able
        to "log everything" or to "log everything for host X".

        Note that different managements may have differing policies
        about the amount of error logging that they want normally
        enabled in a host.  Some will say, "if it doesn't hurt me, I
        don't want to know about it", while others will want to take a
        more watchful and aggressive attitude about detecting and
        removing protocol abnormalities.

     1.2.4  Configuration

        It would be ideal if a host implementation of the Internet
        protocol suite could be entirely self-configuring.  This would
        allow the whole suite to be implemented in ROM or cast into
        silicon, it would simplify diskless workstations, and it would



Internet Engineering Task Force                                 [Page 8]




RFC1123                       INTRODUCTION                  October 1989


        be an immense boon to harried LAN administrators as well as
        system vendors.  We have not reached this ideal; in fact, we
        are not even close.

        At many points in this document, you will find a requirement
        that a parameter be a configurable option.  There are several
        different reasons behind such requirements.  In a few cases,
        there is current uncertainty or disagreement about the best
        value, and it may be necessary to update the recommended value
        in the future.  In other cases, the value really depends on
        external factors -- e.g., the size of the host and the
        distribution of its communication load, or the speeds and
        topology of nearby networks -- and self-tuning algorithms are
        unavailable and may be insufficient.  In some cases,
        configurability is needed because of administrative
        requirements.

        Finally, some configuration options are required to communicate
        with obsolete or incorrect implementations of the protocols,
        distributed without sources, that unfortunately persist in many
        parts of the Internet.  To make correct systems coexist with
        these faulty systems, administrators often have to "mis-
        configure" the correct systems.  This problem will correct
        itself gradually as the faulty systems are retired, but it
        cannot be ignored by vendors.

        When we say that a parameter must be configurable, we do not
        intend to require that its value be explicitly read from a
        configuration file at every boot time.  We recommend that
        implementors set up a default for each parameter, so a
        configuration file is only necessary to override those defaults
        that are inappropriate in a particular installation.  Thus, the
        configurability requirement is an assurance that it will be
        POSSIBLE to override the default when necessary, even in a
        binary-only or ROM-based product.

        This document requires a particular value for such defaults in
        some cases.  The choice of default is a sensitive issue when
        the configuration item controls the accommodation to existing
        faulty systems.  If the Internet is to converge successfully to
        complete interoperability, the default values built into
        implementations must implement the official protocol, not
        "mis-configurations" to accommodate faulty implementations.
        Although marketing considerations have led some vendors to
        choose mis-configuration defaults, we urge vendors to choose
        defaults that will conform to the standard.

        Finally, we note that a vendor needs to provide adequate



Internet Engineering Task Force                                 [Page 9]




RFC1123                       INTRODUCTION                  October 1989


        documentation on all configuration parameters, their limits and
        effects.


  1.3  Reading this Document

     1.3.1  Organization

        In general, each major section is organized into the following
        subsections:

        (1)  Introduction

        (2)  Protocol Walk-Through -- considers the protocol
             specification documents section-by-section, correcting
             errors, stating requirements that may be ambiguous or
             ill-defined, and providing further clarification or
             explanation.

        (3)  Specific Issues -- discusses protocol design and
             implementation issues that were not included in the walk-
             through.

        (4)  Interfaces -- discusses the service interface to the next
             higher layer.

        (5)  Summary -- contains a summary of the requirements of the
             section.

        Under many of the individual topics in this document, there is
        parenthetical material labeled "DISCUSSION" or
        "IMPLEMENTATION".  This material is intended to give
        clarification and explanation of the preceding requirements
        text.  It also includes some suggestions on possible future
        directions or developments.  The implementation material
        contains suggested approaches that an implementor may want to
        consider.

        The summary sections are intended to be guides and indexes to
        the text, but are necessarily cryptic and incomplete.  The
        summaries should never be used or referenced separately from
        the complete RFC.

     1.3.2  Requirements

        In this document, the words that are used to define the
        significance of each particular requirement are capitalized.
        These words are:



Internet Engineering Task Force                                [Page 10]




RFC1123                       INTRODUCTION                  October 1989


        *    "MUST"

             This word or the adjective "REQUIRED" means that the item
             is an absolute requirement of the specification.

        *    "SHOULD"

             This word or the adjective "RECOMMENDED" means that there
             may exist valid reasons in particular circumstances to
             ignore this item, but the full implications should be
             understood and the case carefully weighed before choosing
             a different course.

        *    "MAY"

             This word or the adjective "OPTIONAL" means that this item
             is truly optional.  One vendor may choose to include the
             item because a particular marketplace requires it or
             because it enhances the product, for example; another
             vendor may omit the same item.


        An implementation is not compliant if it fails to satisfy one
        or more of the MUST requirements for the protocols it
        implements.  An implementation that satisfies all the MUST and
        all the SHOULD requirements for its protocols is said to be
        "unconditionally compliant"; one that satisfies all the MUST
        requirements but not all the SHOULD requirements for its
        protocols is said to be "conditionally compliant".

     1.3.3  Terminology

        This document uses the following technical terms:

        Segment
             A segment is the unit of end-to-end transmission in the
             TCP protocol.  A segment consists of a TCP header followed
             by application data.  A segment is transmitted by
             encapsulation in an IP datagram.

        Message
             This term is used by some application layer protocols
             (particularly SMTP) for an application data unit.

        Datagram
             A [UDP] datagram is the unit of end-to-end transmission in
             the UDP protocol.




Internet Engineering Task Force                                [Page 11]




RFC1123                       INTRODUCTION                  October 1989


        Multihomed
             A host is said to be multihomed if it has multiple IP
             addresses to connected networks.



  1.4  Acknowledgments

     This document incorporates contributions and comments from a large
     group of Internet protocol experts, including representatives of
     university and research labs, vendors, and government agencies.
     It was assembled primarily by the Host Requirements Working Group
     of the Internet Engineering Task Force (IETF).

     The Editor would especially like to acknowledge the tireless
     dedication of the following people, who attended many long
     meetings and generated 3 million bytes of electronic mail over the
     past 18 months in pursuit of this document: Philip Almquist, Dave
     Borman (Cray Research), Noel Chiappa, Dave Crocker (DEC), Steve
     Deering (Stanford), Mike Karels (Berkeley), Phil Karn (Bellcore),
     John Lekashman (NASA), Charles Lynn (BBN), Keith McCloghrie (TWG),
     Paul Mockapetris (ISI), Thomas Narten (Purdue), Craig Partridge
     (BBN), Drew Perkins (CMU), and James Van Bokkelen (FTP Software).

     In addition, the following people made major contributions to the
     effort: Bill Barns (Mitre), Steve Bellovin (AT&T), Mike Brescia
     (BBN), Ed Cain (DCA), Annette DeSchon (ISI), Martin Gross (DCA),
     Phill Gross (NRI), Charles Hedrick (Rutgers), Van Jacobson (LBL),
     John Klensin (MIT), Mark Lottor (SRI), Milo Medin (NASA), Bill
     Melohn (Sun Microsystems), Greg Minshall (Kinetics), Jeff Mogul
     (DEC), John Mullen (CMC), Jon Postel (ISI), John Romkey (Epilogue
     Technology), and Mike StJohns (DCA).  The following also made
     significant contributions to particular areas: Eric Allman
     (Berkeley), Rob Austein (MIT), Art Berggreen (ACC), Keith Bostic
     (Berkeley), Vint Cerf (NRI), Wayne Hathaway (NASA), Matt Korn
     (IBM), Erik Naggum (Naggum Software, Norway), Robert Ullmann
     (Prime Computer), David Waitzman (BBN), Frank Wancho (USA), Arun
     Welch (Ohio State), Bill Westfield (Cisco), and Rayan Zachariassen
     (Toronto).

     We are grateful to all, including any contributors who may have
     been inadvertently omitted from this list.









Internet Engineering Task Force                                [Page 12]




RFC1123              APPLICATIONS LAYER -- GENERAL          October 1989


2.  GENERAL ISSUES

  This section contains general requirements that may be applicable to
  all application-layer protocols.

  2.1  Host Names and Numbers

     The syntax of a legal Internet host name was specified in RFC-952
     [DNS:4].  One aspect of host name syntax is hereby changed: the
     restriction on the first character is relaxed to allow either a
     letter or a digit.  Host software MUST support this more liberal
     syntax.

     Host software MUST handle host names of up to 63 characters and
     SHOULD handle host names of up to 255 characters.

     Whenever a user inputs the identity of an Internet host, it SHOULD
     be possible to enter either (1) a host domain name or (2) an IP
     address in dotted-decimal ("#.#.#.#") form.  The host SHOULD check
     the string syntactically for a dotted-decimal number before
     looking it up in the Domain Name System.

     DISCUSSION:
          This last requirement is not intended to specify the complete
          syntactic form for entering a dotted-decimal host number;
          that is considered to be a user-interface issue.  For
          example, a dotted-decimal number must be enclosed within
          "[ ]" brackets for SMTP mail (see Section 5.2.17).  This
          notation could be made universal within a host system,
          simplifying the syntactic checking for a dotted-decimal
          number.

          If a dotted-decimal number can be entered without such
          identifying delimiters, then a full syntactic check must be
          made, because a segment of a host domain name is now allowed
          to begin with a digit and could legally be entirely numeric
          (see Section 6.1.2.4).  However, a valid host name can never
          have the dotted-decimal form #.#.#.#, since at least the
          highest-level component label will be alphabetic.

  2.2  Using Domain Name Service

     Host domain names MUST be translated to IP addresses as described
     in Section 6.1.

     Applications using domain name services MUST be able to cope with
     soft error conditions.  Applications MUST wait a reasonable
     interval between successive retries due to a soft error, and MUST



Internet Engineering Task Force                                [Page 13]




RFC1123              APPLICATIONS LAYER -- GENERAL          October 1989


     allow for the possibility that network problems may deny service
     for hours or even days.

     An application SHOULD NOT rely on the ability to locate a WKS
     record containing an accurate listing of all services at a
     particular host address, since the WKS RR type is not often used
     by Internet sites.  To confirm that a service is present, simply
     attempt to use it.

  2.3  Applications on Multihomed hosts

     When the remote host is multihomed, the name-to-address
     translation will return a list of alternative IP addresses.  As
     specified in Section 6.1.3.4, this list should be in order of
     decreasing preference.  Application protocol implementations
     SHOULD be prepared to try multiple addresses from the list until
     success is obtained.  More specific requirements for SMTP are
     given in Section 5.3.4.

     When the local host is multihomed, a UDP-based request/response
     application SHOULD send the response with an IP source address
     that is the same as the specific destination address of the UDP
     request datagram.  The "specific destination address" is defined
     in the "IP Addressing" section of the companion RFC [INTRO:1].

     Similarly, a server application that opens multiple TCP
     connections to the same client SHOULD use the same local IP
     address for all.

  2.4  Type-of-Service

     Applications MUST select appropriate TOS values when they invoke
     transport layer services, and these values MUST be configurable.
     Note that a TOS value contains 5 bits, of which only the most-
     significant 3 bits are currently defined; the other two bits MUST
     be zero.

     DISCUSSION:
          As gateway algorithms are developed to implement Type-of-
          Service, the recommended values for various application
          protocols may change.  In addition, it is likely that
          particular combinations of users and Internet paths will want
          non-standard TOS values.  For these reasons, the TOS values
          must be configurable.

          See the latest version of the "Assigned Numbers" RFC
          [INTRO:5] for the recommended TOS values for the major
          application protocols.



Internet Engineering Task Force                                [Page 14]




RFC1123              APPLICATIONS LAYER -- GENERAL          October 1989


  2.5  GENERAL APPLICATION REQUIREMENTS SUMMARY

                                              |          | | | |S| |
                                              |          | | | |H| |F
                                              |          | | | |O|M|o
                                              |          | |S| |U|U|o
                                              |          | |H| |L|S|t
                                              |          |M|O| |D|T|n
                                              |          |U|U|M| | |o
                                              |          |S|L|A|N|N|t
                                              |          |T|D|Y|O|O|t
FEATURE                                        |SECTION   | | | |T|T|e
-----------------------------------------------|----------|-|-|-|-|-|--
                                              |          | | | | | |
User interfaces:                               |          | | | | | |
 Allow host name to begin with digit          |2.1       |x| | | | |
 Host names of up to 635 characters           |2.1       |x| | | | |
 Host names of up to 255 characters           |2.1       | |x| | | |
 Support dotted-decimal host numbers          |2.1       | |x| | | |
 Check syntactically for dotted-dec first     |2.1       | |x| | | |
                                              |          | | | | | |
Map domain names per Section 6.1               |2.2       |x| | | | |
Cope with soft DNS errors                      |2.2       |x| | | | |
  Reasonable interval between retries         |2.2       |x| | | | |
  Allow for long outages                      |2.2       |x| | | | |
Expect WKS records to be available             |2.2       | | | |x| |
                                              |          | | | | | |
Try multiple addr's for remote multihomed host |2.3       | |x| | | |
UDP reply src addr is specific dest of request |2.3       | |x| | | |
Use same IP addr for related TCP connections   |2.3       | |x| | | |
Specify appropriate TOS values                 |2.4       |x| | | | |
 TOS values configurable                      |2.4       |x| | | | |
 Unused TOS bits zero                         |2.4       |x| | | | |
                                              |          | | | | | |
                                              |          | | | | | |
















Internet Engineering Task Force                                [Page 15]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


3.  REMOTE LOGIN -- TELNET PROTOCOL

  3.1  INTRODUCTION

     Telnet is the standard Internet application protocol for remote
     login.  It provides the encoding rules to link a user's
     keyboard/display on a client ("user") system with a command
     interpreter on a remote server system.  A subset of the Telnet
     protocol is also incorporated within other application protocols,
     e.g., FTP and SMTP.

     Telnet uses a single TCP connection, and its normal data stream
     ("Network Virtual Terminal" or "NVT" mode) is 7-bit ASCII with
     escape sequences to embed control functions.  Telnet also allows
     the negotiation of many optional modes and functions.

     The primary Telnet specification is to be found in RFC-854
     [TELNET:1], while the options are defined in many other RFCs; see
     Section 7 for references.

  3.2  PROTOCOL WALK-THROUGH

     3.2.1  Option Negotiation: RFC-854, pp. 2-3

        Every Telnet implementation MUST include option negotiation and
        subnegotiation machinery [TELNET:2].

        A host MUST carefully follow the rules of RFC-854 to avoid
        option-negotiation loops.  A host MUST refuse (i.e, reply
        WONT/DONT to a DO/WILL) an unsupported option.  Option
        negotiation SHOULD continue to function (even if all requests
        are refused) throughout the lifetime of a Telnet connection.

        If all option negotiations fail, a Telnet implementation MUST
        default to, and support, an NVT.

        DISCUSSION:
             Even though more sophisticated "terminals" and supporting
             option negotiations are becoming the norm, all
             implementations must be prepared to support an NVT for any
             user-server communication.

     3.2.2  Telnet Go-Ahead Function: RFC-854, p. 5, and RFC-858

        On a host that never sends the Telnet command Go Ahead (GA),
        the Telnet Server MUST attempt to negotiate the Suppress Go
        Ahead option (i.e., send "WILL Suppress Go Ahead").  A User or
        Server Telnet MUST always accept negotiation of the Suppress Go



Internet Engineering Task Force                                [Page 16]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


        Ahead option.

        When it is driving a full-duplex terminal for which GA has no
        meaning, a User Telnet implementation MAY ignore GA commands.

        DISCUSSION:
             Half-duplex ("locked-keyboard") line-at-a-time terminals
             for which the Go-Ahead mechanism was designed have largely
             disappeared from the scene.  It turned out to be difficult
             to implement sending the Go-Ahead signal in many operating
             systems, even some systems that support native half-duplex
             terminals.  The difficulty is typically that the Telnet
             server code does not have access to information about
             whether the user process is blocked awaiting input from
             the Telnet connection, i.e., it cannot reliably determine
             when to send a GA command.  Therefore, most Telnet Server
             hosts do not send GA commands.

             The effect of the rules in this section is to allow either
             end of a Telnet connection to veto the use of GA commands.

             There is a class of half-duplex terminals that is still
             commercially important: "data entry terminals," which
             interact in a full-screen manner.  However, supporting
             data entry terminals using the Telnet protocol does not
             require the Go Ahead signal; see Section 3.3.2.

     3.2.3  Control Functions: RFC-854, pp. 7-8

        The list of Telnet commands has been extended to include EOR
        (End-of-Record), with code 239 [TELNET:9].

        Both User and Server Telnets MAY support the control functions
        EOR, EC, EL, and Break, and MUST support AO, AYT, DM, IP, NOP,
        SB, and SE.

        A host MUST be able to receive and ignore any Telnet control
        functions that it does not support.

        DISCUSSION:
             Note that a Server Telnet is required to support the
             Telnet IP (Interrupt Process) function, even if the server
             host has an equivalent in-stream function (e.g., Control-C
             in many systems).  The Telnet IP function may be stronger
             than an in-stream interrupt command, because of the out-
             of-band effect of TCP urgent data.

             The EOR control function may be used to delimit the



Internet Engineering Task Force                                [Page 17]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


             stream.  An important application is data entry terminal
             support (see Section 3.3.2).  There was concern that since
             EOR had not been defined in RFC-854, a host that was not
             prepared to correctly ignore unknown Telnet commands might
             crash if it received an EOR.  To protect such hosts, the
             End-of-Record option [TELNET:9] was introduced; however, a
             properly implemented Telnet program will not require this
             protection.

     3.2.4  Telnet "Synch" Signal: RFC-854, pp. 8-10

        When it receives "urgent" TCP data, a User or Server Telnet
        MUST discard all data except Telnet commands until the DM (and
        end of urgent) is reached.

        When it sends Telnet IP (Interrupt Process), a User Telnet
        SHOULD follow it by the Telnet "Synch" sequence, i.e., send as
        TCP urgent data the sequence "IAC IP IAC DM".  The TCP urgent
        pointer points to the DM octet.

        When it receives a Telnet IP command, a Server Telnet MAY send
        a Telnet "Synch" sequence back to the user, to flush the output
        stream.  The choice ought to be consistent with the way the
        server operating system behaves when a local user interrupts a
        process.

        When it receives a Telnet AO command, a Server Telnet MUST send
        a Telnet "Synch" sequence back to the user, to flush the output
        stream.

        A User Telnet SHOULD have the capability of flushing output
        when it sends a Telnet IP; see also Section 3.4.5.

        DISCUSSION:
             There are three possible ways for a User Telnet to flush
             the stream of server output data:

             (1)  Send AO after IP.

                  This will cause the server host to send a "flush-
                  buffered-output" signal to its operating system.
                  However, the AO may not take effect locally, i.e.,
                  stop terminal output at the User Telnet end, until
                  the Server Telnet has received and processed the AO
                  and has sent back a "Synch".

             (2)  Send DO TIMING-MARK [TELNET:7] after IP, and discard
                  all output locally until a WILL/WONT TIMING-MARK is



Internet Engineering Task Force                                [Page 18]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


                  received from the Server Telnet.

                  Since the DO TIMING-MARK will be processed after the
                  IP at the server, the reply to it should be in the
                  right place in the output data stream.  However, the
                  TIMING-MARK will not send a "flush buffered output"
                  signal to the server operating system.  Whether or
                  not this is needed is dependent upon the server
                  system.

             (3)  Do both.

             The best method is not entirely clear, since it must
             accommodate a number of existing server hosts that do not
             follow the Telnet standards in various ways.  The safest
             approach is probably to provide a user-controllable option
             to select (1), (2), or (3).

     3.2.5  NVT Printer and Keyboard: RFC-854, p. 11

        In NVT mode, a Telnet SHOULD NOT send characters with the
        high-order bit 1, and MUST NOT send it as a parity bit.
        Implementations that pass the high-order bit to applications
        SHOULD negotiate binary mode (see Section 3.2.6).


        DISCUSSION:
             Implementors should be aware that a strict reading of
             RFC-854 allows a client or server expecting NVT ASCII to
             ignore characters with the high-order bit set.  In
             general, binary mode is expected to be used for
             transmission of an extended (beyond 7-bit) character set
             with Telnet.

