/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
*     * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*     * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <[email protected]>
*
* Derived from public domain C code by Daniel J. Bernstein <[email protected]>
*
* More information about curve25519 can be found here
*   http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
#include "os.h"
#include <libsec.h>

typedef vlong felem;

/* Sum two numbers: output += in */
static void fsum(felem *output, felem *in) {
 unsigned i;
 for (i = 0; i < 10; i += 2) {
   output[0+i] = (output[0+i] + in[0+i]);
   output[1+i] = (output[1+i] + in[1+i]);
 }
}

/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!)
*/
static void fdifference(felem *output, felem *in) {
 unsigned i;
 for (i = 0; i < 10; ++i) {
   output[i] = (in[i] - output[i]);
 }
}

/* Multiply a number my a scalar: output = in * scalar */
static void fscalar_product(felem *output, felem *in, felem scalar) {
 unsigned i;
 for (i = 0; i < 10; ++i) {
   output[i] = in[i] * scalar;
 }
}

/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*/
static void fproduct(felem *output, felem *in2, felem *in) {
 output[0] =      in2[0] * in[0];
 output[1] =      in2[0] * in[1] +
                  in2[1] * in[0];
 output[2] =  2 * in2[1] * in[1] +
                  in2[0] * in[2] +
                  in2[2] * in[0];
 output[3] =      in2[1] * in[2] +
                  in2[2] * in[1] +
                  in2[0] * in[3] +
                  in2[3] * in[0];
 output[4] =      in2[2] * in[2] +
              2 * (in2[1] * in[3] +
                   in2[3] * in[1]) +
                  in2[0] * in[4] +
                  in2[4] * in[0];
 output[5] =      in2[2] * in[3] +
                  in2[3] * in[2] +
                  in2[1] * in[4] +
                  in2[4] * in[1] +
                  in2[0] * in[5] +
                  in2[5] * in[0];
 output[6] =  2 * (in2[3] * in[3] +
                   in2[1] * in[5] +
                   in2[5] * in[1]) +
                  in2[2] * in[4] +
                  in2[4] * in[2] +
                  in2[0] * in[6] +
                  in2[6] * in[0];
 output[7] =      in2[3] * in[4] +
                  in2[4] * in[3] +
                  in2[2] * in[5] +
                  in2[5] * in[2] +
                  in2[1] * in[6] +
                  in2[6] * in[1] +
                  in2[0] * in[7] +
                  in2[7] * in[0];
 output[8] =      in2[4] * in[4] +
              2 * (in2[3] * in[5] +
                   in2[5] * in[3] +
                   in2[1] * in[7] +
                   in2[7] * in[1]) +
                  in2[2] * in[6] +
                  in2[6] * in[2] +
                  in2[0] * in[8] +
                  in2[8] * in[0];
 output[9] =      in2[4] * in[5] +
                  in2[5] * in[4] +
                  in2[3] * in[6] +
                  in2[6] * in[3] +
                  in2[2] * in[7] +
                  in2[7] * in[2] +
                  in2[1] * in[8] +
                  in2[8] * in[1] +
                  in2[0] * in[9] +
                  in2[9] * in[0];
 output[10] = 2 * (in2[5] * in[5] +
                   in2[3] * in[7] +
                   in2[7] * in[3] +
                   in2[1] * in[9] +
                   in2[9] * in[1]) +
                  in2[4] * in[6] +
                  in2[6] * in[4] +
                  in2[2] * in[8] +
                  in2[8] * in[2];
 output[11] =     in2[5] * in[6] +
                  in2[6] * in[5] +
                  in2[4] * in[7] +
                  in2[7] * in[4] +
                  in2[3] * in[8] +
                  in2[8] * in[3] +
                  in2[2] * in[9] +
                  in2[9] * in[2];
 output[12] =     in2[6] * in[6] +
              2 * (in2[5] * in[7] +
                   in2[7] * in[5] +
                   in2[3] * in[9] +
                   in2[9] * in[3]) +
                  in2[4] * in[8] +
                  in2[8] * in[4];
 output[13] =     in2[6] * in[7] +
                  in2[7] * in[6] +
                  in2[5] * in[8] +
                  in2[8] * in[5] +
                  in2[4] * in[9] +
                  in2[9] * in[4];
 output[14] = 2 * (in2[7] * in[7] +
                   in2[5] * in[9] +
                   in2[9] * in[5]) +
                  in2[6] * in[8] +
                  in2[8] * in[6];
 output[15] =     in2[7] * in[8] +
                  in2[8] * in[7] +
                  in2[6] * in[9] +
                  in2[9] * in[6];
 output[16] =     in2[8] * in[8] +
              2 * (in2[7] * in[9] +
                   in2[9] * in[7]);
 output[17] =     in2[8] * in[9] +
                  in2[9] * in[8];
 output[18] = 2 * in2[9] * in[9];
}