             However, there exist applications that really need an 8-
             bit NVT mode, which is currently not defined, and these
             existing applications do set the high-order bit during
             part or all of the life of a Telnet connection.  Note that
             binary mode is not the same as 8-bit NVT mode, since
             binary mode turns off end-of-line processing.  For this
             reason, the requirements on the high-order bit are stated
             as SHOULD, not MUST.

             RFC-854 defines a minimal set of properties of a "network
             virtual terminal" or NVT; this is not meant to preclude
             additional features in a real terminal.  A Telnet
             connection is fully transparent to all 7-bit ASCII
             characters, including arbitrary ASCII control characters.



Internet Engineering Task Force                                [Page 19]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


             For example, a terminal might support full-screen commands
             coded as ASCII escape sequences; a Telnet implementation
             would pass these sequences as uninterpreted data.  Thus,
             an NVT should not be conceived as a terminal type of a
             highly-restricted device.

     3.2.6  Telnet Command Structure: RFC-854, p. 13

        Since options may appear at any point in the data stream, a
        Telnet escape character (known as IAC, with the value 255) to
        be sent as data MUST be doubled.

     3.2.7  Telnet Binary Option: RFC-856

        When the Binary option has been successfully negotiated,
        arbitrary 8-bit characters are allowed.  However, the data
        stream MUST still be scanned for IAC characters, any embedded
        Telnet commands MUST be obeyed, and data bytes equal to IAC
        MUST be doubled.  Other character processing (e.g., replacing
        CR by CR NUL or by CR LF) MUST NOT be done.  In particular,
        there is no end-of-line convention (see Section 3.3.1) in
        binary mode.

        DISCUSSION:
             The Binary option is normally negotiated in both
             directions, to change the Telnet connection from NVT mode
             to "binary mode".

             The sequence IAC EOR can be used to delimit blocks of data
             within a binary-mode Telnet stream.

     3.2.8  Telnet Terminal-Type Option: RFC-1091

        The Terminal-Type option MUST use the terminal type names
        officially defined in the Assigned Numbers RFC [INTRO:5], when
        they are available for the particular terminal.  However, the
        receiver of a Terminal-Type option MUST accept any name.

        DISCUSSION:
             RFC-1091 [TELNET:10] updates an earlier version of the
             Terminal-Type option defined in RFC-930.  The earlier
             version allowed a server host capable of supporting
             multiple terminal types to learn the type of a particular
             client's terminal, assuming that each physical terminal
             had an intrinsic type.  However, today a "terminal" is
             often really a terminal emulator program running in a PC,
             perhaps capable of emulating a range of terminal types.
             Therefore, RFC-1091 extends the specification to allow a



Internet Engineering Task Force                                [Page 20]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


             more general terminal-type negotiation between User and
             Server Telnets.

  3.3  SPECIFIC ISSUES

     3.3.1  Telnet End-of-Line Convention

        The Telnet protocol defines the sequence CR LF to mean "end-
        of-line".  For terminal input, this corresponds to a command-
        completion or "end-of-line" key being pressed on a user
        terminal; on an ASCII terminal, this is the CR key, but it may
        also be labelled "Return" or "Enter".

        When a Server Telnet receives the Telnet end-of-line sequence
        CR LF as input from a remote terminal, the effect MUST be the
        same as if the user had pressed the "end-of-line" key on a
        local terminal.  On server hosts that use ASCII, in particular,
        receipt of the Telnet sequence CR LF must cause the same effect
        as a local user pressing the CR key on a local terminal.  Thus,
        CR LF and CR NUL MUST have the same effect on an ASCII server
        host when received as input over a Telnet connection.

        A User Telnet MUST be able to send any of the forms: CR LF, CR
        NUL, and LF.  A User Telnet on an ASCII host SHOULD have a
        user-controllable mode to send either CR LF or CR NUL when the
        user presses the "end-of-line" key, and CR LF SHOULD be the
        default.

        The Telnet end-of-line sequence CR LF MUST be used to send
        Telnet data that is not terminal-to-computer (e.g., for Server
        Telnet sending output, or the Telnet protocol incorporated
        another application protocol).

        DISCUSSION:
             To allow interoperability between arbitrary Telnet clients
             and servers, the Telnet protocol defined a standard
             representation for a line terminator.  Since the ASCII
             character set includes no explicit end-of-line character,
             systems have chosen various representations, e.g., CR, LF,
             and the sequence CR LF.  The Telnet protocol chose the CR
             LF sequence as the standard for network transmission.

             Unfortunately, the Telnet protocol specification in RFC-
             854 [TELNET:1] has turned out to be somewhat ambiguous on
             what character(s) should be sent from client to server for
             the "end-of-line" key.  The result has been a massive and
             continuing interoperability headache, made worse by
             various faulty implementations of both User and Server



Internet Engineering Task Force                                [Page 21]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


             Telnets.

             Although the Telnet protocol is based on a perfectly
             symmetric model, in a remote login session the role of the
             user at a terminal differs from the role of the server
             host.  For example, RFC-854 defines the meaning of CR, LF,
             and CR LF as output from the server, but does not specify
             what the User Telnet should send when the user presses the
             "end-of-line" key on the terminal; this turns out to be
             the point at issue.

             When a user presses the "end-of-line" key, some User
             Telnet implementations send CR LF, while others send CR
             NUL (based on a different interpretation of the same
             sentence in RFC-854).  These will be equivalent for a
             correctly-implemented ASCII server host, as discussed
             above.  For other servers, a mode in the User Telnet is
             needed.

             The existence of User Telnets that send only CR NUL when
             CR is pressed creates a dilemma for non-ASCII hosts: they
             can either treat CR NUL as equivalent to CR LF in input,
             thus precluding the possibility of entering a "bare" CR,
             or else lose complete interworking.

             Suppose a user on host A uses Telnet to log into a server
             host B, and then execute B's User Telnet program to log
             into server host C.  It is desirable for the Server/User
             Telnet combination on B to be as transparent as possible,
             i.e., to appear as if A were connected directly to C.  In
             particular, correct implementation will make B transparent
             to Telnet end-of-line sequences, except that CR LF may be
             translated to CR NUL or vice versa.

        IMPLEMENTATION:
             To understand Telnet end-of-line issues, one must have at
             least a general model of the relationship of Telnet to the
             local operating system.  The Server Telnet process is
             typically coupled into the terminal driver software of the
             operating system as a pseudo-terminal.  A Telnet end-of-
             line sequence received by the Server Telnet must have the
             same effect as pressing the end-of-line key on a real
             locally-connected terminal.

             Operating systems that support interactive character-at-
             a-time applications (e.g., editors) typically have two
             internal modes for their terminal I/O: a formatted mode,
             in which local conventions for end-of-line and other



Internet Engineering Task Force                                [Page 22]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


             formatting rules have been applied to the data stream, and
             a "raw" mode, in which the application has direct access
             to every character as it was entered.  A Server Telnet
             must be implemented in such a way that these modes have
             the same effect for remote as for local terminals.  For
             example, suppose a CR LF or CR NUL is received by the
             Server Telnet on an ASCII host.  In raw mode, a CR
             character is passed to the application; in formatted mode,
             the local system's end-of-line convention is used.

     3.3.2  Data Entry Terminals

        DISCUSSION:
             In addition to the line-oriented and character-oriented
             ASCII terminals for which Telnet was designed, there are
             several families of video display terminals that are
             sometimes known as "data entry terminals" or DETs.  The
             IBM 3270 family is a well-known example.

             Two Internet protocols have been designed to support
             generic DETs: SUPDUP [TELNET:16, TELNET:17], and the DET
             option [TELNET:18, TELNET:19].  The DET option drives a
             data entry terminal over a Telnet connection using (sub-)
             negotiation.  SUPDUP is a completely separate terminal
             protocol, which can be entered from Telnet by negotiation.
             Although both SUPDUP and the DET option have been used
             successfully in particular environments, neither has
             gained general acceptance or wide implementation.

             A different approach to DET interaction has been developed
             for supporting the IBM 3270 family through Telnet,
             although the same approach would be applicable to any DET.
             The idea is to enter a "native DET" mode, in which the
             native DET input/output stream is sent as binary data.
             The Telnet EOR command is used to delimit logical records
             (e.g., "screens") within this binary stream.

        IMPLEMENTATION:
             The rules for entering and leaving native DET mode are as
             follows:

             o    The Server uses the Terminal-Type option [TELNET:10]
                  to learn that the client is a DET.

             o    It is conventional, but not required, that both ends
                  negotiate the EOR option [TELNET:9].

             o    Both ends negotiate the Binary option [TELNET:3] to



Internet Engineering Task Force                                [Page 23]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


                  enter native DET mode.

             o    When either end negotiates out of binary mode, the
                  other end does too, and the mode then reverts to
                  normal NVT.


     3.3.3  Option Requirements

        Every Telnet implementation MUST support the Binary option
        [TELNET:3] and the Suppress Go Ahead option [TELNET:5], and
        SHOULD support the Echo [TELNET:4], Status [TELNET:6], End-of-
        Record [TELNET:9], and Extended Options List [TELNET:8]
        options.

        A User or Server Telnet SHOULD support the Window Size Option
        [TELNET:12] if the local operating system provides the
        corresponding capability.

        DISCUSSION:
             Note that the End-of-Record option only signifies that a
             Telnet can receive a Telnet EOR without crashing;
             therefore, every Telnet ought to be willing to accept
             negotiation of the End-of-Record option.  See also the
             discussion in Section 3.2.3.

     3.3.4  Option Initiation

        When the Telnet protocol is used in a client/server situation,
        the server SHOULD initiate negotiation of the terminal
        interaction mode it expects.

        DISCUSSION:
             The Telnet protocol was defined to be perfectly
             symmetrical, but its application is generally asymmetric.
             Remote login has been known to fail because NEITHER side
             initiated negotiation of the required non-default terminal
             modes.  It is generally the server that determines the
             preferred mode, so the server needs to initiate the
             negotiation; since the negotiation is symmetric, the user
             can also initiate it.

        A client (User Telnet) SHOULD provide a means for users to
        enable and disable the initiation of option negotiation.

        DISCUSSION:
             A user sometimes needs to connect to an application
             service (e.g., FTP or SMTP) that uses Telnet for its



Internet Engineering Task Force                                [Page 24]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


             control stream but does not support Telnet options.  User
             Telnet may be used for this purpose if initiation of
             option negotiation is  disabled.

     3.3.5  Telnet Linemode Option

        DISCUSSION:
             An important new Telnet option, LINEMODE [TELNET:12], has
             been proposed.  The LINEMODE option provides a standard
             way for a User Telnet and a Server Telnet to agree that
             the client rather than the server will perform terminal
             character processing.  When the client has prepared a
             complete line of text, it will send it to the server in
             (usually) one TCP packet.  This option will greatly
             decrease the packet cost of Telnet sessions and will also
             give much better user response over congested or long-
             delay networks.

             The LINEMODE option allows dynamic switching between local
             and remote character processing.  For example, the Telnet
             connection will automatically negotiate into single-
             character mode while a full screen editor is running, and
             then return to linemode when the editor is finished.

             We expect that when this RFC is released, hosts should
             implement the client side of this option, and may
             implement the server side of this option.  To properly
             implement the server side, the server needs to be able to
             tell the local system not to do any input character
             processing, but to remember its current terminal state and
             notify the Server Telnet process whenever the state
             changes.  This will allow password echoing and full screen
             editors to be handled properly, for example.

  3.4  TELNET/USER INTERFACE

     3.4.1  Character Set Transparency

        User Telnet implementations SHOULD be able to send or receive
        any 7-bit ASCII character.  Where possible, any special
        character interpretations by the user host's operating system
        SHOULD be bypassed so that these characters can conveniently be
        sent and received on the connection.

        Some character value MUST be reserved as "escape to command
        mode"; conventionally, doubling this character allows it to be
        entered as data.  The specific character used SHOULD be user
        selectable.



Internet Engineering Task Force                                [Page 25]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


        On binary-mode connections, a User Telnet program MAY provide
        an escape mechanism for entering arbitrary 8-bit values, if the
        host operating system doesn't allow them to be entered directly
        from the keyboard.

        IMPLEMENTATION:
             The transparency issues are less pressing on servers, but
             implementors should take care in dealing with issues like:
             masking off parity bits (sent by an older, non-conforming
             client) before they reach programs that expect only NVT
             ASCII, and properly handling programs that request 8-bit
             data streams.

     3.4.2  Telnet Commands

        A User Telnet program MUST provide a user the capability of
        entering any of the Telnet control functions IP, AO, or AYT,
        and SHOULD provide the capability of entering EC, EL, and
        Break.

     3.4.3  TCP Connection Errors

        A User Telnet program SHOULD report to the user any TCP errors
        that are reported by the transport layer (see "TCP/Application
        Layer Interface" section in [INTRO:1]).

     3.4.4  Non-Default Telnet Contact Port

        A User Telnet program SHOULD allow the user to optionally
        specify a non-standard contact port number at the Server Telnet
        host.

     3.4.5  Flushing Output

        A User Telnet program SHOULD provide the user the ability to
        specify whether or not output should be flushed when an IP is
        sent; see Section 3.2.4.

        For any output flushing scheme that causes the User Telnet to
        flush output locally until a Telnet signal is received from the
        Server, there SHOULD be a way for the user to manually restore
        normal output, in case the Server fails to send the expected
        signal.








Internet Engineering Task Force                                [Page 26]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


  3.5.  TELNET REQUIREMENTS SUMMARY


                                                |        | | | |S| |
                                                |        | | | |H| |F
                                                |        | | | |O|M|o
                                                |        | |S| |U|U|o
                                                |        | |H| |L|S|t
                                                |        |M|O| |D|T|n
                                                |        |U|U|M| | |o
                                                |        |S|L|A|N|N|t
                                                |        |T|D|Y|O|O|t
FEATURE                                          |SECTION | | | |T|T|e
-------------------------------------------------|--------|-|-|-|-|-|--
                                                |        | | | | | |
Option Negotiation                               |3.2.1   |x| | | | |
 Avoid negotiation loops                        |3.2.1   |x| | | | |
 Refuse unsupported options                     |3.2.1   |x| | | | |
 Negotiation OK anytime on connection           |3.2.1   | |x| | | |
 Default to NVT                                 |3.2.1   |x| | | | |
 Send official name in Term-Type option         |3.2.8   |x| | | | |
 Accept any name in Term-Type option            |3.2.8   |x| | | | |
 Implement Binary, Suppress-GA options          |3.3.3   |x| | | | |
 Echo, Status, EOL, Ext-Opt-List options        |3.3.3   | |x| | | |
 Implement Window-Size option if appropriate    |3.3.3   | |x| | | |
 Server initiate mode negotiations              |3.3.4   | |x| | | |
 User can enable/disable init negotiations      |3.3.4   | |x| | | |
                                                |        | | | | | |
Go-Aheads                                        |        | | | | | |
 Non-GA server negotiate SUPPRESS-GA option     |3.2.2   |x| | | | |
 User or Server accept SUPPRESS-GA option       |3.2.2   |x| | | | |
 User Telnet ignore GA's                        |3.2.2   | | |x| | |
                                                |        | | | | | |
Control Functions                                |        | | | | | |
 Support SE NOP DM IP AO AYT SB                 |3.2.3   |x| | | | |
 Support EOR EC EL Break                        |3.2.3   | | |x| | |
 Ignore unsupported control functions           |3.2.3   |x| | | | |
 User, Server discard urgent data up to DM      |3.2.4   |x| | | | |
 User Telnet send "Synch" after IP, AO, AYT     |3.2.4   | |x| | | |
 Server Telnet reply Synch to IP                |3.2.4   | | |x| | |
 Server Telnet reply Synch to AO                |3.2.4   |x| | | | |
 User Telnet can flush output when send IP      |3.2.4   | |x| | | |
                                                |        | | | | | |
Encoding                                         |        | | | | | |
 Send high-order bit in NVT mode                |3.2.5   | | | |x| |
 Send high-order bit as parity bit              |3.2.5   | | | | |x|
 Negot. BINARY if pass high-ord. bit to applic  |3.2.5   | |x| | | |
 Always double IAC data byte                    |3.2.6   |x| | | | |



Internet Engineering Task Force                                [Page 27]




RFC1123                  REMOTE LOGIN -- TELNET             October 1989


 Double IAC data byte in binary mode            |3.2.7   |x| | | | |
 Obey Telnet cmds in binary mode                |3.2.7   |x| | | | |
 End-of-line, CR NUL in binary mode             |3.2.7   | | | | |x|
                                                |        | | | | | |
End-of-Line                                      |        | | | | | |
 EOL at Server same as local end-of-line        |3.3.1   |x| | | | |
 ASCII Server accept CR LF or CR NUL for EOL    |3.3.1   |x| | | | |
 User Telnet able to send CR LF, CR NUL, or LF  |3.3.1   |x| | | | |
   ASCII user able to select CR LF/CR NUL       |3.3.1   | |x| | | |
   User Telnet default mode is CR LF            |3.3.1   | |x| | | |
 Non-interactive uses CR LF for EOL             |3.3.1   |x| | | | |
                                                |        | | | | | |
User Telnet interface                            |        | | | | | |
 Input & output all 7-bit characters            |3.4.1   | |x| | | |
 Bypass local op sys interpretation             |3.4.1   | |x| | | |
 Escape character                               |3.4.1   |x| | | | |
    User-settable escape character              |3.4.1   | |x| | | |
 Escape to enter 8-bit values                   |3.4.1   | | |x| | |
 Can input IP, AO, AYT                          |3.4.2   |x| | | | |
 Can input EC, EL, Break                        |3.4.2   | |x| | | |
 Report TCP connection errors to user           |3.4.3   | |x| | | |
 Optional non-default contact port              |3.4.4   | |x| | | |
 Can spec: output flushed when IP sent          |3.4.5   | |x| | | |
 Can manually restore output mode               |3.4.5   | |x| | | |
                                                |        | | | | | |


























Internet Engineering Task Force                                [Page 28]




RFC1123                   FILE TRANSFER -- FTP              October 1989


4.  FILE TRANSFER

  4.1  FILE TRANSFER PROTOCOL -- FTP

     4.1.1  INTRODUCTION

        The File Transfer Protocol FTP is the primary Internet standard
        for file transfer.  The current specification is contained in
        RFC-959 [FTP:1].

        FTP uses separate simultaneous TCP connections for control and
        for data transfer.  The FTP protocol includes many features,
        some of which are not commonly implemented.  However, for every
        feature in FTP, there exists at least one implementation.  The
        minimum implementation defined in RFC-959 was too small, so a
        somewhat larger minimum implementation is defined here.

        Internet users have been unnecessarily burdened for years by
        deficient FTP implementations.  Protocol implementors have
        suffered from the erroneous opinion that implementing FTP ought
        to be a small and trivial task.  This is wrong, because FTP has
        a user interface, because it has to deal (correctly) with the
        whole variety of communication and operating system errors that
        may occur, and because it has to handle the great diversity of
        real file systems in the world.

     4.1.2.  PROTOCOL WALK-THROUGH

        4.1.2.1  LOCAL Type: RFC-959 Section 3.1.1.4

           An FTP program MUST support TYPE I ("IMAGE" or binary type)
           as well as TYPE L 8 ("LOCAL" type with logical byte size 8).
           A machine whose memory is organized into m-bit words, where
           m is not a multiple of 8, MAY also support TYPE L m.

           DISCUSSION:
                The command "TYPE L 8" is often required to transfer
                binary data between a machine whose memory is organized
                into (e.g.) 36-bit words and a machine with an 8-bit
                byte organization.  For an 8-bit byte machine, TYPE L 8
                is equivalent to IMAGE.

                "TYPE L m" is sometimes specified to the FTP programs
                on two m-bit word machines to ensure the correct
                transfer of a native-mode binary file from one machine
                to the other.  However, this command should have the
                same effect on these machines as "TYPE I".