/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
static void freduce_degree(felem *output) {
 output[8] += 19 * output[18];
 output[7] += 19 * output[17];
 output[6] += 19 * output[16];
 output[5] += 19 * output[15];
 output[4] += 19 * output[14];
 output[3] += 19 * output[13];
 output[2] += 19 * output[12];
 output[1] += 19 * output[11];
 output[0] += 19 * output[10];
}

/* Reduce all coefficients of the short form input to be -2**25 <= x <= 2**25
*/
static void freduce_coefficients(felem *output) {
 unsigned i;
 do {
   output[10] = 0;

   for (i = 0; i < 10; i += 2) {
     felem over = output[i] / 0x2000000l;
     felem over2 = (over + ((over >> 63) * 2) + 1) / 2;
     output[i+1] += over2;
     output[i] -= over2 * 0x4000000l;

     over = output[i+1] / 0x2000000;
     output[i+2] += over;
     output[i+1] -= over * 0x2000000;
   }
   output[0] += 19 * output[10];
 } while (output[10]);
}

/* A helpful wrapper around fproduct: output = in * in2.
*
* output must be distinct to both inputs. The output is reduced degree and
* reduced coefficient.
*/
static void
fmul(felem *output, felem *in, felem *in2) {
 felem t[19];
 fproduct(t, in, in2);
 freduce_degree(t);
 freduce_coefficients(t);
 memcpy(output, t, sizeof(felem) * 10);
}

static void fsquare_inner(felem *output, felem *in) {
 felem tmp;
 output[0] =      in[0] * in[0];
 output[1] =  2 * in[0] * in[1];
 output[2] =  2 * (in[1] * in[1] +
                   in[0] * in[2]);
 output[3] =  2 * (in[1] * in[2] +
                   in[0] * in[3]);
 output[4] =      in[2] * in[2] +
              4 * in[1] * in[3] +
              2 * in[0] * in[4];
 output[5] =  2 * (in[2] * in[3] +
                   in[1] * in[4] +
                   in[0] * in[5]);
 output[6] =  2 * (in[3] * in[3] +
                   in[2] * in[4] +
                   in[0] * in[6] +
               2 * in[1] * in[5]);
 output[7] =  2 * (in[3] * in[4] +
                   in[2] * in[5] +
                   in[1] * in[6] +
                   in[0] * in[7]);
 tmp = in[1] * in[7] + in[3] * in[5];
 output[8] =      in[4] * in[4] +
              2 * (in[2] * in[6] +
                   in[0] * in[8] +
                       2 * tmp);
 output[9] =  2 * (in[4] * in[5] +
                   in[3] * in[6] +
                   in[2] * in[7] +
                   in[1] * in[8] +
                   in[0] * in[9]);
 tmp = in[3] * in[7] + in[1] * in[9];
 output[10] = 2 * (in[5] * in[5] +
                  in[4] * in[6] +
                  in[2] * in[8] +
                      2 * tmp);
 output[11] = 2 * (in[5] * in[6] +
                   in[4] * in[7] +
                   in[3] * in[8] +
                   in[2] * in[9]);
 output[12] =     in[6] * in[6] +
              2 * (in[4] * in[8] +
               2 * (in[5] * in[7] +
                    in[3] * in[9]));
 output[13] = 2 * (in[6] * in[7] +
                   in[5] * in[8] +
                   in[4] * in[9]);
 output[14] = 2 * (in[7] * in[7] +
                   in[6] * in[8] +
               2 * in[5] * in[9]);
 output[15] = 2 * (in[7] * in[8] +
                   in[6] * in[9]);
 output[16] =     in[8] * in[8] +
              4 * in[7] * in[9];
 output[17] = 2 * in[8] * in[9];
 output[18] = 2 * in[9] * in[9];
}

static void
fsquare(felem *output, felem *in) {
 felem t[19];
 fsquare_inner(t, in);
 freduce_degree(t);
 freduce_coefficients(t);
 memcpy(output, t, sizeof(felem) * 10);
}