Internet Engineering Task Force                                [Page 29]




RFC1123                   FILE TRANSFER -- FTP              October 1989


        4.1.2.2  Telnet Format Control: RFC-959 Section 3.1.1.5.2

           A host that makes no distinction between TYPE N and TYPE T
           SHOULD implement TYPE T to be identical to TYPE N.

           DISCUSSION:
                This provision should ease interoperation with hosts
                that do make this distinction.

                Many hosts represent text files internally as strings
                of ASCII characters, using the embedded ASCII format
                effector characters (LF, BS, FF, ...) to control the
                format when a file is printed.  For such hosts, there
                is no distinction between "print" files and other
                files.  However, systems that use record structured
                files typically need a special format for printable
                files (e.g., ASA carriage control).   For the latter
                hosts, FTP allows a choice of TYPE N or TYPE T.

        4.1.2.3  Page Structure: RFC-959 Section 3.1.2.3 and Appendix I

           Implementation of page structure is NOT RECOMMENDED in
           general. However, if a host system does need to implement
           FTP for "random access" or "holey" files, it MUST use the
           defined page structure format rather than define a new
           private FTP format.

        4.1.2.4  Data Structure Transformations: RFC-959 Section 3.1.2

           An FTP transformation between record-structure and file-
           structure SHOULD be invertible, to the extent possible while
           making the result useful on the target host.

           DISCUSSION:
                RFC-959 required strict invertibility between record-
                structure and file-structure, but in practice,
                efficiency and convenience often preclude it.
                Therefore, the requirement is being relaxed.  There are
                two different objectives for transferring a file:
                processing it on the target host, or just storage.  For
                storage, strict invertibility is important.  For
                processing, the file created on the target host needs
                to be in the format expected by application programs on
                that host.

                As an example of the conflict, imagine a record-
                oriented operating system that requires some data files
                to have exactly 80 bytes in each record.  While STORing



Internet Engineering Task Force                                [Page 30]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                a file on such a host, an FTP Server must be able to
                pad each line or record to 80 bytes; a later retrieval
                of such a file cannot be strictly invertible.

        4.1.2.5  Data Connection Management: RFC-959 Section 3.3

           A User-FTP that uses STREAM mode SHOULD send a PORT command
           to assign a non-default data port before each transfer
           command is issued.

           DISCUSSION:
                This is required because of the long delay after a TCP
                connection is closed until its socket pair can be
                reused, to allow multiple transfers during a single FTP
                session.  Sending a port command can avoided if a
                transfer mode other than stream is used, by leaving the
                data transfer connection open between transfers.

        4.1.2.6  PASV Command: RFC-959 Section 4.1.2

           A server-FTP MUST implement the PASV command.

           If multiple third-party transfers are to be executed during
           the same session, a new PASV command MUST be issued before
           each transfer command, to obtain a unique port pair.

           IMPLEMENTATION:
                The format of the 227 reply to a PASV command is not
                well standardized.  In particular, an FTP client cannot
                assume that the parentheses shown on page 40 of RFC-959
                will be present (and in fact, Figure 3 on page 43 omits
                them).  Therefore, a User-FTP program that interprets
                the PASV reply must scan the reply for the first digit
                of the host and port numbers.

                Note that the host number h1,h2,h3,h4 is the IP address
                of the server host that is sending the reply, and that
                p1,p2 is a non-default data transfer port that PASV has
                assigned.

        4.1.2.7  LIST and NLST Commands: RFC-959 Section 4.1.3

           The data returned by an NLST command MUST contain only a
           simple list of legal pathnames, such that the server can use
           them directly as the arguments of subsequent data transfer
           commands for the individual files.

           The data returned by a LIST or NLST command SHOULD use an



Internet Engineering Task Force                                [Page 31]




RFC1123                   FILE TRANSFER -- FTP              October 1989


           implied TYPE AN, unless the current type is EBCDIC, in which
           case an implied TYPE EN SHOULD be used.

           DISCUSSION:
                Many FTP clients support macro-commands that will get
                or put files matching a wildcard specification, using
                NLST to obtain a list of pathnames.  The expansion of
                "multiple-put" is local to the client, but "multiple-
                get" requires cooperation by the server.

                The implied type for LIST and NLST is designed to
                provide compatibility with existing User-FTPs, and in
                particular with multiple-get commands.

        4.1.2.8  SITE Command: RFC-959 Section 4.1.3

           A Server-FTP SHOULD use the SITE command for non-standard
           features, rather than invent new private commands or
           unstandardized extensions to existing commands.

        4.1.2.9  STOU Command: RFC-959 Section 4.1.3

           The STOU command stores into a uniquely named file.  When it
           receives an STOU command, a Server-FTP MUST return the
           actual file name in the "125 Transfer Starting" or the "150
           Opening Data Connection" message that precedes the transfer
           (the 250 reply code mentioned in RFC-959 is incorrect).  The
           exact format of these messages is hereby defined to be as
           follows:

               125 FILE: pppp
               150 FILE: pppp

           where pppp represents the unique pathname of the file that
           will be written.

        4.1.2.10  Telnet End-of-line Code: RFC-959, Page 34

           Implementors MUST NOT assume any correspondence between READ
           boundaries on the control connection and the Telnet EOL
           sequences (CR LF).

           DISCUSSION:
                Thus, a server-FTP (or User-FTP) must continue reading
                characters from the control connection until a complete
                Telnet EOL sequence is encountered, before processing
                the command (or response, respectively).  Conversely, a
                single READ from the control connection may include



Internet Engineering Task Force                                [Page 32]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                more than one FTP command.

        4.1.2.11  FTP Replies: RFC-959 Section 4.2, Page 35

           A Server-FTP MUST send only correctly formatted replies on
           the control connection.  Note that RFC-959 (unlike earlier
           versions of the FTP spec) contains no provision for a
           "spontaneous" reply message.

           A Server-FTP SHOULD use the reply codes defined in RFC-959
           whenever they apply.  However, a server-FTP MAY use a
           different reply code when needed, as long as the general
           rules of Section 4.2 are followed. When the implementor has
           a choice between a 4xx and 5xx reply code, a Server-FTP
           SHOULD send a 4xx (temporary failure) code when there is any
           reasonable possibility that a failed FTP will succeed a few
           hours later.

           A User-FTP SHOULD generally use only the highest-order digit
           of a 3-digit reply code for making a procedural decision, to
           prevent difficulties when a Server-FTP uses non-standard
           reply codes.

           A User-FTP MUST be able to handle multi-line replies.  If
           the implementation imposes a limit on the number of lines
           and if this limit is exceeded, the User-FTP MUST recover,
           e.g., by ignoring the excess lines until the end of the
           multi-line reply is reached.

           A User-FTP SHOULD NOT interpret a 421 reply code ("Service
           not available, closing control connection") specially, but
           SHOULD detect closing of the control connection by the
           server.

           DISCUSSION:
                Server implementations that fail to strictly follow the
                reply rules often cause FTP user programs to hang.
                Note that RFC-959 resolved ambiguities in the reply
                rules found in earlier FTP specifications and must be
                followed.

                It is important to choose FTP reply codes that properly
                distinguish between temporary and permanent failures,
                to allow the successful use of file transfer client
                daemons.  These programs depend on the reply codes to
                decide whether or not to retry a failed transfer; using
                a permanent failure code (5xx) for a temporary error
                will cause these programs to give up unnecessarily.



Internet Engineering Task Force                                [Page 33]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                When the meaning of a reply matches exactly the text
                shown in RFC-959, uniformity will be enhanced by using
                the RFC-959 text verbatim.  However, a Server-FTP
                implementor is encouraged to choose reply text that
                conveys specific system-dependent information, when
                appropriate.

        4.1.2.12  Connections: RFC-959 Section 5.2

           The words "and the port used" in the second paragraph of
           this section of RFC-959 are erroneous (historical), and they
           should be ignored.

           On a multihomed server host, the default data transfer port
           (L-1) MUST be associated with the same local IP address as
           the corresponding control connection to port L.

           A user-FTP MUST NOT send any Telnet controls other than
           SYNCH and IP on an FTP control connection. In particular, it
           MUST NOT attempt to negotiate Telnet options on the control
           connection.  However, a server-FTP MUST be capable of
           accepting and refusing Telnet negotiations (i.e., sending
           DONT/WONT).

           DISCUSSION:
                Although the RFC says: "Server- and User- processes
                should follow the conventions for the Telnet
                protocol...[on the control connection]", it is not the
                intent that Telnet option negotiation is to be
                employed.

        4.1.2.13  Minimum Implementation; RFC-959 Section 5.1

           The following commands and options MUST be supported by
           every server-FTP and user-FTP, except in cases where the
           underlying file system or operating system does not allow or
           support a particular command.

                Type: ASCII Non-print, IMAGE, LOCAL 8
                Mode: Stream
                Structure: File, Record*
                Commands:
                   USER, PASS, ACCT,
                   PORT, PASV,
                   TYPE, MODE, STRU,
                   RETR, STOR, APPE,
                   RNFR, RNTO, DELE,
                   CWD,  CDUP, RMD,  MKD,  PWD,



Internet Engineering Task Force                                [Page 34]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                   LIST, NLST,
                   SYST, STAT,
                   HELP, NOOP, QUIT.

           *Record structure is REQUIRED only for hosts whose file
           systems support record structure.

           DISCUSSION:
                Vendors are encouraged to implement a larger subset of
                the protocol.  For example, there are important
                robustness features in the protocol (e.g., Restart,
                ABOR, block mode) that would be an aid to some Internet
                users but are not widely implemented.

                A host that does not have record structures in its file
                system may still accept files with STRU R, recording
                the byte stream literally.

     4.1.3  SPECIFIC ISSUES

        4.1.3.1  Non-standard Command Verbs

           FTP allows "experimental" commands, whose names begin with
           "X".  If these commands are subsequently adopted as
           standards, there may still be existing implementations using
           the "X" form.  At present, this is true for the directory
           commands:

               RFC-959   "Experimental"

                 MKD        XMKD
                 RMD        XRMD
                 PWD        XPWD
                 CDUP       XCUP
                 CWD        XCWD

           All FTP implementations SHOULD recognize both forms of these
           commands, by simply equating them with extra entries in the
           command lookup table.

           IMPLEMENTATION:
                A User-FTP can access a server that supports only the
                "X" forms by implementing a mode switch, or
                automatically using the following procedure: if the
                RFC-959 form of one of the above commands is rejected
                with a 500 or 502 response code, then try the
                experimental form; any other response would be passed
                to the user.



Internet Engineering Task Force                                [Page 35]




RFC1123                   FILE TRANSFER -- FTP              October 1989


        4.1.3.2  Idle Timeout

           A Server-FTP process SHOULD have an idle timeout, which will
           terminate the process and close the control connection if
           the server is inactive (i.e., no command or data transfer in
           progress) for a long period of time.  The idle timeout time
           SHOULD be configurable, and the default should be at least 5
           minutes.

           A client FTP process ("User-PI" in RFC-959) will need
           timeouts on responses only if it is invoked from a program.

           DISCUSSION:
                Without a timeout, a Server-FTP process may be left
                pending indefinitely if the corresponding client
                crashes without closing the control connection.

        4.1.3.3  Concurrency of Data and Control

           DISCUSSION:
                The intent of the designers of FTP was that a user
                should be able to send a STAT command at any time while
                data transfer was in progress and that the server-FTP
                would reply immediately with status -- e.g., the number
                of bytes transferred so far.  Similarly, an ABOR
                command should be possible at any time during a data
                transfer.

                Unfortunately, some small-machine operating systems
                make such concurrent programming difficult, and some
                other implementers seek minimal solutions, so some FTP
                implementations do not allow concurrent use of the data
                and control connections.  Even such a minimal server
                must be prepared to accept and defer a STAT or ABOR
                command that arrives during data transfer.

        4.1.3.4  FTP Restart Mechanism

           The description of the 110 reply on pp. 40-41 of RFC-959 is
           incorrect; the correct description is as follows.  A restart
           reply message, sent over the control connection from the
           receiving FTP to the User-FTP, has the format:

               110 MARK ssss = rrrr

           Here:

           *    ssss is a text string that appeared in a Restart Marker



Internet Engineering Task Force                                [Page 36]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                in the data stream and encodes a position in the
                sender's file system;

           *    rrrr encodes the corresponding position in the
                receiver's file system.

           The encoding, which is specific to a particular file system
           and network implementation, is always generated and
           interpreted by the same system, either sender or receiver.

           When an FTP that implements restart receives a Restart
           Marker in the data stream, it SHOULD force the data to that
           point to be written to stable storage before encoding the
           corresponding position rrrr.  An FTP sending Restart Markers
           MUST NOT assume that 110 replies will be returned
           synchronously with the data, i.e., it must not await a 110
           reply before sending more data.

           Two new reply codes are hereby defined for errors
           encountered in restarting a transfer:

             554 Requested action not taken: invalid REST parameter.

                A 554 reply may result from a FTP service command that
                follows a REST command.  The reply indicates that the
                existing file at the Server-FTP cannot be repositioned
                as specified in the REST.

             555 Requested action not taken: type or stru mismatch.

                A 555 reply may result from an APPE command or from any
                FTP service command following a REST command.  The
                reply indicates that there is some mismatch between the
                current transfer parameters (type and stru) and the
                attributes of the existing file.

           DISCUSSION:
                Note that the FTP Restart mechanism requires that Block
                or Compressed mode be used for data transfer, to allow
                the Restart Markers to be included within the data
                stream.  The frequency of Restart Markers can be low.

                Restart Markers mark a place in the data stream, but
                the receiver may be performing some transformation on
                the data as it is stored into stable storage.  In
                general, the receiver's encoding must include any state
                information necessary to restart this transformation at
                any point of the FTP data stream.  For example, in TYPE



Internet Engineering Task Force                                [Page 37]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                A transfers, some receiver hosts transform CR LF
                sequences into a single LF character on disk.   If a
                Restart Marker happens to fall between CR and LF, the
                receiver must encode in rrrr that the transfer must be
                restarted in a "CR has been seen and discarded" state.

                Note that the Restart Marker is required to be encoded
                as a string of printable ASCII characters, regardless
                of the type of the data.

                RFC-959 says that restart information is to be returned
                "to the user".  This should not be taken literally.  In
                general, the User-FTP should save the restart
                information (ssss,rrrr) in stable storage, e.g., append
                it to a restart control file.  An empty restart control
                file should be created when the transfer first starts
                and deleted automatically when the transfer completes
                successfully.  It is suggested that this file have a
                name derived in an easily-identifiable manner from the
                name of the file being transferred and the remote host
                name; this is analogous to the means used by many text
                editors for naming "backup" files.

                There are three cases for FTP restart.

                (1)  User-to-Server Transfer

                     The User-FTP puts Restart Markers <ssss> at
                     convenient places in the data stream.  When the
                     Server-FTP receives a Marker, it writes all prior
                     data to disk, encodes its file system position and
                     transformation state as rrrr, and returns a "110
                     MARK ssss = rrrr" reply over the control
                     connection.  The User-FTP appends the pair
                     (ssss,rrrr) to its restart control file.

                     To restart the transfer, the User-FTP fetches the
                     last (ssss,rrrr) pair from the restart control
                     file, repositions its local file system and
                     transformation state using ssss, and sends the
                     command "REST rrrr" to the Server-FTP.

                (2)  Server-to-User Transfer

                     The Server-FTP puts Restart Markers <ssss> at
                     convenient places in the data stream.  When the
                     User-FTP receives a Marker, it writes all prior
                     data to disk, encodes its file system position and



Internet Engineering Task Force                                [Page 38]




RFC1123                   FILE TRANSFER -- FTP              October 1989


                     transformation state as rrrr, and appends the pair
                     (rrrr,ssss) to its restart control file.

                     To restart the transfer, the User-FTP fetches the
                     last (rrrr,ssss) pair from the restart control
                     file, repositions its local file system and
                     transformation state using rrrr, and sends the
                     command "REST ssss" to the Server-FTP.

                (3)  Server-to-Server ("Third-Party") Transfer

                     The sending Server-FTP puts Restart Markers <ssss>
                     at convenient places in the data stream.  When it
                     receives a Marker, the receiving Server-FTP writes
                     all prior data to disk, encodes its file system
                     position and transformation state as rrrr, and
                     sends a "110 MARK ssss = rrrr" reply over the
                     control connection to the User.  The User-FTP
                     appends the pair (ssss,rrrr) to its restart
                     control file.

                     To restart the transfer, the User-FTP fetches the
                     last (ssss,rrrr) pair from the restart control
                     file, sends "REST ssss" to the sending Server-FTP,
                     and sends "REST rrrr" to the receiving Server-FTP.


     4.1.4  FTP/USER INTERFACE

        This section discusses the user interface for a User-FTP
        program.

        4.1.4.1  Pathname Specification

           Since FTP is intended for use in a heterogeneous
           environment, User-FTP implementations MUST support remote
           pathnames as arbitrary character strings, so that their form
           and content are not limited by the conventions of the local
           operating system.

           DISCUSSION:
                In particular, remote pathnames can be of arbitrary
                length, and all the printing ASCII characters as well
                as space (0x20) must be allowed.  RFC-959 allows a
                pathname to contain any 7-bit ASCII character except CR
                or LF.





Internet Engineering Task Force                                [Page 39]




RFC1123                   FILE TRANSFER -- FTP              October 1989


        4.1.4.2  "QUOTE" Command

           A User-FTP program MUST implement a "QUOTE" command that
           will pass an arbitrary character string to the server and
           display all resulting response messages to the user.

           To make the "QUOTE" command useful, a User-FTP SHOULD send
           transfer control commands to the server as the user enters
           them, rather than saving all the commands and sending them
           to the server only when a data transfer is started.

           DISCUSSION:
                The "QUOTE" command is essential to allow the user to
                access servers that require system-specific commands
                (e.g., SITE or ALLO), or to invoke new or optional
                features that are not implemented by the User-FTP.  For
                example, "QUOTE" may be used to specify "TYPE A T" to
                send a print file to hosts that require the
                distinction, even if the User-FTP does not recognize
                that TYPE.

        4.1.4.3  Displaying Replies to User

           A User-FTP SHOULD display to the user the full text of all
           error reply messages it receives.  It SHOULD have a
           "verbose" mode in which all commands it sends and the full
           text and reply codes it receives are displayed, for
           diagnosis of problems.

        4.1.4.4  Maintaining Synchronization

           The state machine in a User-FTP SHOULD be forgiving of
           missing and unexpected reply messages, in order to maintain
           command synchronization with the server.

