/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void
fexpand(felem *output, uchar *input) {
#define F(n,start,shift,mask) \
 output[n] = ((((felem) input[start + 0]) | \
               ((felem) input[start + 1]) << 8 | \
               ((felem) input[start + 2]) << 16 | \
               ((felem) input[start + 3]) << 24) >> shift) & mask;
 F(0, 0, 0, 0x3ffffff);
 F(1, 3, 2, 0x1ffffff);
 F(2, 6, 3, 0x3ffffff);
 F(3, 9, 5, 0x1ffffff);
 F(4, 12, 6, 0x3ffffff);
 F(5, 16, 0, 0x1ffffff);
 F(6, 19, 1, 0x3ffffff);
 F(7, 22, 3, 0x1ffffff);
 F(8, 25, 4, 0x3ffffff);
 F(9, 28, 6, 0x1ffffff);
#undef F
}

/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
static void
fcontract(uchar *output, felem *input) {
 int i;

 do {
   for (i = 0; i < 9; ++i) {
     if ((i & 1) == 1) {
       while (input[i] < 0) {
         input[i] += 0x2000000;
         input[i + 1]--;
       }
     } else {
       while (input[i] < 0) {
         input[i] += 0x4000000;
         input[i + 1]--;
       }
     }
   }
   while (input[9] < 0) {
     input[9] += 0x2000000;
     input[0] -= 19;
   }
 } while (input[0] < 0);

 input[1] <<= 2;
 input[2] <<= 3;
 input[3] <<= 5;
 input[4] <<= 6;
 input[6] <<= 1;
 input[7] <<= 3;
 input[8] <<= 4;
 input[9] <<= 6;
#define F(i, s) \
 output[s+0] |=  input[i] & 0xff; \
 output[s+1]  = (input[i] >> 8) & 0xff; \
 output[s+2]  = (input[i] >> 16) & 0xff; \
 output[s+3]  = (input[i] >> 24) & 0xff;
 output[0] = 0;
 output[16] = 0;
 F(0,0);
 F(1,3);
 F(2,6);
 F(3,9);
 F(4,12);
 F(5,16);
 F(6,19);
 F(7,22);
 F(8,25);
 F(9,28);
#undef F
}

/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
*   x2 z3: long form
*   x3 z3: long form
*   x z: short form, destroyed
*   xprime zprime: short form, destroyed
*   qmqp: short form, preserved
*/
static void fmonty(felem *x2, felem *z2,  /* output 2Q */
                  felem *x3, felem *z3,  /* output Q + Q' */
                  felem *x, felem *z,    /* input Q */
                  felem *xprime, felem *zprime,  /* input Q' */
                  felem *qmqp /* input Q - Q' */) {
 felem origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
       zzprime[19], zzzprime[19], xxxprime[19];

 memcpy(origx, x, 10 * sizeof(felem));
 fsum(x, z);
 fdifference(z, origx);  // does x - z

 memcpy(origxprime, xprime, sizeof(felem) * 10);
 fsum(xprime, zprime);
 fdifference(zprime, origxprime);
 fproduct(xxprime, xprime, z);
 fproduct(zzprime, x, zprime);
 freduce_degree(xxprime);
 freduce_coefficients(xxprime);
 freduce_degree(zzprime);
 freduce_coefficients(zzprime);
 memcpy(origxprime, xxprime, sizeof(felem) * 10);
 fsum(xxprime, zzprime);
 fdifference(zzprime, origxprime);
 fsquare(xxxprime, xxprime);
 fsquare(zzzprime, zzprime);
 fproduct(zzprime, zzzprime, qmqp);
 freduce_degree(zzprime);
 freduce_coefficients(zzprime);
 memcpy(x3, xxxprime, sizeof(felem) * 10);
 memcpy(z3, zzprime, sizeof(felem) * 10);

 fsquare(xx, x);
 fsquare(zz, z);
 fproduct(x2, xx, zz);
 freduce_degree(x2);
 freduce_coefficients(x2);
 fdifference(zz, xx);  // does zz = xx - zz
 memset(zzz + 10, 0, sizeof(felem) * 9);
 fscalar_product(zzz, zz, 121665);
 freduce_degree(zzz);
 freduce_coefficients(zzz);
 fsum(zzz, xx);
 fproduct(z2, zz, zzz);
 freduce_degree(z2);
 freduce_coefficients(z2);
}