Internet Engineering Task Force                                [Page 40]




RFC1123                   FILE TRANSFER -- FTP              October 1989


     4.1.5   FTP REQUIREMENTS SUMMARY

                                          |               | | | |S| |
                                          |               | | | |H| |F
                                          |               | | | |O|M|o
                                          |               | |S| |U|U|o
                                          |               | |H| |L|S|t
                                          |               |M|O| |D|T|n
                                          |               |U|U|M| | |o
                                          |               |S|L|A|N|N|t
                                          |               |T|D|Y|O|O|t
FEATURE                                    |SECTION        | | | |T|T|e
-------------------------------------------|---------------|-|-|-|-|-|--
Implement TYPE T if same as TYPE N         |4.1.2.2        | |x| | | |
File/Record transform invertible if poss.  |4.1.2.4        | |x| | | |
User-FTP send PORT cmd for stream mode     |4.1.2.5        | |x| | | |
Server-FTP implement PASV                  |4.1.2.6        |x| | | | |
 PASV is per-transfer                     |4.1.2.6        |x| | | | |
NLST reply usable in RETR cmds             |4.1.2.7        |x| | | | |
Implied type for LIST and NLST             |4.1.2.7        | |x| | | |
SITE cmd for non-standard features         |4.1.2.8        | |x| | | |
STOU cmd return pathname as specified      |4.1.2.9        |x| | | | |
Use TCP READ boundaries on control conn.   |4.1.2.10       | | | | |x|
                                          |               | | | | | |
Server-FTP send only correct reply format  |4.1.2.11       |x| | | | |
Server-FTP use defined reply code if poss. |4.1.2.11       | |x| | | |
 New reply code following Section 4.2     |4.1.2.11       | | |x| | |
User-FTP use only high digit of reply      |4.1.2.11       | |x| | | |
User-FTP handle multi-line reply lines     |4.1.2.11       |x| | | | |
User-FTP handle 421 reply specially        |4.1.2.11       | | | |x| |
                                          |               | | | | | |
Default data port same IP addr as ctl conn |4.1.2.12       |x| | | | |
User-FTP send Telnet cmds exc. SYNCH, IP   |4.1.2.12       | | | | |x|
User-FTP negotiate Telnet options          |4.1.2.12       | | | | |x|
Server-FTP handle Telnet options           |4.1.2.12       |x| | | | |
Handle "Experimental" directory cmds       |4.1.3.1        | |x| | | |
Idle timeout in server-FTP                 |4.1.3.2        | |x| | | |
   Configurable idle timeout              |4.1.3.2        | |x| | | |
Receiver checkpoint data at Restart Marker |4.1.3.4        | |x| | | |
Sender assume 110 replies are synchronous  |4.1.3.4        | | | | |x|
                                          |               | | | | | |
Support TYPE:                              |               | | | | | |
 ASCII - Non-Print (AN)                   |4.1.2.13       |x| | | | |
 ASCII - Telnet (AT) -- if same as AN     |4.1.2.2        | |x| | | |
 ASCII - Carriage Control (AC)            |959 3.1.1.5.2  | | |x| | |
 EBCDIC - (any form)                      |959 3.1.1.2    | | |x| | |
 IMAGE                                    |4.1.2.1        |x| | | | |
 LOCAL 8                                  |4.1.2.1        |x| | | | |



Internet Engineering Task Force                                [Page 41]




RFC1123                   FILE TRANSFER -- FTP              October 1989


 LOCAL m                                  |4.1.2.1        | | |x| | |2
                                          |               | | | | | |
Support MODE:                              |               | | | | | |
 Stream                                   |4.1.2.13       |x| | | | |
 Block                                    |959 3.4.2      | | |x| | |
                                          |               | | | | | |
Support STRUCTURE:                         |               | | | | | |
 File                                     |4.1.2.13       |x| | | | |
 Record                                   |4.1.2.13       |x| | | | |3
 Page                                     |4.1.2.3        | | | |x| |
                                          |               | | | | | |
Support commands:                          |               | | | | | |
 USER                                     |4.1.2.13       |x| | | | |
 PASS                                     |4.1.2.13       |x| | | | |
 ACCT                                     |4.1.2.13       |x| | | | |
 CWD                                      |4.1.2.13       |x| | | | |
 CDUP                                     |4.1.2.13       |x| | | | |
 SMNT                                     |959 5.3.1      | | |x| | |
 REIN                                     |959 5.3.1      | | |x| | |
 QUIT                                     |4.1.2.13       |x| | | | |
                                          |               | | | | | |
 PORT                                     |4.1.2.13       |x| | | | |
 PASV                                     |4.1.2.6        |x| | | | |
 TYPE                                     |4.1.2.13       |x| | | | |1
 STRU                                     |4.1.2.13       |x| | | | |1
 MODE                                     |4.1.2.13       |x| | | | |1
                                          |               | | | | | |
 RETR                                     |4.1.2.13       |x| | | | |
 STOR                                     |4.1.2.13       |x| | | | |
 STOU                                     |959 5.3.1      | | |x| | |
 APPE                                     |4.1.2.13       |x| | | | |
 ALLO                                     |959 5.3.1      | | |x| | |
 REST                                     |959 5.3.1      | | |x| | |
 RNFR                                     |4.1.2.13       |x| | | | |
 RNTO                                     |4.1.2.13       |x| | | | |
 ABOR                                     |959 5.3.1      | | |x| | |
 DELE                                     |4.1.2.13       |x| | | | |
 RMD                                      |4.1.2.13       |x| | | | |
 MKD                                      |4.1.2.13       |x| | | | |
 PWD                                      |4.1.2.13       |x| | | | |
 LIST                                     |4.1.2.13       |x| | | | |
 NLST                                     |4.1.2.13       |x| | | | |
 SITE                                     |4.1.2.8        | | |x| | |
 STAT                                     |4.1.2.13       |x| | | | |
 SYST                                     |4.1.2.13       |x| | | | |
 HELP                                     |4.1.2.13       |x| | | | |
 NOOP                                     |4.1.2.13       |x| | | | |
                                          |               | | | | | |



Internet Engineering Task Force                                [Page 42]




RFC1123                   FILE TRANSFER -- FTP              October 1989


User Interface:                            |               | | | | | |
 Arbitrary pathnames                      |4.1.4.1        |x| | | | |
 Implement "QUOTE" command                |4.1.4.2        |x| | | | |
 Transfer control commands immediately    |4.1.4.2        | |x| | | |
 Display error messages to user           |4.1.4.3        | |x| | | |
   Verbose mode                           |4.1.4.3        | |x| | | |
 Maintain synchronization with server     |4.1.4.4        | |x| | | |

Footnotes:

(1)  For the values shown earlier.

(2)  Here m is number of bits in a memory word.

(3)  Required for host with record-structured file system, optional
    otherwise.



































Internet Engineering Task Force                                [Page 43]




RFC1123                  FILE TRANSFER -- TFTP              October 1989


  4.2  TRIVIAL FILE TRANSFER PROTOCOL -- TFTP

     4.2.1  INTRODUCTION

        The Trivial File Transfer Protocol TFTP is defined in RFC-783
        [TFTP:1].

        TFTP provides its own reliable delivery with UDP as its
        transport protocol, using a simple stop-and-wait acknowledgment
        system.  Since TFTP has an effective window of only one 512
        octet segment, it can provide good performance only over paths
        that have a small delay*bandwidth product.  The TFTP file
        interface is very simple, providing no access control or
        security.

        TFTP's most important application is bootstrapping a host over
        a local network, since it is simple and small enough to be
        easily implemented in EPROM [BOOT:1, BOOT:2].  Vendors are
        urged to support TFTP for booting.

     4.2.2  PROTOCOL WALK-THROUGH

        The TFTP specification [TFTP:1] is written in an open style,
        and does not fully specify many parts of the protocol.

        4.2.2.1  Transfer Modes: RFC-783, Page 3

           The transfer mode "mail" SHOULD NOT be supported.

        4.2.2.2  UDP Header: RFC-783, Page 17

           The Length field of a UDP header is incorrectly defined; it
           includes the UDP header length (8).

     4.2.3  SPECIFIC ISSUES

        4.2.3.1  Sorcerer's Apprentice Syndrome

           There is a serious bug, known as the "Sorcerer's Apprentice
           Syndrome," in the protocol specification.  While it does not
           cause incorrect operation of the transfer (the file will
           always be transferred correctly if the transfer completes),
           this bug may cause excessive retransmission, which may cause
           the transfer to time out.

           Implementations MUST contain the fix for this problem: the
           sender (i.e., the side originating the DATA packets) must
           never resend the current DATA packet on receipt of a



Internet Engineering Task Force                                [Page 44]




RFC1123                  FILE TRANSFER -- TFTP              October 1989


           duplicate ACK.

           DISCUSSION:
                The bug is caused by the protocol rule that either
                side, on receiving an old duplicate datagram, may
                resend the current datagram.  If a packet is delayed in
                the network but later successfully delivered after
                either side has timed out and retransmitted a packet, a
                duplicate copy of the response may be generated.  If
                the other side responds to this duplicate with a
                duplicate of its own, then every datagram will be sent
                in duplicate for the remainder of the transfer (unless
                a datagram is lost, breaking the repetition).  Worse
                yet, since the delay is often caused by congestion,
                this duplicate transmission will usually causes more
                congestion, leading to more delayed packets, etc.

                The following example may help to clarify this problem.

                    TFTP A                  TFTP B

                (1)  Receive ACK X-1
                     Send DATA X
                (2)                          Receive DATA X
                                             Send ACK X
                       (ACK X is delayed in network,
                        and  A times out):
                (3)  Retransmit DATA X

                (4)                          Receive DATA X again
                                             Send ACK X again
                (5)  Receive (delayed) ACK X
                     Send DATA X+1
                (6)                          Receive DATA X+1
                                             Send ACK X+1
                (7)  Receive ACK X again
                     Send DATA X+1 again
                (8)                          Receive DATA X+1 again
                                             Send ACK X+1 again
                (9)  Receive ACK X+1
                     Send DATA X+2
                (10)                         Receive DATA X+2
                                             Send ACK X+3
                (11) Receive ACK X+1 again
                     Send DATA X+2 again
                (12)                         Receive DATA X+2 again
                                             Send ACK X+3 again




Internet Engineering Task Force                                [Page 45]




RFC1123                  FILE TRANSFER -- TFTP              October 1989


                Notice that once the delayed ACK arrives, the protocol
                settles down to duplicate all further packets
                (sequences 5-8 and 9-12).  The problem is caused not by
                either side timing out, but by both sides
                retransmitting the current packet when they receive a
                duplicate.

                The fix is to break the retransmission loop, as
                indicated above.  This is analogous to the behavior of
                TCP.  It is then possible to remove the retransmission
                timer on the receiver, since the resent ACK will never
                cause any action; this is a useful simplification where
                TFTP is used in a bootstrap program.  It is OK to allow
                the timer to remain, and it may be helpful if the
                retransmitted ACK replaces one that was genuinely lost
                in the network.  The sender still requires a retransmit
                timer, of course.

        4.2.3.2  Timeout Algorithms

           A TFTP implementation MUST use an adaptive timeout.

           IMPLEMENTATION:
                TCP retransmission algorithms provide a useful base to
                work from.  At least an exponential backoff of
                retransmission timeout is necessary.

        4.2.3.3  Extensions

           A variety of non-standard extensions have been made to TFTP,
           including additional transfer modes and a secure operation
           mode (with passwords).  None of these have been
           standardized.

        4.2.3.4  Access Control

           A server TFTP implementation SHOULD include some
           configurable access control over what pathnames are allowed
           in TFTP operations.

        4.2.3.5  Broadcast Request

           A TFTP request directed to a broadcast address SHOULD be
           silently ignored.

           DISCUSSION:
                Due to the weak access control capability of TFTP,
                directed broadcasts of TFTP requests to random networks



Internet Engineering Task Force                                [Page 46]




RFC1123                  FILE TRANSFER -- TFTP              October 1989


                could create a significant security hole.

     4.2.4  TFTP REQUIREMENTS SUMMARY

                                                |        | | | |S| |
                                                |        | | | |H| |F
                                                |        | | | |O|M|o
                                                |        | |S| |U|U|o
                                                |        | |H| |L|S|t
                                                |        |M|O| |D|T|n
                                                |        |U|U|M| | |o
                                                |        |S|L|A|N|N|t
                                                |        |T|D|Y|O|O|t
FEATURE                                          |SECTION | | | |T|T|e
-------------------------------------------------|--------|-|-|-|-|-|--
Fix Sorcerer's Apprentice Syndrome               |4.2.3.1 |x| | | | |
Transfer modes:                                  |        | | | | | |
 netascii                                       |RFC-783 |x| | | | |
 octet                                          |RFC-783 |x| | | | |
 mail                                           |4.2.2.1 | | | |x| |
 extensions                                     |4.2.3.3 | | |x| | |
Use adaptive timeout                             |4.2.3.2 |x| | | | |
Configurable access control                      |4.2.3.4 | |x| | | |
Silently ignore broadcast request                |4.2.3.5 | |x| | | |
-------------------------------------------------|--------|-|-|-|-|-|--
-------------------------------------------------|--------|-|-|-|-|-|--

























Internet Engineering Task Force                                [Page 47]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


5.  ELECTRONIC MAIL -- SMTP and RFC-822

  5.1  INTRODUCTION

     In the TCP/IP protocol suite, electronic mail in a format
     specified in RFC-822 [SMTP:2] is transmitted using the Simple Mail
     Transfer Protocol (SMTP) defined in RFC-821 [SMTP:1].

     While SMTP has remained unchanged over the years, the Internet
     community has made several changes in the way SMTP is used.  In
     particular, the conversion to the Domain Name System (DNS) has
     caused changes in address formats and in mail routing.  In this
     section, we assume familiarity with the concepts and terminology
     of the DNS, whose requirements are given in Section 6.1.

     RFC-822 specifies the Internet standard format for electronic mail
     messages.  RFC-822 supercedes an older standard, RFC-733, that may
     still be in use in a few places, although it is obsolete.  The two
     formats are sometimes referred to simply by number ("822" and
     "733").

     RFC-822 is used in some non-Internet mail environments with
     different mail transfer protocols than SMTP, and SMTP has also
     been adapted for use in some non-Internet environments.  Note that
     this document presents the rules for the use of SMTP and RFC-822
     for the Internet environment only; other mail environments that
     use these protocols may be expected to have their own rules.

  5.2  PROTOCOL WALK-THROUGH

     This section covers both RFC-821 and RFC-822.

     The SMTP specification in RFC-821 is clear and contains numerous
     examples, so implementors should not find it difficult to
     understand.  This section simply updates or annotates portions of
     RFC-821 to conform with current usage.

     RFC-822 is a long and dense document, defining a rich syntax.
     Unfortunately, incomplete or defective implementations of RFC-822
     are common.  In fact, nearly all of the many formats of RFC-822
     are actually used, so an implementation generally needs to
     recognize and correctly interpret all of the RFC-822 syntax.

     5.2.1  The SMTP Model: RFC-821 Section 2

        DISCUSSION:
             Mail is sent by a series of request/response transactions
             between a client, the "sender-SMTP," and a server, the



Internet Engineering Task Force                                [Page 48]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


             "receiver-SMTP".  These transactions pass (1) the message
             proper, which is composed of header and body, and (2) SMTP
             source and destination addresses, referred to as the
             "envelope".

             The SMTP programs are analogous to Message Transfer Agents
             (MTAs) of X.400.  There will be another level of protocol
             software, closer to the end user, that is responsible for
             composing and analyzing RFC-822 message headers; this
             component is known as the "User Agent" in X.400, and we
             use that term in this document.  There is a clear logical
             distinction between the User Agent and the SMTP
             implementation, since they operate on different levels of
             protocol.  Note, however, that this distinction is may not
             be exactly reflected the structure of typical
             implementations of Internet mail.  Often there is a
             program known as the "mailer" that implements SMTP and
             also some of the User Agent functions; the rest of the
             User Agent functions are included in a user interface used
             for entering and reading mail.

             The SMTP envelope is constructed at the originating site,
             typically by the User Agent when the message is first
             queued for the Sender-SMTP program.  The envelope
             addresses may be derived from information in the message
             header, supplied by the user interface (e.g., to implement
             a bcc: request), or derived from local configuration
             information (e.g., expansion of a mailing list).  The SMTP
             envelope cannot in general be re-derived from the header
             at a later stage in message delivery, so the envelope is
             transmitted separately from the message itself using the
             MAIL and RCPT commands of SMTP.

             The text of RFC-821 suggests that mail is to be delivered
             to an individual user at a host.  With the advent of the
             domain system and of mail routing using mail-exchange (MX)
             resource records, implementors should now think of
             delivering mail to a user at a domain, which may or may
             not be a particular host.  This DOES NOT change the fact
             that SMTP is a host-to-host mail exchange protocol.

     5.2.2  Canonicalization: RFC-821 Section 3.1

        The domain names that a Sender-SMTP sends in MAIL and RCPT
        commands MUST have been  "canonicalized," i.e., they must be
        fully-qualified principal names or domain literals, not
        nicknames or domain abbreviations.  A canonicalized name either
        identifies a host directly or is an MX name; it cannot be a



Internet Engineering Task Force                                [Page 49]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        CNAME.

     5.2.3  VRFY and EXPN Commands: RFC-821 Section 3.3

        A receiver-SMTP MUST implement VRFY and SHOULD implement EXPN
        (this requirement overrides RFC-821).  However, there MAY be
        configuration information to disable VRFY and EXPN in a
        particular installation; this might even allow EXPN to be
        disabled for selected lists.

        A new reply code is defined for the VRFY command:

             252 Cannot VRFY user (e.g., info is not local), but will
                 take message for this user and attempt delivery.

        DISCUSSION:
             SMTP users and administrators make regular use of these
             commands for diagnosing mail delivery problems.  With the
             increasing use of multi-level mailing list expansion
             (sometimes more than two levels), EXPN has been
             increasingly important for diagnosing inadvertent mail
             loops.  On the other hand,  some feel that EXPN represents
             a significant privacy, and perhaps even a security,
             exposure.

     5.2.4  SEND, SOML, and SAML Commands: RFC-821 Section 3.4

        An SMTP MAY implement the commands to send a message to a
        user's terminal: SEND, SOML, and SAML.

        DISCUSSION:
             It has been suggested that the use of mail relaying
             through an MX record is inconsistent with the intent of
             SEND to deliver a message immediately and directly to a
             user's terminal.  However, an SMTP receiver that is unable
             to write directly to the user terminal can return a "251
             User Not Local" reply to the RCPT following a SEND, to
             inform the originator of possibly deferred delivery.

     5.2.5  HELO Command: RFC-821 Section 3.5

        The sender-SMTP MUST ensure that the <domain> parameter in a
        HELO command is a valid principal host domain name for the
        client host.  As a result, the receiver-SMTP will not have to
        perform MX resolution on this name in order to validate the
        HELO parameter.

        The HELO receiver MAY verify that the HELO parameter really



Internet Engineering Task Force                                [Page 50]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        corresponds to the IP address of the sender.  However, the
        receiver MUST NOT refuse to accept a message, even if the
        sender's HELO command fails verification.

        DISCUSSION:
             Verifying the HELO parameter requires a domain name lookup
             and may therefore take considerable time.  An alternative
             tool for tracking bogus mail sources is suggested below
             (see "DATA Command").

             Note also that the HELO argument is still required to have
             valid <domain> syntax, since it will appear in a Received:
             line; otherwise, a 501 error is to be sent.

        IMPLEMENTATION:
             When HELO parameter validation fails, a suggested
             procedure is to insert a note about the unknown
             authenticity of the sender into the message header (e.g.,
             in the "Received:"  line).

     5.2.6  Mail Relay: RFC-821 Section 3.6

        We distinguish three types of mail (store-and-) forwarding:

        (1)  A simple forwarder or "mail exchanger" forwards a message
             using private knowledge about the recipient; see section
             3.2 of RFC-821.

        (2)  An SMTP mail "relay" forwards a message within an SMTP
             mail environment as the result of an explicit source route
             (as defined in section 3.6 of RFC-821).  The SMTP relay
             function uses the "@...:" form of source route from RFC-
             822 (see Section 5.2.19 below).

        (3)  A mail "gateway" passes a message between different
             environments.  The rules for mail gateways are discussed
             below in Section 5.3.7.

        An Internet host that is forwarding a message but is not a
        gateway to a different mail environment (i.e., it falls under
        (1) or (2)) SHOULD NOT alter any existing header fields,
        although the host will add an appropriate Received: line as
        required in Section 5.2.8.

        A Sender-SMTP SHOULD NOT send a RCPT TO: command containing an
        explicit source route using the "@...:" address form.  Thus,
        the relay function defined in section  3.6 of RFC-821 should
        not be used.



Internet Engineering Task Force                                [Page 51]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        DISCUSSION:
             The intent is to discourage all source routing and to
             abolish explicit source routing for mail delivery within
             the Internet environment.  Source-routing is unnecessary;
             the simple target address "user@domain" should always
             suffice.  This is the result of an explicit architectural
             decision to use universal naming rather than source
             routing for mail.  Thus, SMTP provides end-to-end
             connectivity, and the DNS provides globally-unique,
             location-independent names.  MX records handle the major
             case where source routing might otherwise be needed.

        A receiver-SMTP MUST accept the explicit source route syntax in
        the envelope, but it MAY implement the relay function as
        defined in section 3.6 of RFC-821.  If it does not implement
        the relay function, it SHOULD attempt to deliver the message
        directly to the host to the right of the right-most "@" sign.

        DISCUSSION:
             For example, suppose a host that does not implement the
             relay function receives a message with the SMTP command:
             "RCPT TO:<@ALPHA,@BETA:joe@GAMMA>", where ALPHA, BETA, and
             GAMMA represent domain names.  Rather than immediately
             refusing the message with a 550 error reply as suggested
             on page 20 of RFC-821, the host should try to forward the
             message to GAMMA directly, using: "RCPT TO:<joe@GAMMA>".
             Since this host does not support relaying, it is not
             required to update the reverse path.

             Some have suggested that source routing may be needed
             occasionally for manually routing mail around failures;
             however, the reality and importance of this need is
             controversial.  The use of explicit SMTP mail relaying for
             this purpose is discouraged, and in fact it may not be
             successful, as many host systems do not support it.  Some
             have used the "%-hack" (see Section 5.2.16) for this
             purpose.

     5.2.7  RCPT Command: RFC-821 Section 4.1.1

        A host that supports a receiver-SMTP MUST support the reserved
        mailbox "Postmaster".

        The receiver-SMTP MAY verify RCPT parameters as they arrive;
        however, RCPT responses MUST NOT be delayed beyond a reasonable
        time (see Section 5.3.2).

        Therefore, a "250 OK" response to a RCPT does not necessarily



Internet Engineering Task Force                                [Page 52]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        imply that the delivery address(es) are valid.  Errors found
        after message acceptance will be reported by mailing a
        notification message to an appropriate address (see Section
        5.3.3).

        DISCUSSION:
             The set of conditions under which a RCPT parameter can be
             validated immediately is an engineering design choice.
             Reporting destination mailbox errors to the Sender-SMTP
             before mail is transferred is generally desirable to save
             time and network bandwidth, but this advantage is lost if
             RCPT verification is lengthy.

             For example, the receiver can verify immediately any
             simple local reference, such as a single locally-
             registered mailbox.  On the other hand, the "reasonable
             time" limitation generally implies deferring verification
             of a mailing list until after the message has been
             transferred and accepted, since verifying a large mailing
             list can take a very long time.  An implementation might
             or might not choose to defer validation of addresses that
             are non-local and therefore require a DNS lookup.  If a
             DNS lookup is performed but a soft domain system error
             (e.g., timeout) occurs, validity must be assumed.

     5.2.8  DATA Command: RFC-821 Section 4.1.1

        Every receiver-SMTP (not just one that "accepts a message for
        relaying or for final delivery" [SMTP:1]) MUST insert a
        "Received:" line at the beginning of a message.  In this line,
        called a "time stamp line" in RFC-821:

        *    The FROM field SHOULD contain both (1) the name of the
             source host as presented in the HELO command and (2) a
             domain literal containing the IP address of the source,
             determined from the TCP connection.

        *    The ID field MAY contain an "@" as suggested in RFC-822,
             but this is not required.

        *    The FOR field MAY contain a list of <path> entries when
             multiple RCPT commands have been given.


        An Internet mail program MUST NOT change a Received: line that
        was previously added to the message header.





Internet Engineering Task Force                                [Page 53]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        DISCUSSION:
             Including both the source host and the IP source address
             in the Received: line may provide enough information for
             tracking illicit mail sources and eliminate a need to
             explicitly verify the HELO parameter.

             Received: lines are primarily intended for humans tracing
             mail routes, primarily of diagnosis of faults.  See also
             the discussion under 5.3.7.

        When the receiver-SMTP makes "final delivery" of a message,
        then it MUST pass the MAIL FROM: address from the SMTP envelope
        with the message, for use if an error notification message must
        be sent later (see Section 5.3.3).  There is an analogous
        requirement when gatewaying from the Internet into a different
        mail environment; see Section 5.3.7.

        DISCUSSION:
             Note that the final reply to the DATA command depends only
             upon the successful transfer and storage of the message.
             Any problem with the destination address(es) must either
             (1) have been reported in an SMTP error reply to the RCPT
             command(s), or (2) be reported in a later error message
             mailed to the originator.

        IMPLEMENTATION:
             The MAIL FROM: information may be passed as a parameter or
             in a Return-Path: line inserted at the beginning of the
             message.

     5.2.9  Command Syntax: RFC-821 Section 4.1.2

        The syntax shown in RFC-821 for the MAIL FROM: command omits
        the case of an empty path:  "MAIL FROM: <>" (see RFC-821 Page
        15).  An empty reverse path MUST be supported.

     5.2.10  SMTP Replies:  RFC-821 Section 4.2

        A receiver-SMTP SHOULD send only the reply codes listed in
        section 4.2.2 of RFC-821 or in this document.  A receiver-SMTP
        SHOULD use the text shown in examples in RFC-821 whenever
        appropriate.

        A sender-SMTP MUST determine its actions only by the reply
        code, not by the text (except for 251 and 551 replies); any
        text, including no text at all, must be acceptable.  The space
        (blank) following the reply code is considered part of the
        text.  Whenever possible, a sender-SMTP SHOULD test only the



Internet Engineering Task Force                                [Page 54]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        first digit of the reply code, as specified in Appendix E of
        RFC-821.

        DISCUSSION:
             Interoperability problems have arisen with SMTP systems
             using reply codes that are not listed explicitly in RFC-
             821 Section 4.3 but are legal according to the theory of
             reply codes explained in Appendix E.

     5.2.11  Transparency: RFC-821 Section 4.5.2

        Implementors MUST be sure that their mail systems always add
        and delete periods to ensure message transparency.

     5.2.12  WKS Use in MX Processing: RFC-974, p. 5

        RFC-974 [SMTP:3] recommended that the domain system be queried
        for WKS ("Well-Known Service") records, to verify that each
        proposed mail target does support SMTP.  Later experience has
        shown that WKS is not widely supported, so the WKS step in MX
        processing SHOULD NOT be used.

     The following are notes on RFC-822, organized by section of that
     document.

     5.2.13  RFC-822 Message Specification: RFC-822 Section 4

        The syntax shown for the Return-path line omits the possibility
        of a null return path, which is used to prevent looping of
        error notifications (see Section 5.3.3).  The complete syntax
        is:

            return = "Return-path"  ":" route-addr
                   / "Return-path"  ":" "<" ">"

        The set of optional header fields is hereby expanded to include
        the Content-Type field defined in RFC-1049 [SMTP:7].  This
        field "allows mail reading systems to automatically identify
        the type of a structured message body and to process it for
        display accordingly".  [SMTP:7]  A User Agent MAY support this
        field.

     5.2.14  RFC-822 Date and Time Specification: RFC-822 Section 5

        The syntax for the date is hereby changed to:

           date = 1*2DIGIT month 2*4DIGIT




Internet Engineering Task Force                                [Page 55]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        All mail software SHOULD use 4-digit years in dates, to ease
        the transition to the next century.

        There is a strong trend towards the use of numeric timezone
        indicators, and implementations SHOULD use numeric timezones
        instead of timezone names.  However, all implementations MUST
        accept either notation.  If timezone names are used, they MUST
        be exactly as defined in RFC-822.

        The military time zones are specified incorrectly in RFC-822:
        they count the wrong way from UT (the signs are reversed).  As
        a result, military time zones in RFC-822 headers carry no
        information.

        Finally, note that there is a typo in the definition of "zone"
        in the syntax summary of appendix D; the correct definition
        occurs in Section 3 of RFC-822.

     5.2.15  RFC-822 Syntax Change: RFC-822 Section 6.1

        The syntactic definition of "mailbox" in RFC-822 is hereby
        changed to:

           mailbox =  addr-spec            ; simple address
                   / [phrase] route-addr   ; name & addr-spec

        That is, the phrase preceding a route address is now OPTIONAL.
        This change makes the following header field legal, for
        example:

            From: <[email protected]>

     5.2.16  RFC-822  Local-part: RFC-822 Section 6.2

        The basic mailbox address specification has the form: "local-
        part@domain".  Here "local-part", sometimes called the "left-
        hand side" of the address, is domain-dependent.

        A host that is forwarding the message but is not the
        destination host implied by the right-hand side "domain" MUST
        NOT interpret or modify the "local-part" of the address.

        When mail is to be gatewayed from the Internet mail environment
        into a foreign mail environment (see Section 5.3.7), routing
        information for that foreign environment MAY be embedded within
        the "local-part" of the address.  The gateway will then
        interpret this local part appropriately for the foreign mail
        environment.



Internet Engineering Task Force                                [Page 56]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        DISCUSSION:
             Although source routes are discouraged within the Internet
             (see Section 5.2.6), there are non-Internet mail
             environments whose delivery mechanisms do depend upon
             source routes.  Source routes for extra-Internet
             environments can generally be buried in the "local-part"
             of the address (see Section 5.2.16) while mail traverses
             the Internet.  When the mail reaches the appropriate
             Internet mail gateway, the gateway will interpret the
             local-part and build the necessary address or route for
             the target mail environment.

             For example, an Internet host might send mail to:
             "a!b!c!user@gateway-domain".  The complex local part
             "a!b!c!user" would be uninterpreted within the Internet
             domain, but could be parsed and understood by the
             specified mail gateway.

             An embedded source route is sometimes encoded in the
             "local-part" using "%" as a right-binding routing
             operator.  For example, in:

                user%domain%relay3%relay2@relay1

             the "%" convention implies that the mail is to be routed
             from "relay1" through "relay2", "relay3", and finally to
             "user" at "domain".  This is commonly known as the "%-
             hack".  It is suggested that "%" have lower precedence
             than any other routing operator (e.g., "!") hidden in the
             local-part; for example, "a!b%c" would be interpreted as
             "(a!b)%c".

             Only the target host (in this case, "relay1") is permitted
             to analyze the local-part "user%domain%relay3%relay2".

     5.2.17  Domain Literals: RFC-822 Section 6.2.3

        A mailer MUST be able to accept and parse an Internet domain
        literal whose content ("dtext"; see RFC-822) is a dotted-
        decimal host address.  This satisfies the requirement of
        Section 2.1 for the case of mail.

        An SMTP MUST accept and recognize a domain literal for any of
        its own IP addresses.







Internet Engineering Task Force                                [Page 57]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


     5.2.18  Common Address Formatting Errors: RFC-822 Section 6.1

        Errors in formatting or parsing 822 addresses are unfortunately
        common.  This section mentions only the most common errors.  A
        User Agent MUST accept all valid RFC-822 address formats, and
        MUST NOT generate illegal address syntax.

        o    A common error is to leave out the semicolon after a group
             identifier.

        o    Some systems fail to fully-qualify domain names in
             messages they generate.  The right-hand side of an "@"
             sign in a header address field MUST be a fully-qualified
             domain name.

             For example, some systems fail to fully-qualify the From:
             address; this prevents a "reply" command in the user
             interface from automatically constructing a return
             address.

             DISCUSSION:
                  Although RFC-822 allows the local use of abbreviated
                  domain names within a domain, the application of
                  RFC-822 in Internet mail does not allow this.  The
                  intent is that an Internet host must not send an SMTP
                  message header containing an abbreviated domain name
                  in an address field.  This allows the address fields
                  of the header to be passed without alteration across
                  the Internet, as required in Section 5.2.6.

        o    Some systems mis-parse multiple-hop explicit source routes
             such as:

                 @relay1,@relay2,@relay3:user@domain.


        o    Some systems over-qualify domain names by adding a
             trailing dot to some or all domain names in addresses or
             message-ids.  This violates RFC-822 syntax.


     5.2.19  Explicit Source Routes: RFC-822 Section 6.2.7

        Internet host software SHOULD NOT create an RFC-822 header
        containing an address with an explicit source route, but MUST
        accept such headers for compatibility with earlier systems.

        DISCUSSION:



Internet Engineering Task Force                                [Page 58]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


             In an understatement, RFC-822 says "The use of explicit
             source routing is discouraged".  Many hosts implemented
             RFC-822 source routes incorrectly, so the syntax cannot be
             used unambiguously in practice.  Many users feel the
             syntax is ugly.  Explicit source routes are not needed in
             the mail envelope for delivery; see Section 5.2.6.  For
             all these reasons, explicit source routes using the RFC-
             822 notations are not to be used in Internet mail headers.

             As stated in Section 5.2.16, it is necessary to allow an
             explicit source route to be buried in the local-part of an
             address, e.g., using the "%-hack", in order to allow mail
             to be gatewayed into another environment in which explicit
             source routing is necessary.  The vigilant will observe
             that there is no way for a User Agent to detect and
             prevent the use of such implicit source routing when the
             destination is within the Internet.  We can only
             discourage source routing of any kind within the Internet,
             as unnecessary and undesirable.

  5.3  SPECIFIC ISSUES

     5.3.1  SMTP Queueing Strategies

        The common structure of a host SMTP implementation includes
        user mailboxes, one or more areas for queueing messages in
        transit, and one or more daemon processes for sending and
        receiving mail.  The exact structure will vary depending on the
        needs of the users on the host and the number and size of
        mailing lists supported by the host.  We describe several
        optimizations that have proved helpful, particularly for
        mailers supporting high traffic levels.

        Any queueing strategy MUST include:

        o    Timeouts on all activities.  See Section 5.3.2.

        o    Never sending error messages in response to error
             messages.


        5.3.1.1 Sending Strategy

           The general model of a sender-SMTP is one or more processes
           that periodically attempt to transmit outgoing mail.  In a
           typical system, the program that composes a message has some
           method for requesting immediate attention for a new piece of
           outgoing mail, while mail that cannot be transmitted



Internet Engineering Task Force                                [Page 59]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


           immediately MUST be queued and periodically retried by the
           sender.  A mail queue entry will include not only the
           message itself but also the envelope information.

           The sender MUST delay retrying a particular destination
           after one attempt has failed.  In general, the retry
           interval SHOULD be at least 30 minutes; however, more
           sophisticated and variable strategies will be beneficial
           when the sender-SMTP can determine the reason for non-
           delivery.

           Retries continue until the message is transmitted or the
           sender gives up; the give-up time generally needs to be at
           least 4-5 days.  The parameters to the retry algorithm MUST
           be configurable.

           A sender SHOULD keep a list of hosts it cannot reach and
           corresponding timeouts, rather than just retrying queued
           mail items.

           DISCUSSION:
                Experience suggests that failures are typically
                transient (the target system has crashed), favoring a
                policy of two connection attempts in the first hour the
                message is in the queue, and then backing off to once
                every two or three hours.

                The sender-SMTP can shorten the queueing delay by
                cooperation with the receiver-SMTP.  In particular, if
                mail is received from a particular address, it is good
                evidence that any mail queued for that host can now be
                sent.

                The strategy may be further modified as a result of
                multiple addresses per host (see Section 5.3.4), to
                optimize delivery time vs. resource usage.

                A sender-SMTP may have a large queue of messages for
                each unavailable destination host, and if it retried
                all these messages in every retry cycle, there would be
                excessive Internet overhead and the daemon would be
                blocked for a long period.  Note that an SMTP can
                generally determine that a delivery attempt has failed
                only after a timeout of a minute or more; a one minute
                timeout per connection will result in a very large
                delay if it is repeated for dozens or even hundreds of
                queued messages.




Internet Engineering Task Force                                [Page 60]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


           When the same message is to be delivered to several users on
           the same host, only one copy of the message SHOULD be
           transmitted.  That is, the sender-SMTP should use the
           command sequence: RCPT, RCPT,... RCPT, DATA instead of the
           sequence: RCPT, DATA, RCPT, DATA,... RCPT, DATA.
           Implementation of this efficiency feature is strongly urged.

           Similarly, the sender-SMTP MAY support multiple concurrent
           outgoing mail transactions to achieve timely delivery.
           However, some limit SHOULD be imposed to protect the host
           from devoting all its resources to mail.

           The use of the different addresses of a multihomed host is
           discussed below.

        5.3.1.2  Receiving strategy

           The receiver-SMTP SHOULD attempt to keep a pending listen on
           the SMTP port at all times.  This will require the support
           of multiple incoming TCP connections for SMTP.  Some limit
           MAY be imposed.

           IMPLEMENTATION:
                When the receiver-SMTP receives mail from a particular
                host address, it could notify the sender-SMTP to retry
                any mail pending for that host address.

     5.3.2  Timeouts in SMTP

        There are two approaches to timeouts in the sender-SMTP:  (a)
        limit the time for each SMTP command separately, or (b) limit
        the time for the entire SMTP dialogue for a single mail
        message.  A sender-SMTP SHOULD use option (a), per-command
        timeouts.  Timeouts SHOULD be easily reconfigurable, preferably
        without recompiling the SMTP code.

        DISCUSSION:
             Timeouts are an essential feature of an SMTP
             implementation.  If the timeouts are too long (or worse,
             there are no timeouts), Internet communication failures or
             software bugs in receiver-SMTP programs can tie up SMTP
             processes indefinitely.  If the timeouts are too short,
             resources will be wasted with attempts that time out part
             way through message delivery.

             If option (b) is used, the timeout has to be very large,
             e.g., an hour, to allow time to expand very large mailing
             lists.  The timeout may also need to increase linearly



Internet Engineering Task Force                                [Page 61]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


             with the size of the message, to account for the time to
             transmit a very large message.  A large fixed timeout
             leads to two problems:  a failure can still tie up the
             sender for a very long time, and very large messages may
             still spuriously time out (which is a wasteful failure!).

             Using the recommended option (a), a timer is set for each
             SMTP command and for each buffer of the data transfer.
             The latter means that the overall timeout is inherently
             proportional to the size of the message.

        Based on extensive experience with busy mail-relay hosts, the
        minimum per-command timeout values SHOULD be as follows:

        o    Initial 220 Message: 5 minutes

             A Sender-SMTP process needs to distinguish between a
             failed TCP connection and a delay in receiving the initial
             220 greeting message.  Many receiver-SMTPs will accept a
             TCP connection but delay delivery of the 220 message until
             their system load will permit more mail to be processed.

        o    MAIL Command: 5 minutes


        o    RCPT Command: 5 minutes

             A longer timeout would be required if processing of
             mailing lists and aliases were not deferred until after
             the message was accepted.

        o    DATA Initiation: 2 minutes

             This is while awaiting the "354 Start Input" reply to a
             DATA command.

        o    Data Block: 3 minutes

             This is while awaiting the completion of each TCP SEND
             call transmitting a chunk of data.

        o    DATA Termination: 10 minutes.

             This is while awaiting the "250 OK" reply. When the
             receiver gets the final period terminating the message
             data, it typically performs processing to deliver the
             message to a user mailbox.  A spurious timeout at this
             point would be very wasteful, since the message has been



Internet Engineering Task Force                                [Page 62]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


             successfully sent.

        A receiver-SMTP SHOULD have a timeout of at least 5 minutes
        while it is awaiting the next command from the sender.

     5.3.3  Reliable Mail Receipt

        When the receiver-SMTP accepts a piece of mail (by sending a
        "250 OK" message in response to DATA), it is accepting
        responsibility for delivering or relaying the message.  It must
        take this responsibility seriously, i.e., it MUST NOT lose the
        message for frivolous reasons, e.g., because the host later
        crashes or because of a predictable resource shortage.

        If there is a delivery failure after acceptance of a message,
        the receiver-SMTP MUST formulate and mail a notification
        message.  This notification MUST be sent using a null ("<>")
        reverse path in the envelope; see Section 3.6 of RFC-821.  The
        recipient of this notification SHOULD be the address from the
        envelope return path (or the Return-Path: line).  However, if
        this address is null ("<>"),  the receiver-SMTP MUST NOT send a
        notification.  If the address is an explicit source route, it
        SHOULD be stripped down to its final hop.

        DISCUSSION:
             For example, suppose that an error notification must be
             sent for a message that arrived with:
             "MAIL FROM:<@a,@b:user@d>".  The notification message
             should be sent to: "RCPT TO:<user@d>".

             Some delivery failures after the message is accepted by
             SMTP will be unavoidable.  For example, it may be
             impossible for the receiver-SMTP to validate all the
             delivery addresses in RCPT command(s) due to a "soft"
             domain system error or because the target is a mailing
             list (see earlier discussion of RCPT).