/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
*   resultx/resultz: the x coordinate of the resulting curve point (short form)
*   n: a little endian, 32-byte number
*   q: a point of the curve (short form)
*/
static void
cmult(felem *resultx, felem *resultz, uchar *n, felem *q) {
 felem a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
 felem *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
 felem e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
 felem *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;

 unsigned i, j;

 memcpy(nqpqx, q, sizeof(felem) * 10);

 for (i = 0; i < 32; ++i) {
   uchar byte = n[31 - i];
   for (j = 0; j < 8; ++j) {
     if (byte & 0x80) {
       fmonty(nqpqx2, nqpqz2,
              nqx2, nqz2,
              nqpqx, nqpqz,
              nqx, nqz,
              q);
     } else {
       fmonty(nqx2, nqz2,
              nqpqx2, nqpqz2,
              nqx, nqz,
              nqpqx, nqpqz,
              q);
     }

     t = nqx;
     nqx = nqx2;
     nqx2 = t;
     t = nqz;
     nqz = nqz2;
     nqz2 = t;
     t = nqpqx;
     nqpqx = nqpqx2;
     nqpqx2 = t;
     t = nqpqz;
     nqpqz = nqpqz2;
     nqpqz2 = t;

     byte <<= 1;
   }
 }

 memcpy(resultx, nqx, sizeof(felem) * 10);
 memcpy(resultz, nqz, sizeof(felem) * 10);
}

// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
static void
crecip(felem *out, felem *z) {
 felem z2[10];
 felem z9[10];
 felem z11[10];
 felem z2_5_0[10];
 felem z2_10_0[10];
 felem z2_20_0[10];
 felem z2_50_0[10];
 felem z2_100_0[10];
 felem t0[10];
 felem t1[10];
 int i;

 /* 2 */ fsquare(z2,z);
 /* 4 */ fsquare(t1,z2);
 /* 8 */ fsquare(t0,t1);
 /* 9 */ fmul(z9,t0,z);
 /* 11 */ fmul(z11,z9,z2);
 /* 22 */ fsquare(t0,z11);
 /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);

 /* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
 /* 2^7 - 2^2 */ fsquare(t1,t0);
 /* 2^8 - 2^3 */ fsquare(t0,t1);
 /* 2^9 - 2^4 */ fsquare(t1,t0);
 /* 2^10 - 2^5 */ fsquare(t0,t1);
 /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);

 /* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
 /* 2^12 - 2^2 */ fsquare(t1,t0);
 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);

 /* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
 /* 2^22 - 2^2 */ fsquare(t1,t0);
 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);

 /* 2^41 - 2^1 */ fsquare(t1,t0);
 /* 2^42 - 2^2 */ fsquare(t0,t1);
 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
 /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);

 /* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
 /* 2^52 - 2^2 */ fsquare(t1,t0);
 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);

 /* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
 /* 2^102 - 2^2 */ fsquare(t0,t1);
 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
 /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);

 /* 2^201 - 2^1 */ fsquare(t0,t1);
 /* 2^202 - 2^2 */ fsquare(t1,t0);
 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
 /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);

 /* 2^251 - 2^1 */ fsquare(t1,t0);
 /* 2^252 - 2^2 */ fsquare(t0,t1);
 /* 2^253 - 2^3 */ fsquare(t1,t0);
 /* 2^254 - 2^4 */ fsquare(t0,t1);
 /* 2^255 - 2^5 */ fsquare(t1,t0);
 /* 2^255 - 21 */ fmul(out,t1,z11);
}

void
curve25519(uchar mypublic[32], uchar secret[32], uchar basepoint[32]) {
 felem bp[10], x[10], z[10], zmone[10];
 fexpand(bp, basepoint);
 cmult(x, z, secret, bp);
 crecip(zmone, z);
 fmul(z, x, zmone);
 fcontract(mypublic, z);
}