        To avoid receiving duplicate messages as the result of
        timeouts, a receiver-SMTP MUST seek to minimize the time
        required to respond to the final "." that ends a message
        transfer.  See RFC-1047 [SMTP:4] for a discussion of this
        problem.

     5.3.4  Reliable Mail Transmission

        To transmit a message, a sender-SMTP determines the IP address
        of the target host from the destination address in the
        envelope.  Specifically, it maps the string to the right of the



Internet Engineering Task Force                                [Page 63]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


        "@" sign into an IP address.  This mapping or the transfer
        itself may fail with a soft error, in which case the sender-
        SMTP will requeue the outgoing mail for a later retry, as
        required in Section 5.3.1.1.

        When it succeeds, the mapping can result in a list of
        alternative delivery addresses rather than a single address,
        because of (a) multiple MX records, (b) multihoming, or both.
        To provide reliable mail transmission, the sender-SMTP MUST be
        able to try (and retry) each of the addresses in this list in
        order, until a delivery attempt succeeds.  However, there MAY
        also be a configurable limit on the number of alternate
        addresses that can be tried.  In any case, a host SHOULD try at
        least two addresses.

        The following information is to be used to rank the host
        addresses:

        (1)  Multiple MX Records -- these contain a preference
             indication that should be used in sorting.  If there are
             multiple destinations with the same preference and there
             is no clear reason to favor one (e.g., by address
             preference), then the sender-SMTP SHOULD pick one at
             random to spread the load across multiple mail exchanges
             for a specific organization; note that this is a
             refinement of the procedure in [DNS:3].

        (2)  Multihomed host -- The destination host (perhaps taken
             from the preferred MX record) may be multihomed, in which
             case the domain name resolver will return a list of
             alternative IP addresses.  It is the responsibility of the
             domain name resolver interface (see Section 6.1.3.4 below)
             to have ordered this list by decreasing preference, and
             SMTP MUST try them in the order presented.

        DISCUSSION:
             Although the capability to try multiple alternative
             addresses is required, there may be circumstances where
             specific installations want to limit or disable the use of
             alternative addresses.  The question of whether a sender
             should attempt retries using the different addresses of a
             multihomed host has been controversial.  The main argument
             for using the multiple addresses is that it maximizes the
             probability of timely delivery, and indeed sometimes the
             probability of any delivery; the counter argument is that
             it may result in unnecessary resource use.

             Note that resource use is also strongly determined by the



Internet Engineering Task Force                                [Page 64]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


             sending strategy discussed in Section 5.3.1.

     5.3.5  Domain Name Support

        SMTP implementations MUST use the mechanism defined in Section
        6.1 for mapping between domain names and IP addresses.  This
        means that every Internet SMTP MUST include support for the
        Internet DNS.

        In particular, a sender-SMTP MUST support the MX record scheme
        [SMTP:3].  See also Section 7.4 of [DNS:2] for information on
        domain name support for SMTP.

     5.3.6  Mailing Lists and Aliases

        An SMTP-capable host SHOULD support both the alias and the list
        form of address expansion for multiple delivery.  When a
        message is delivered or forwarded to each address of an
        expanded list form, the return address in the envelope
        ("MAIL FROM:") MUST be changed to be the address of a person
        who administers the list, but the message header MUST be left
        unchanged; in particular, the "From" field of the message is
        unaffected.

        DISCUSSION:
             An important mail facility is a mechanism for multi-
             destination delivery of a single message, by transforming
             or "expanding" a pseudo-mailbox address into a list of
             destination mailbox addresses.  When a message is sent to
             such a pseudo-mailbox (sometimes called an "exploder"),
             copies are forwarded or redistributed to each mailbox in
             the expanded list.  We classify such a pseudo-mailbox as
             an "alias" or a "list", depending upon the expansion
             rules:

             (a)  Alias

                  To expand an alias, the recipient mailer simply
                  replaces the pseudo-mailbox address in the envelope
                  with each of the expanded addresses in turn; the rest
                  of the envelope and the message body are left
                  unchanged.  The message is then delivered or
                  forwarded to each expanded address.

             (b)  List

                  A mailing list may be said to operate by
                  "redistribution" rather than by "forwarding".  To



Internet Engineering Task Force                                [Page 65]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


                  expand a list, the recipient mailer replaces the
                  pseudo-mailbox address in the envelope with each of
                  the expanded addresses in turn. The return address in
                  the envelope is changed so that all error messages
                  generated by the final deliveries will be returned to
                  a list administrator, not to the message originator,
                  who generally has no control over the contents of the
                  list and will typically find error messages annoying.


     5.3.7  Mail Gatewaying

        Gatewaying mail between different mail environments, i.e.,
        different mail formats and protocols, is complex and does not
        easily yield to standardization.  See for example [SMTP:5a],
        [SMTP:5b].  However, some general requirements may be given for
        a gateway between the Internet and another mail environment.

        (A)  Header fields MAY be rewritten when necessary as messages
             are gatewayed across mail environment boundaries.

             DISCUSSION:
                  This may involve interpreting the local-part of the
                  destination address, as suggested in Section 5.2.16.

                  The other mail systems gatewayed to the Internet
                  generally use a subset of RFC-822 headers, but some
                  of them do not have an equivalent to the SMTP
                  envelope.  Therefore, when a message leaves the
                  Internet environment, it may be necessary to fold the
                  SMTP envelope information into the message header.  A
                  possible solution would be to create new header
                  fields to carry the envelope information (e.g., "X-
                  SMTP-MAIL:" and "X-SMTP-RCPT:"); however, this would
                  require changes in mail programs in the foreign
                  environment.

        (B)  When forwarding a message into or out of the Internet
             environment, a gateway MUST prepend a Received: line, but
             it MUST NOT alter in any way a Received: line that is
             already in the header.

             DISCUSSION:
                  This requirement is a subset of the general
                  "Received:" line requirement of Section 5.2.8; it is
                  restated here for emphasis.

                  Received: fields of messages originating from other



Internet Engineering Task Force                                [Page 66]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


                  environments may not conform exactly to RFC822.
                  However, the most important use of Received: lines is
                  for debugging mail faults, and this debugging can be
                  severely hampered by well-meaning gateways that try
                  to "fix" a Received: line.

                  The gateway is strongly encouraged to indicate the
                  environment and protocol in the "via" clauses of
                  Received field(s) that it supplies.

        (C)  From the Internet side, the gateway SHOULD accept all
             valid address formats in SMTP commands and in RFC-822
             headers, and all valid RFC-822 messages.  Although a
             gateway must accept an RFC-822 explicit source route
             ("@...:" format) in either the RFC-822 header or in the
             envelope, it MAY or may not act on the source route; see
             Sections 5.2.6 and 5.2.19.

             DISCUSSION:
                  It is often tempting to restrict the range of
                  addresses accepted at the mail gateway to simplify
                  the translation into addresses for the remote
                  environment.  This practice is based on the
                  assumption that mail users have control over the
                  addresses their mailers send to the mail gateway.  In
                  practice, however, users have little control over the
                  addresses that are finally sent; their mailers are
                  free to change addresses into any legal RFC-822
                  format.

        (D)  The gateway MUST ensure that all header fields of a
             message that it forwards into the Internet meet the
             requirements for Internet mail.  In particular, all
             addresses in "From:", "To:", "Cc:", etc., fields must be
             transformed (if necessary) to satisfy RFC-822 syntax, and
             they must be effective and useful for sending replies.


        (E)  The translation algorithm used to convert mail from the
             Internet protocols to another environment's protocol
             SHOULD try to ensure that error messages from the foreign
             mail environment are delivered to the return path from the
             SMTP envelope, not to the sender listed in the "From:"
             field of the RFC-822 message.

             DISCUSSION:
                  Internet mail lists usually place the address of the
                  mail list maintainer in the envelope but leave the



Internet Engineering Task Force                                [Page 67]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


                  original message header intact (with the "From:"
                  field containing the original sender).  This yields
                  the behavior the average recipient expects: a reply
                  to the header gets sent to the original sender, not
                  to a mail list maintainer; however, errors get sent
                  to the maintainer (who can fix the problem) and not
                  the sender (who probably cannot).

        (F)  Similarly, when forwarding a message from another
             environment into the Internet, the gateway SHOULD set the
             envelope return path in accordance with an error message
             return address, if any, supplied by the foreign
             environment.


     5.3.8  Maximum Message Size

        Mailer software MUST be able to send and receive messages of at
        least 64K bytes in length (including header), and a much larger
        maximum size is highly desirable.

        DISCUSSION:
             Although SMTP does not define the maximum size of a
             message, many systems impose implementation limits.

             The current de facto minimum limit in the Internet is 64K
             bytes.  However, electronic mail is used for a variety of
             purposes that create much larger messages.  For example,
             mail is often used instead of FTP for transmitting ASCII
             files, and in particular to transmit entire documents.  As
             a result, messages can be 1 megabyte or even larger.  We
             note that the present document together with its lower-
             layer companion contains 0.5 megabytes.


















Internet Engineering Task Force                                [Page 68]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


  5.4  SMTP REQUIREMENTS SUMMARY

                                              |          | | | |S| |
                                              |          | | | |H| |F
                                              |          | | | |O|M|o
                                              |          | |S| |U|U|o
                                              |          | |H| |L|S|t
                                              |          |M|O| |D|T|n
                                              |          |U|U|M| | |o
                                              |          |S|L|A|N|N|t
                                              |          |T|D|Y|O|O|t
FEATURE                                        |SECTION   | | | |T|T|e
-----------------------------------------------|----------|-|-|-|-|-|--
                                              |          | | | | | |
RECEIVER-SMTP:                                 |          | | | | | |
 Implement VRFY                               |5.2.3     |x| | | | |
 Implement EXPN                               |5.2.3     | |x| | | |
   EXPN, VRFY configurable                    |5.2.3     | | |x| | |
 Implement SEND, SOML, SAML                   |5.2.4     | | |x| | |
 Verify HELO parameter                        |5.2.5     | | |x| | |
   Refuse message with bad HELO               |5.2.5     | | | | |x|
 Accept explicit src-route syntax in env.     |5.2.6     |x| | | | |
 Support "postmaster"                         |5.2.7     |x| | | | |
 Process RCPT when received (except lists)    |5.2.7     | | |x| | |
     Long delay of RCPT responses             |5.2.7     | | | | |x|
                                              |          | | | | | |
 Add Received: line                           |5.2.8     |x| | | | |
     Received: line include domain literal    |5.2.8     | |x| | | |
 Change previous Received: line               |5.2.8     | | | | |x|
 Pass Return-Path info (final deliv/gwy)      |5.2.8     |x| | | | |
 Support empty reverse path                   |5.2.9     |x| | | | |
 Send only official reply codes               |5.2.10    | |x| | | |
 Send text from RFC-821 when appropriate      |5.2.10    | |x| | | |
 Delete "." for transparency                  |5.2.11    |x| | | | |
 Accept and recognize self domain literal(s)  |5.2.17    |x| | | | |
                                              |          | | | | | |
 Error message about error message            |5.3.1     | | | | |x|
 Keep pending listen on SMTP port             |5.3.1.2   | |x| | | |
 Provide limit on recv concurrency            |5.3.1.2   | | |x| | |
 Wait at least 5 mins for next sender cmd     |5.3.2     | |x| | | |
 Avoidable delivery failure after "250 OK"    |5.3.3     | | | | |x|
 Send error notification msg after accept     |5.3.3     |x| | | | |
   Send using null return path                |5.3.3     |x| | | | |
   Send to envelope return path               |5.3.3     | |x| | | |
   Send to null address                       |5.3.3     | | | | |x|
   Strip off explicit src route               |5.3.3     | |x| | | |
 Minimize acceptance delay (RFC-1047)         |5.3.3     |x| | | | |
-----------------------------------------------|----------|-|-|-|-|-|--



Internet Engineering Task Force                                [Page 69]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


                                              |          | | | | | |
SENDER-SMTP:                                   |          | | | | | |
 Canonicalized domain names in MAIL, RCPT     |5.2.2     |x| | | | |
 Implement SEND, SOML, SAML                   |5.2.4     | | |x| | |
 Send valid principal host name in HELO       |5.2.5     |x| | | | |
 Send explicit source route in RCPT TO:       |5.2.6     | | | |x| |
 Use only reply code to determine action      |5.2.10    |x| | | | |
 Use only high digit of reply code when poss. |5.2.10    | |x| | | |
 Add "." for transparency                     |5.2.11    |x| | | | |
                                              |          | | | | | |
 Retry messages after soft failure            |5.3.1.1   |x| | | | |
   Delay before retry                         |5.3.1.1   |x| | | | |
   Configurable retry parameters              |5.3.1.1   |x| | | | |
   Retry once per each queued dest host       |5.3.1.1   | |x| | | |
 Multiple RCPT's for same DATA                |5.3.1.1   | |x| | | |
 Support multiple concurrent transactions     |5.3.1.1   | | |x| | |
   Provide limit on concurrency               |5.3.1.1   | |x| | | |
                                              |          | | | | | |
 Timeouts on all activities                   |5.3.1     |x| | | | |
   Per-command timeouts                       |5.3.2     | |x| | | |
   Timeouts easily reconfigurable             |5.3.2     | |x| | | |
   Recommended times                          |5.3.2     | |x| | | |
 Try alternate addr's in order                |5.3.4     |x| | | | |
   Configurable limit on alternate tries      |5.3.4     | | |x| | |
   Try at least two alternates                |5.3.4     | |x| | | |
 Load-split across equal MX alternates        |5.3.4     | |x| | | |
 Use the Domain Name System                   |5.3.5     |x| | | | |
   Support MX records                         |5.3.5     |x| | | | |
   Use WKS records in MX processing           |5.2.12    | | | |x| |
-----------------------------------------------|----------|-|-|-|-|-|--
                                              |          | | | | | |
MAIL FORWARDING:                               |          | | | | | |
 Alter existing header field(s)               |5.2.6     | | | |x| |
 Implement relay function: 821/section 3.6    |5.2.6     | | |x| | |
   If not, deliver to RHS domain              |5.2.6     | |x| | | |
 Interpret 'local-part' of addr               |5.2.16    | | | | |x|
                                              |          | | | | | |
MAILING LISTS AND ALIASES                      |          | | | | | |
 Support both                                 |5.3.6     | |x| | | |
 Report mail list error to local admin.       |5.3.6     |x| | | | |
                                              |          | | | | | |
MAIL GATEWAYS:                                 |          | | | | | |
 Embed foreign mail route in local-part       |5.2.16    | | |x| | |
 Rewrite header fields when necessary         |5.3.7     | | |x| | |
 Prepend Received: line                       |5.3.7     |x| | | | |
 Change existing Received: line               |5.3.7     | | | | |x|
 Accept full RFC-822 on Internet side         |5.3.7     | |x| | | |
 Act on RFC-822 explicit source route         |5.3.7     | | |x| | |



Internet Engineering Task Force                                [Page 70]




RFC1123                  MAIL -- SMTP & RFC-822             October 1989


 Send only valid RFC-822 on Internet side     |5.3.7     |x| | | | |
 Deliver error msgs to envelope addr          |5.3.7     | |x| | | |
 Set env return path from err return addr     |5.3.7     | |x| | | |
                                              |          | | | | | |
USER AGENT -- RFC-822                          |          | | | | | |
 Allow user to enter <route> address          |5.2.6     | | | |x| |
 Support RFC-1049 Content Type field          |5.2.13    | | |x| | |
 Use 4-digit years                            |5.2.14    | |x| | | |
 Generate numeric timezones                   |5.2.14    | |x| | | |
 Accept all timezones                         |5.2.14    |x| | | | |
 Use non-num timezones from RFC-822           |5.2.14    |x| | | | |
 Omit phrase before route-addr                |5.2.15    | | |x| | |
 Accept and parse dot.dec. domain literals    |5.2.17    |x| | | | |
 Accept all RFC-822 address formats           |5.2.18    |x| | | | |
 Generate invalid RFC-822 address format      |5.2.18    | | | | |x|
 Fully-qualified domain names in header       |5.2.18    |x| | | | |
 Create explicit src route in header          |5.2.19    | | | |x| |
 Accept explicit src route in header          |5.2.19    |x| | | | |
                                              |          | | | | | |
Send/recv at least 64KB messages               |5.3.8     |x| | | | |































Internet Engineering Task Force                                [Page 71]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


6. SUPPORT SERVICES

  6.1 DOMAIN NAME TRANSLATION

     6.1.1 INTRODUCTION

        Every host MUST implement a resolver for the Domain Name System
        (DNS), and it MUST implement a mechanism using this DNS
        resolver to convert host names to IP addresses and vice-versa
        [DNS:1, DNS:2].

        In addition to the DNS, a host MAY also implement a host name
        translation mechanism that searches a local Internet host
        table.  See Section 6.1.3.8 for more information on this
        option.

        DISCUSSION:
             Internet host name translation was originally performed by
             searching local copies of a table of all hosts.  This
             table became too large to update and distribute in a
             timely manner and too large to fit into many hosts, so the
             DNS was invented.

             The DNS creates a distributed database used primarily for
             the translation between host names and host addresses.
             Implementation of DNS software is required.  The DNS
             consists of two logically distinct parts: name servers and
             resolvers (although implementations often combine these
             two logical parts in the interest of efficiency) [DNS:2].

             Domain name servers store authoritative data about certain
             sections of the database and answer queries about the
             data.  Domain resolvers query domain name servers for data
             on behalf of user processes.  Every host therefore needs a
             DNS resolver; some host machines will also need to run
             domain name servers.  Since no name server has complete
             information, in general it is necessary to obtain
             information from more than one name server to resolve a
             query.

     6.1.2  PROTOCOL WALK-THROUGH

        An implementor must study references [DNS:1] and [DNS:2]
        carefully.  They provide a thorough description of the theory,
        protocol, and implementation of the domain name system, and
        reflect several years of experience.





Internet Engineering Task Force                                [Page 72]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


        6.1.2.1  Resource Records with Zero TTL: RFC-1035 Section 3.2.1

           All DNS name servers and resolvers MUST properly handle RRs
           with a zero TTL: return the RR to the client but do not
           cache it.

           DISCUSSION:
                Zero TTL values are interpreted to mean that the RR can
                only be used for the transaction in progress, and
                should not be cached; they are useful for extremely
                volatile data.

        6.1.2.2  QCLASS Values: RFC-1035 Section 3.2.5

           A query with "QCLASS=*" SHOULD NOT be used unless the
           requestor is seeking data from more than one class.  In
           particular, if the requestor is only interested in Internet
           data types, QCLASS=IN MUST be used.

        6.1.2.3  Unused Fields: RFC-1035 Section 4.1.1

           Unused fields in a query or response message MUST be zero.

        6.1.2.4  Compression: RFC-1035 Section 4.1.4

           Name servers MUST use compression in responses.

           DISCUSSION:
                Compression is essential to avoid overflowing UDP
                datagrams; see Section 6.1.3.2.

        6.1.2.5  Misusing Configuration Info: RFC-1035 Section 6.1.2

           Recursive name servers and full-service resolvers generally
           have some configuration information containing hints about
           the location of root or local name servers.  An
           implementation MUST NOT include any of these hints in a
           response.

           DISCUSSION:
                Many implementors have found it convenient to store
                these hints as if they were cached data, but some
                neglected to ensure that this "cached data" was not
                included in responses.  This has caused serious
                problems in the Internet when the hints were obsolete
                or incorrect.





Internet Engineering Task Force                                [Page 73]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


     6.1.3  SPECIFIC ISSUES

        6.1.3.1  Resolver Implementation

           A name resolver SHOULD be able to multiplex concurrent
           requests if the host supports concurrent processes.

           In implementing a DNS resolver, one of two different models
           MAY optionally be chosen: a full-service resolver, or a stub
           resolver.


           (A)  Full-Service Resolver

                A full-service resolver is a complete implementation of
                the resolver service, and is capable of dealing with
                communication failures, failure of individual name
                servers, location of the proper name server for a given
                name, etc.  It must satisfy the following requirements:

                o    The resolver MUST implement a local caching
                     function to avoid repeated remote access for
                     identical requests, and MUST time out information
                     in the cache.

                o    The resolver SHOULD be configurable with start-up
                     information pointing to multiple root name servers
                     and multiple name servers for the local domain.
                     This insures that the resolver will be able to
                     access the whole name space in normal cases, and
                     will be able to access local domain information
                     should the local network become disconnected from
                     the rest of the Internet.


           (B)  Stub Resolver

                A "stub resolver" relies on the services of a recursive
                name server on the connected network or a "nearby"
                network.  This scheme allows the host to pass on the
                burden of the resolver function to a name server on
                another host.  This model is often essential for less
                capable hosts, such as PCs, and is also recommended
                when the host is one of several workstations on a local
                network, because it allows all of the workstations to
                share the cache of the recursive name server and hence
                reduce the number of domain requests exported by the
                local network.



Internet Engineering Task Force                                [Page 74]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


                At a minimum, the stub resolver MUST be capable of
                directing its requests to redundant recursive name
                servers.  Note that recursive name servers are allowed
                to restrict the sources of requests that they will
                honor, so the host administrator must verify that the
                service will be provided.  Stub resolvers MAY implement
                caching if they choose, but if so, MUST timeout cached
                information.


        6.1.3.2  Transport Protocols

           DNS resolvers and recursive servers MUST support UDP, and
           SHOULD support TCP, for sending (non-zone-transfer) queries.
           Specifically, a DNS resolver or server that is sending a
           non-zone-transfer query MUST send a UDP query first.  If the
           Answer section of the response is truncated and if the
           requester supports TCP, it SHOULD try the query again using
           TCP.

           DNS servers MUST be able to service UDP queries and SHOULD
           be able to service TCP queries.  A name server MAY limit the
           resources it devotes to TCP queries, but it SHOULD NOT
           refuse to service a TCP query just because it would have
           succeeded with UDP.

           Truncated responses MUST NOT be saved (cached) and later
           used in such a way that the fact that they are truncated is
           lost.

           DISCUSSION:
                UDP is preferred over TCP for queries because UDP
                queries have much lower overhead, both in packet count
                and in connection state.  The use of UDP is essential
                for heavily-loaded servers, especially the root
                servers.  UDP also offers additional robustness, since
                a resolver can attempt several UDP queries to different
                servers for the cost of a single TCP query.

                It is possible for a DNS response to be truncated,
                although this is a very rare occurrence in the present
                Internet DNS.  Practically speaking, truncation cannot
                be predicted, since it is data-dependent.  The
                dependencies include the number of RRs in the answer,
                the size of each RR, and the savings in space realized
                by the name compression algorithm.  As a rule of thumb,
                truncation in NS and MX lists should not occur for
                answers containing 15 or fewer RRs.



Internet Engineering Task Force                                [Page 75]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


                Whether it is possible to use a truncated answer
                depends on the application.  A mailer must not use a
                truncated MX response, since this could lead to mail
                loops.

                Responsible practices can make UDP suffice in the vast
                majority of cases.  Name servers must use compression
                in responses.  Resolvers must differentiate truncation
                of the Additional section of a response (which only
                loses extra information) from truncation of the Answer
                section (which for MX records renders the response
                unusable by mailers).  Database administrators should
                list only a reasonable number of primary names in lists
                of name servers, MX alternatives, etc.

                However, it is also clear that some new DNS record
                types defined in the future will contain information
                exceeding the 512 byte limit that applies to UDP, and
                hence will require TCP.  Thus, resolvers and name
                servers should implement TCP services as a backup to
                UDP today, with the knowledge that they will require
                the TCP service in the future.

           By private agreement, name servers and resolvers MAY arrange
           to use TCP for all traffic between themselves.  TCP MUST be
           used for zone transfers.

           A DNS server MUST have sufficient internal concurrency that
           it can continue to process UDP queries while awaiting a
           response or performing a zone transfer on an open TCP
           connection [DNS:2].

           A server MAY support a UDP query that is delivered using an
           IP broadcast or multicast address.  However, the Recursion
           Desired bit MUST NOT be set in a query that is multicast,
           and MUST be ignored by name servers receiving queries via a
           broadcast or multicast address.  A host that sends broadcast
           or multicast DNS queries SHOULD send them only as occasional
           probes, caching the IP address(es) it obtains from the
           response(s) so it can normally send unicast queries.

           DISCUSSION:
                Broadcast or (especially) IP multicast can provide a
                way to locate nearby name servers without knowing their
                IP addresses in advance.  However, general broadcasting
                of recursive queries can result in excessive and
                unnecessary load on both network and servers.




Internet Engineering Task Force                                [Page 76]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


        6.1.3.3  Efficient Resource Usage

           The following requirements on servers and resolvers are very
           important to the health of the Internet as a whole,
           particularly when DNS services are invoked repeatedly by
           higher level automatic servers, such as mailers.

           (1)  The resolver MUST implement retransmission controls to
                insure that it does not waste communication bandwidth,
                and MUST impose finite bounds on the resources consumed
                to respond to a single request.  See [DNS:2] pages 43-
                44 for specific recommendations.

           (2)  After a query has been retransmitted several times
                without a response, an implementation MUST give up and
                return a soft error to the application.

           (3)  All DNS name servers and resolvers SHOULD cache
                temporary failures, with a timeout period of the order
                of minutes.

                DISCUSSION:
                     This will prevent applications that immediately
                     retry soft failures (in violation of Section 2.2
                     of this document) from generating excessive DNS
                     traffic.

           (4)  All DNS name servers and resolvers SHOULD cache
                negative responses that indicate the specified name, or
                data of the specified type, does not exist, as
                described in [DNS:2].

           (5)  When a DNS server or resolver retries a UDP query, the
                retry interval SHOULD be constrained by an exponential
                backoff algorithm, and SHOULD also have upper and lower
                bounds.

                IMPLEMENTATION:
                     A measured RTT and variance (if available) should
                     be used to calculate an initial retransmission
                     interval.  If this information is not available, a
                     default of no less than 5 seconds should be used.
                     Implementations may limit the retransmission
                     interval, but this limit must exceed twice the
                     Internet maximum segment lifetime plus service
                     delay at the name server.

           (6)  When a resolver or server receives a Source Quench for



Internet Engineering Task Force                                [Page 77]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


                a query it has issued, it SHOULD take steps to reduce
                the rate of querying that server in the near future.  A
                server MAY ignore a Source Quench that it receives as
                the result of sending a response datagram.

                IMPLEMENTATION:
                     One recommended action to reduce the rate is to
                     send the next query attempt to an alternate
                     server, if there is one available.  Another is to
                     backoff the retry interval for the same server.


        6.1.3.4  Multihomed Hosts

           When the host name-to-address function encounters a host
           with multiple addresses, it SHOULD rank or sort the
           addresses using knowledge of the immediately connected
           network number(s) and any other applicable performance or
           history information.

           DISCUSSION:
                The different addresses of a multihomed host generally
                imply different Internet paths, and some paths may be
                preferable to others in performance, reliability, or
                administrative restrictions.  There is no general way
                for the domain system to determine the best path.  A
                recommended approach is to base this decision on local
                configuration information set by the system
                administrator.

           IMPLEMENTATION:
                The following scheme has been used successfully:

                (a)  Incorporate into the host configuration data a
                     Network-Preference List, that is simply a list of
                     networks in preferred order.  This list may be
                     empty if there is no preference.

                (b)  When a host name is mapped into a list of IP
                     addresses, these addresses should be sorted by
                     network number, into the same order as the
                     corresponding networks in the Network-Preference
                     List.  IP addresses whose networks do not appear
                     in the Network-Preference List should be placed at
                     the end of the list.






Internet Engineering Task Force                                [Page 78]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


        6.1.3.5  Extensibility

           DNS software MUST support all well-known, class-independent
           formats [DNS:2], and SHOULD be written to minimize the
           trauma associated with the introduction of new well-known
           types and local experimentation with non-standard types.

           DISCUSSION:
                The data types and classes used by the DNS are
                extensible, and thus new types will be added and old
                types deleted or redefined.  Introduction of new data
                types ought to be dependent only upon the rules for
                compression of domain names inside DNS messages, and
                the translation between printable (i.e., master file)
                and internal formats for Resource Records (RRs).

                Compression relies on knowledge of the format of data
                inside a particular RR.  Hence compression must only be
                used for the contents of well-known, class-independent
                RRs, and must never be used for class-specific RRs or
                RR types that are not well-known.  The owner name of an
                RR is always eligible for compression.

                A name server may acquire, via zone transfer, RRs that
                the server doesn't know how to convert to printable
                format.  A resolver can receive similar information as
                the result of queries.  For proper operation, this data
                must be preserved, and hence the implication is that
                DNS software cannot use textual formats for internal
                storage.

                The DNS defines domain name syntax very generally -- a
                string of labels each containing up to 63 8-bit octets,
                separated by dots, and with a maximum total of 255
                octets.  Particular applications of the DNS are
                permitted to further constrain the syntax of the domain
                names they use, although the DNS deployment has led to
                some applications allowing more general names.  In
                particular, Section 2.1 of this document liberalizes
                slightly the syntax of a legal Internet host name that
                was defined in RFC-952 [DNS:4].

        6.1.3.6  Status of RR Types

           Name servers MUST be able to load all RR types except MD and
           MF from configuration files.  The MD and MF types are
           obsolete and MUST NOT be implemented; in particular, name
           servers MUST NOT load these types from configuration files.



Internet Engineering Task Force                                [Page 79]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


           DISCUSSION:
                The RR types MB, MG, MR, NULL, MINFO and RP are
                considered experimental, and applications that use the
                DNS cannot expect these RR types to be supported by
                most domains.  Furthermore these types are subject to
                redefinition.

                The TXT and WKS RR types have not been widely used by
                Internet sites; as a result, an application cannot rely
                on the the existence of a TXT or WKS RR in most
                domains.

        6.1.3.7  Robustness

           DNS software may need to operate in environments where the
           root servers or other servers are unavailable due to network
           connectivity or other problems.  In this situation, DNS name
           servers and resolvers MUST continue to provide service for
           the reachable part of the name space, while giving temporary
           failures for the rest.

           DISCUSSION:
                Although the DNS is meant to be used primarily in the
                connected Internet, it should be possible to use the
                system in networks which are unconnected to the
                Internet.  Hence implementations must not depend on
                access to root servers before providing service for
                local names.

        6.1.3.8  Local Host Table

           DISCUSSION:
                A host may use a local host table as a backup or
                supplement to the DNS.  This raises the question of
                which takes precedence, the DNS or the host table; the
                most flexible approach would make this a configuration
                option.

                Typically, the contents of such a supplementary host
                table will be determined locally by the site.  However,
                a publically-available table of Internet hosts is
                maintained by the DDN Network Information Center (DDN
                NIC), with a format documented in [DNS:4].  This table
                can be retrieved from the DDN NIC using a protocol
                described in [DNS:5].  It must be noted that this table
                contains only a small fraction of all Internet hosts.
                Hosts using this protocol to retrieve the DDN NIC host
                table should use the VERSION command to check if the



Internet Engineering Task Force                                [Page 80]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


                table has changed before requesting the entire table
                with the ALL command.  The VERSION identifier should be
                treated as an arbitrary string and tested only for
                equality; no numerical sequence may be assumed.

                The DDN NIC host table includes administrative
                information that is not needed for host operation and
                is therefore not currently included in the DNS
                database; examples include network and gateway entries.
                However, much of this additional information will be
                added to the DNS in the future.  Conversely, the DNS
                provides essential services (in particular, MX records)
                that are not available from the DDN NIC host table.

     6.1.4  DNS USER INTERFACE

        6.1.4.1  DNS Administration

           This document is concerned with design and implementation
           issues in host software, not with administrative or
           operational issues.  However, administrative issues are of
           particular importance in the DNS, since errors in particular
           segments of this large distributed database can cause poor
           or erroneous performance for many sites.  These issues are
           discussed in [DNS:6] and [DNS:7].

        6.1.4.2  DNS User Interface

           Hosts MUST provide an interface to the DNS for all
           application programs running on the host.  This interface
           will typically direct requests to a system process to
           perform the resolver function [DNS:1, 6.1:2].

           At a minimum, the basic interface MUST support a request for
           all information of a specific type and class associated with
           a specific name, and it MUST return either all of the
           requested information, a hard error code, or a soft error
           indication.  When there is no error, the basic interface
           returns the complete response information without
           modification, deletion, or ordering, so that the basic
           interface will not need to be changed to accommodate new
           data types.

           DISCUSSION:
                The soft error indication is an essential part of the
                interface, since it may not always be possible to
                access particular information from the DNS; see Section
                6.1.3.3.



Internet Engineering Task Force                                [Page 81]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


           A host MAY provide other DNS interfaces tailored to
           particular functions, transforming the raw domain data into
           formats more suited to these functions.  In particular, a
           host MUST provide a DNS interface to facilitate translation
           between host addresses and host names.

        6.1.4.3 Interface Abbreviation Facilities

           User interfaces MAY provide a method for users to enter
           abbreviations for commonly-used names.  Although the
           definition of such methods is outside of the scope of the
           DNS specification, certain rules are necessary to insure
           that these methods allow access to the entire DNS name space
           and to prevent excessive use of Internet resources.

           If an abbreviation method is provided, then:

           (a)  There MUST be some convention for denoting that a name
                is already complete, so that the abbreviation method(s)
                are suppressed.  A trailing dot is the usual method.

           (b)  Abbreviation expansion MUST be done exactly once, and
                MUST be done in the context in which the name was
                entered.


           DISCUSSION:
                For example, if an abbreviation is used in a mail
                program for a destination, the abbreviation should be
                expanded into a full domain name and stored in the
                queued message with an indication that it is already
                complete.  Otherwise, the abbreviation might be
                expanded with a mail system search list, not the
                user's, or a name could grow due to repeated
                canonicalizations attempts interacting with wildcards.

           The two most common abbreviation methods are:

           (1)  Interface-level aliases

                Interface-level aliases are conceptually implemented as
                a list of alias/domain name pairs. The list can be
                per-user or per-host, and separate lists can be
                associated with different functions, e.g. one list for
                host name-to-address translation, and a different list
                for mail domains.  When the user enters a name, the
                interface attempts to match the name to the alias
                component of a list entry, and if a matching entry can



Internet Engineering Task Force                                [Page 82]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


                be found, the name is replaced by the domain name found
                in the pair.

                Note that interface-level aliases and CNAMEs are
                completely separate mechanisms; interface-level aliases
                are a local matter while CNAMEs are an Internet-wide
                aliasing mechanism which is a required part of any DNS
                implementation.

           (2)  Search Lists

                A search list is conceptually implemented as an ordered
                list of domain names.  When the user enters a name, the
                domain names in the search list are used as suffixes to
                the user-supplied name, one by one, until a domain name
                with the desired associated data is found, or the
                search list is exhausted.  Search lists often contain
                the name of the local host's parent domain or other
                ancestor domains.  Search lists are often per-user or
                per-process.

                It SHOULD be possible for an administrator to disable a
                DNS search-list facility.  Administrative denial may be
                warranted in some cases, to prevent abuse of the DNS.

                There is danger that a search-list mechanism will
                generate excessive queries to the root servers while
                testing whether user input is a complete domain name,
                lacking a final period to mark it as complete.  A
                search-list mechanism MUST have one of, and SHOULD have
                both of, the following two provisions to prevent this:

                (a)  The local resolver/name server can implement
                     caching  of negative responses (see Section
                     6.1.3.3).

                (b)  The search list expander can require two or more
                     interior dots in a generated domain name before it
                     tries using the name in a query to non-local
                     domain servers, such as the root.

                DISCUSSION:
                     The intent of this requirement is to avoid
                     excessive delay for the user as the search list is
                     tested, and more importantly to prevent excessive
                     traffic to the root and other high-level servers.
                     For example, if the user supplied a name "X" and
                     the search list contained the root as a component,



Internet Engineering Task Force                                [Page 83]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


                     a query would have to consult a root server before
                     the next search list alternative could be tried.
                     The resulting load seen by the root servers and
                     gateways near the root would be multiplied by the
                     number of hosts in the Internet.

                     The negative caching alternative limits the effect
                     to the first time a name is used.  The interior
                     dot rule is simpler to implement but can prevent
                     easy use of some top-level names.


     6.1.5  DOMAIN NAME SYSTEM REQUIREMENTS SUMMARY

                                              |           | | | |S| |
                                              |           | | | |H| |F
                                              |           | | | |O|M|o
                                              |           | |S| |U|U|o
                                              |           | |H| |L|S|t
                                              |           |M|O| |D|T|n
                                              |           |U|U|M| | |o
                                              |           |S|L|A|N|N|t
                                              |           |T|D|Y|O|O|t
FEATURE                                        |SECTION    | | | |T|T|e
-----------------------------------------------|-----------|-|-|-|-|-|--
GENERAL ISSUES                                 |           | | | | | |
                                              |           | | | | | |
Implement DNS name-to-address conversion       |6.1.1      |x| | | | |
Implement DNS address-to-name conversion       |6.1.1      |x| | | | |
Support conversions using host table           |6.1.1      | | |x| | |
Properly handle RR with zero TTL               |6.1.2.1    |x| | | | |
Use QCLASS=* unnecessarily                     |6.1.2.2    | |x| | | |
 Use QCLASS=IN for Internet class             |6.1.2.2    |x| | | | |
Unused fields zero                             |6.1.2.3    |x| | | | |
Use compression in responses                   |6.1.2.4    |x| | | | |
                                              |           | | | | | |
Include config info in responses               |6.1.2.5    | | | | |x|
Support all well-known, class-indep. types     |6.1.3.5    |x| | | | |
Easily expand type list                        |6.1.3.5    | |x| | | |
Load all RR types (except MD and MF)           |6.1.3.6    |x| | | | |
Load MD or MF type                             |6.1.3.6    | | | | |x|
Operate when root servers, etc. unavailable    |6.1.3.7    |x| | | | |
-----------------------------------------------|-----------|-|-|-|-|-|--
RESOLVER ISSUES:                               |           | | | | | |
                                              |           | | | | | |
Resolver support multiple concurrent requests  |6.1.3.1    | |x| | | |
Full-service resolver:                         |6.1.3.1    | | |x| | |
 Local caching                                |6.1.3.1    |x| | | | |



Internet Engineering Task Force                                [Page 84]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


 Information in local cache times out         |6.1.3.1    |x| | | | |
 Configurable with starting info              |6.1.3.1    | |x| | | |
Stub resolver:                                 |6.1.3.1    | | |x| | |
 Use redundant recursive name servers         |6.1.3.1    |x| | | | |
 Local caching                                |6.1.3.1    | | |x| | |
 Information in local cache times out         |6.1.3.1    |x| | | | |
Support for remote multi-homed hosts:          |           | | | | | |
 Sort multiple addresses by preference list   |6.1.3.4    | |x| | | |
                                              |           | | | | | |
-----------------------------------------------|-----------|-|-|-|-|-|--
TRANSPORT PROTOCOLS:                           |           | | | | | |
                                              |           | | | | | |
Support UDP queries                            |6.1.3.2    |x| | | | |
Support TCP queries                            |6.1.3.2    | |x| | | |
 Send query using UDP first                   |6.1.3.2    |x| | | | |1
 Try TCP if UDP answers are truncated         |6.1.3.2    | |x| | | |
Name server limit TCP query resources          |6.1.3.2    | | |x| | |
 Punish unnecessary TCP query                 |6.1.3.2    | | | |x| |
Use truncated data as if it were not           |6.1.3.2    | | | | |x|
Private agreement to use only TCP              |6.1.3.2    | | |x| | |
Use TCP for zone transfers                     |6.1.3.2    |x| | | | |
TCP usage not block UDP queries                |6.1.3.2    |x| | | | |
Support broadcast or multicast queries         |6.1.3.2    | | |x| | |
 RD bit set in query                          |6.1.3.2    | | | | |x|
 RD bit ignored by server is b'cast/m'cast    |6.1.3.2    |x| | | | |
 Send only as occasional probe for addr's     |6.1.3.2    | |x| | | |
-----------------------------------------------|-----------|-|-|-|-|-|--
RESOURCE USAGE:                                |           | | | | | |
                                              |           | | | | | |
Transmission controls, per [DNS:2]             |6.1.3.3    |x| | | | |
 Finite bounds per request                    |6.1.3.3    |x| | | | |
Failure after retries => soft error            |6.1.3.3    |x| | | | |
Cache temporary failures                       |6.1.3.3    | |x| | | |
Cache negative responses                       |6.1.3.3    | |x| | | |
Retries use exponential backoff                |6.1.3.3    | |x| | | |
 Upper, lower bounds                          |6.1.3.3    | |x| | | |
Client handle Source Quench                    |6.1.3.3    | |x| | | |
Server ignore Source Quench                    |6.1.3.3    | | |x| | |
-----------------------------------------------|-----------|-|-|-|-|-|--
USER INTERFACE:                                |           | | | | | |
                                              |           | | | | | |
All programs have access to DNS interface      |6.1.4.2    |x| | | | |
Able to request all info for given name        |6.1.4.2    |x| | | | |
Returns complete info or error                 |6.1.4.2    |x| | | | |
Special interfaces                             |6.1.4.2    | | |x| | |
 Name<->Address translation                   |6.1.4.2    |x| | | | |
                                              |           | | | | | |
Abbreviation Facilities:                       |6.1.4.3    | | |x| | |



Internet Engineering Task Force                                [Page 85]




RFC1123               SUPPORT SERVICES -- DOMAINS           October 1989


 Convention for complete names                |6.1.4.3    |x| | | | |
 Conversion exactly once                      |6.1.4.3    |x| | | | |
 Conversion in proper context                 |6.1.4.3    |x| | | | |
 Search list:                                 |6.1.4.3    | | |x| | |
   Administrator can disable                  |6.1.4.3    | |x| | | |
   Prevention of excessive root queries       |6.1.4.3    |x| | | | |
     Both methods                             |6.1.4.3    | |x| | | |
-----------------------------------------------|-----------|-|-|-|-|-|--
-----------------------------------------------|-----------|-|-|-|-|-|--

1.   Unless there is private agreement between particular resolver and
    particular server.







































Internet Engineering Task Force                                [Page 86]




RFC1123            SUPPORT SERVICES -- INITIALIZATION       October 1989


  6.2  HOST INITIALIZATION

     6.2.1  INTRODUCTION

        This section discusses the initialization of host software
        across a connected network, or more generally across an
        Internet path.  This is necessary for a diskless host, and may
        optionally be used for a host with disk drives.  For a diskless
        host, the initialization process is called "network booting"
        and is controlled by a bootstrap program located in a boot ROM.

        To initialize a diskless host across the network, there are two
        distinct phases:

        (1)  Configure the IP layer.

             Diskless machines often have no permanent storage in which
             to store network configuration information, so that
             sufficient configuration information must be obtained
             dynamically to support the loading phase that follows.
             This information must include at least the IP addresses of
             the host and of the boot server.  To support booting
             across a gateway, the address mask and a list of default
             gateways are also required.

        (2)  Load the host system code.

             During the loading phase, an appropriate file transfer
             protocol is used to copy the system code across the
             network from the boot server.

        A host with a disk may perform the first step, dynamic
        configuration.  This is important for microcomputers, whose
        floppy disks allow network configuration information to be
        mistakenly duplicated on more than one host.  Also,
        installation of new hosts is much simpler if they automatically
        obtain their configuration information from a central server,
        saving administrator time and decreasing the probability of
        mistakes.

     6.2.2  REQUIREMENTS

        6.2.2.1  Dynamic Configuration

           A number of protocol provisions have been made for dynamic
           configuration.

           o    ICMP Information Request/Reply messages



Internet Engineering Task Force                                [Page 87]




RFC1123            SUPPORT SERVICES -- INITIALIZATION       October 1989


                This obsolete message pair was designed to allow a host
                to find the number of the network it is on.
                Unfortunately, it was useful only if the host already
                knew the host number part of its IP address,
                information that hosts requiring dynamic configuration
                seldom had.

           o    Reverse Address Resolution Protocol (RARP) [BOOT:4]

                RARP is a link-layer protocol for a broadcast medium
                that allows a host to find its IP address given its
                link layer address.  Unfortunately, RARP does not work
                across IP gateways and therefore requires a RARP server
                on every network.  In addition, RARP does not provide
                any other configuration information.

           o    ICMP Address Mask Request/Reply messages

                These ICMP messages allow a host to learn the address
                mask for a particular network interface.

           o    BOOTP Protocol [BOOT:2]

                This protocol allows a host to determine the IP
                addresses of the local host and the boot server, the
                name of an appropriate boot file, and optionally the
                address mask and list of default gateways.  To locate a
                BOOTP server, the host broadcasts a BOOTP request using
                UDP.  Ad hoc gateway extensions have been used to
                transmit the BOOTP broadcast through gateways, and in
                the future the IP Multicasting facility will provide a
                standard mechanism for this purpose.


           The suggested approach to dynamic configuration is to use
           the BOOTP protocol with the extensions defined in "BOOTP
           Vendor Information Extensions" RFC-1084 [BOOT:3].  RFC-1084
           defines some important general (not vendor-specific)
           extensions.  In particular, these extensions allow the
           address mask to be supplied in BOOTP; we RECOMMEND that the
           address mask be supplied in this manner.

           DISCUSSION:
                Historically, subnetting was defined long after IP, and
                so a separate mechanism (ICMP Address Mask messages)
                was designed to supply the address mask to a host.
                However, the IP address mask and the corresponding IP
                address conceptually form a pair, and for operational



Internet Engineering Task Force                                [Page 88]




RFC1123            SUPPORT SERVICES -- INITIALIZATION       October 1989


                simplicity they ought to be defined at the same time
                and by the same mechanism, whether a configuration file
                or a dynamic mechanism like BOOTP.

                Note that BOOTP is not sufficiently general to specify
                the configurations of all interfaces of a multihomed
                host.  A multihomed host must either use BOOTP
                separately for each interface, or configure one
                interface using BOOTP to perform the loading, and
                perform the complete initialization from a file later.

                Application layer configuration information is expected
                to be obtained from files after loading of the system
                code.

        6.2.2.2  Loading Phase

           A suggested approach for the loading phase is to use TFTP
           [BOOT:1] between the IP addresses established by BOOTP.

           TFTP to a broadcast address SHOULD NOT be used, for reasons
           explained in Section 4.2.3.4.





























Internet Engineering Task Force                                [Page 89]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


  6.3  REMOTE MANAGEMENT

     6.3.1  INTRODUCTION

        The Internet community has recently put considerable effort
        into the development of network management protocols.  The
        result has been a two-pronged approach [MGT:1, MGT:6]:  the
        Simple Network Management Protocol (SNMP) [MGT:4] and the
        Common Management Information Protocol over TCP (CMOT) [MGT:5].

        In order to be managed using SNMP or CMOT, a host will need to
        implement an appropriate management agent.  An Internet host
        SHOULD include an agent for either SNMP or CMOT.

        Both SNMP and CMOT operate on a Management Information Base
        (MIB) that defines a collection of management values.  By
        reading and setting these values, a remote application may
        query and change the state of the managed system.

        A standard MIB [MGT:3] has been defined for use by both
        management protocols, using data types defined by the Structure
        of Management Information (SMI) defined in [MGT:2].  Additional
        MIB variables can be introduced under the "enterprises" and
        "experimental" subtrees of the MIB naming space [MGT:2].

        Every protocol module in the host SHOULD implement the relevant
        MIB variables.  A host SHOULD implement the MIB variables as
        defined in the most recent standard MIB, and MAY implement
        other MIB variables when appropriate and useful.

     6.3.2  PROTOCOL WALK-THROUGH

        The MIB is intended to cover both hosts and gateways, although
        there may be detailed differences in MIB application to the two
        cases.  This section contains the appropriate interpretation of
        the MIB for hosts.  It is likely that later versions of the MIB
        will include more entries for host management.

        A managed host must implement the following groups of MIB
        object definitions: System, Interfaces, Address Translation,
        IP, ICMP, TCP, and UDP.

        The following specific interpretations apply to hosts:

        o    ipInHdrErrors

             Note that the error "time-to-live exceeded" can occur in a
             host only when it is forwarding a source-routed datagram.



Internet Engineering Task Force                                [Page 90]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


        o    ipOutNoRoutes

             This object counts datagrams discarded because no route
             can be found.  This may happen in a host if all the
             default gateways in the host's configuration are down.

        o    ipFragOKs, ipFragFails, ipFragCreates

             A host that does not implement intentional fragmentation
             (see "Fragmentation" section of [INTRO:1]) MUST return the
             value zero for these three objects.

        o    icmpOutRedirects

             For a host, this object MUST always be zero, since hosts
             do not send Redirects.

        o    icmpOutAddrMaskReps

             For a host, this object MUST always be zero, unless the
             host is an authoritative source of address mask
             information.

        o    ipAddrTable

             For a host, the "IP Address Table" object is effectively a
             table of logical interfaces.

        o    ipRoutingTable

             For a host, the "IP Routing Table" object is effectively a
             combination of the host's Routing Cache and the static
             route table described in "Routing Outbound Datagrams"
             section of [INTRO:1].

             Within each ipRouteEntry, ipRouteMetric1...4 normally will
             have no meaning for a host and SHOULD always be -1, while
             ipRouteType will normally have the value "remote".

             If destinations on the connected network do not appear in
             the Route Cache (see "Routing Outbound Datagrams section
             of [INTRO:1]), there will be no entries with ipRouteType
             of "direct".


        DISCUSSION:
             The current MIB does not include Type-of-Service in an
             ipRouteEntry, but a future revision is expected to make



Internet Engineering Task Force                                [Page 91]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


             this addition.

             We also expect the MIB to be expanded to allow the remote
             management of applications (e.g., the ability to partially
             reconfigure mail systems).  Network service applications
             such as mail systems should therefore be written with the
             "hooks" for remote management.

     6.3.3  MANAGEMENT REQUIREMENTS SUMMARY

                                              |           | | | |S| |
                                              |           | | | |H| |F
                                              |           | | | |O|M|o
                                              |           | |S| |U|U|o
                                              |           | |H| |L|S|t
                                              |           |M|O| |D|T|n
                                              |           |U|U|M| | |o
                                              |           |S|L|A|N|N|t
                                              |           |T|D|Y|O|O|t
FEATURE                                        |SECTION    | | | |T|T|e
-----------------------------------------------|-----------|-|-|-|-|-|--
Support SNMP or CMOT agent                     |6.3.1      | |x| | | |
Implement specified objects in standard MIB    |6.3.1      | |x| | | |




























Internet Engineering Task Force                                [Page 92]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


7.  REFERENCES

  This section lists the primary references with which every
  implementer must be thoroughly familiar.  It also lists some
  secondary references that are suggested additional reading.

  INTRODUCTORY REFERENCES:


  [INTRO:1] "Requirements for Internet Hosts -- Communication Layers,"
       IETF Host Requirements Working Group, R. Braden, Ed., RFC-1122,
       October 1989.

  [INTRO:2]  "DDN Protocol Handbook," NIC-50004, NIC-50005, NIC-50006,
       (three volumes), SRI International, December 1985.

  [INTRO:3]  "Official Internet Protocols," J. Reynolds and J. Postel,
       RFC-1011, May 1987.

       This document is republished periodically with new RFC numbers;
       the latest version must be used.

  [INTRO:4]  "Protocol Document Order Information," O. Jacobsen and J.
       Postel, RFC-980, March 1986.

  [INTRO:5]  "Assigned Numbers," J. Reynolds and J. Postel, RFC-1010,
       May 1987.

       This document is republished periodically with new RFC numbers;
       the latest version must be used.


  TELNET REFERENCES:


  [TELNET:1]  "Telnet Protocol Specification," J. Postel and J.
       Reynolds, RFC-854, May 1983.

  [TELNET:2]  "Telnet Option Specification," J. Postel and J. Reynolds,
       RFC-855, May 1983.

  [TELNET:3]  "Telnet Binary Transmission," J. Postel and J. Reynolds,
       RFC-856, May 1983.

  [TELNET:4]  "Telnet Echo Option," J. Postel and J. Reynolds, RFC-857,
       May 1983.

  [TELNET:5]  "Telnet Suppress Go Ahead Option," J. Postel and J.



Internet Engineering Task Force                                [Page 93]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


       Reynolds, RFC-858, May 1983.

  [TELNET:6]  "Telnet Status Option," J. Postel and J. Reynolds, RFC-
       859, May 1983.

  [TELNET:7]  "Telnet Timing Mark Option," J. Postel and J. Reynolds,
       RFC-860, May 1983.

  [TELNET:8]  "Telnet Extended Options List," J. Postel and J.
       Reynolds, RFC-861, May 1983.

  [TELNET:9]  "Telnet End-Of-Record Option," J. Postel, RFC-855,
       December 1983.

  [TELNET:10] "Telnet Terminal-Type Option," J. VanBokkelen, RFC-1091,
       February 1989.

       This document supercedes RFC-930.

  [TELNET:11] "Telnet Window Size Option," D. Waitzman, RFC-1073,
       October 1988.

  [TELNET:12] "Telnet Linemode Option," D. Borman, RFC-1116, August
       1989.

  [TELNET:13] "Telnet Terminal Speed Option," C. Hedrick, RFC-1079,
       December 1988.

  [TELNET:14] "Telnet Remote Flow Control Option," C. Hedrick, RFC-
       1080, November 1988.


  SECONDARY TELNET REFERENCES:


  [TELNET:15] "Telnet Protocol," MIL-STD-1782, U.S. Department of
       Defense, May 1984.

       This document is intended to describe the same protocol as RFC-
       854.  In case of conflict, RFC-854 takes precedence, and the
       present document takes precedence over both.

  [TELNET:16] "SUPDUP Protocol," M. Crispin, RFC-734, October 1977.

  [TELNET:17] "Telnet SUPDUP Option," M. Crispin, RFC-736, October
       1977.

  [TELNET:18] "Data Entry Terminal Option," J. Day, RFC-732, June 1977.



Internet Engineering Task Force                                [Page 94]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


  [TELNET:19] "TELNET Data Entry Terminal option -- DODIIS
       Implementation," A. Yasuda and T. Thompson, RFC-1043, February
       1988.


  FTP REFERENCES:


  [FTP:1]  "File Transfer Protocol," J. Postel and J. Reynolds, RFC-
       959, October 1985.

  [FTP:2]  "Document File Format Standards," J. Postel, RFC-678,
       December 1974.

  [FTP:3]  "File Transfer Protocol," MIL-STD-1780, U.S. Department of
       Defense, May 1984.

       This document is based on an earlier version of the FTP
       specification (RFC-765) and is obsolete.


  TFTP REFERENCES:


  [TFTP:1]  "The TFTP Protocol Revision 2," K. Sollins, RFC-783, June
       1981.


  MAIL REFERENCES:


  [SMTP:1]  "Simple Mail Transfer Protocol," J. Postel, RFC-821, August
       1982.

  [SMTP:2]  "Standard For The Format of ARPA Internet Text Messages,"
       D. Crocker, RFC-822, August 1982.

       This document obsoleted an earlier specification, RFC-733.

  [SMTP:3]  "Mail Routing and the Domain System," C. Partridge, RFC-
       974, January 1986.

       This RFC describes the use of MX records, a mandatory extension
       to the mail delivery process.

  [SMTP:4]  "Duplicate Messages and SMTP," C. Partridge, RFC-1047,
       February 1988.




Internet Engineering Task Force                                [Page 95]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


  [SMTP:5a]  "Mapping between X.400 and RFC 822," S. Kille, RFC-987,
       June 1986.

  [SMTP:5b]  "Addendum to RFC-987," S. Kille, RFC-???, September 1987.

       The two preceding RFC's define a proposed standard for
       gatewaying mail between the Internet and the X.400 environments.

  [SMTP:6]  "Simple Mail Transfer Protocol,"  MIL-STD-1781, U.S.
       Department of Defense, May 1984.

       This specification is intended to describe the same protocol as
       does RFC-821.  However, MIL-STD-1781 is incomplete; in
       particular, it does not include MX records [SMTP:3].

  [SMTP:7]  "A Content-Type Field for Internet Messages," M. Sirbu,
       RFC-1049, March 1988.


  DOMAIN NAME SYSTEM REFERENCES:


  [DNS:1]  "Domain Names - Concepts and Facilities," P. Mockapetris,
       RFC-1034, November 1987.

       This document and the following one obsolete RFC-882, RFC-883,
       and RFC-973.

  [DNS:2]  "Domain Names - Implementation and Specification," RFC-1035,
       P. Mockapetris, November 1987.


  [DNS:3]  "Mail Routing and the Domain System," C. Partridge, RFC-974,
       January 1986.


  [DNS:4]  "DoD Internet Host Table Specification," K. Harrenstein,
       RFC-952, M. Stahl, E. Feinler, October 1985.

       SECONDARY DNS REFERENCES:


  [DNS:5]  "Hostname Server," K. Harrenstein, M. Stahl, E. Feinler,
       RFC-953, October 1985.

  [DNS:6]  "Domain Administrators Guide," M. Stahl, RFC-1032, November
       1987.




Internet Engineering Task Force                                [Page 96]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


  [DNS:7]  "Domain Administrators Operations Guide," M. Lottor, RFC-
       1033, November 1987.

  [DNS:8]  "The Domain Name System Handbook," Vol. 4 of Internet
       Protocol Handbook, NIC 50007, SRI Network Information Center,
       August 1989.


  SYSTEM INITIALIZATION REFERENCES:


  [BOOT:1] "Bootstrap Loading Using TFTP," R. Finlayson, RFC-906, June
       1984.

  [BOOT:2] "Bootstrap Protocol (BOOTP)," W. Croft and J. Gilmore, RFC-
       951, September 1985.

  [BOOT:3] "BOOTP Vendor Information Extensions," J. Reynolds, RFC-
       1084, December 1988.

       Note: this RFC revised and obsoleted RFC-1048.

  [BOOT:4] "A Reverse Address Resolution Protocol," R. Finlayson, T.
       Mann, J. Mogul, and M. Theimer, RFC-903, June 1984.


  MANAGEMENT REFERENCES:


  [MGT:1]  "IAB Recommendations for the Development of Internet Network
       Management Standards," V. Cerf, RFC-1052, April 1988.

  [MGT:2]  "Structure and Identification of Management Information for
       TCP/IP-based internets," M. Rose and K. McCloghrie, RFC-1065,
       August 1988.

  [MGT:3]  "Management Information Base for Network Management of
       TCP/IP-based internets," M. Rose and K. McCloghrie, RFC-1066,
       August 1988.

  [MGT:4]  "A Simple Network Management Protocol," J. Case, M. Fedor,
       M. Schoffstall, and C. Davin, RFC-1098, April 1989.

  [MGT:5]  "The Common Management Information Services and Protocol
       over TCP/IP," U. Warrier and L. Besaw, RFC-1095, April 1989.

  [MGT:6]  "Report of the Second Ad Hoc Network Management Review
       Group," V. Cerf, RFC-1109, August 1989.



Internet Engineering Task Force                                [Page 97]




RFC1123              SUPPORT SERVICES -- MANAGEMENT         October 1989


Security Considerations

  There are many security issues in the application and support
  programs of host software, but a full discussion is beyond the scope
  of this RFC.  Security-related issues are mentioned in sections
  concerning TFTP (Sections 4.2.1, 4.2.3.4, 4.2.3.5), the SMTP VRFY and
  EXPN commands (Section 5.2.3), the SMTP HELO command (5.2.5), and the
  SMTP DATA command (Section 5.2.8).

Author's Address

  Robert Braden
  USC/Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292-6695

  Phone: (213) 822 1511

  EMail: [email protected]
































Internet Engineering Task Force                                [Page 98]