\chapter{Exception Handling \label{exceptionHandling}}

The functions described in this chapter will let you handle and raise Python
exceptions.  It is important to understand some of the basics of
Python exception handling.  It works somewhat like the
\UNIX{} \cdata{errno} variable: there is a global indicator (per
thread) of the last error that occurred.  Most functions don't clear
this on success, but will set it to indicate the cause of the error on
failure.  Most functions also return an error indicator, usually
\NULL{} if they are supposed to return a pointer, or \code{-1} if they
return an integer (exception: the \cfunction{PyArg_*()} functions
return \code{1} for success and \code{0} for failure).

When a function must fail because some function it called failed, it
generally doesn't set the error indicator; the function it called
already set it.  It is responsible for either handling the error and
clearing the exception or returning after cleaning up any resources it
holds (such as object references or memory allocations); it should
\emph{not} continue normally if it is not prepared to handle the
error.  If returning due to an error, it is important to indicate to
the caller that an error has been set.  If the error is not handled or
carefully propagated, additional calls into the Python/C API may not
behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to
\withsubitem{(in module sys)}{
 \ttindex{exc_type}\ttindex{exc_value}\ttindex{exc_traceback}}
the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
\code{sys.exc_traceback}.  API functions exist to interact with the
error indicator in various ways.  There is a separate error indicator
for each thread.

% XXX Order of these should be more thoughtful.
% Either alphabetical or some kind of structure.

\begin{cfuncdesc}{void}{PyErr_Print}{}
 Print a standard traceback to \code{sys.stderr} and clear the error
 indicator.  Call this function only when the error indicator is
 set.  (Otherwise it will cause a fatal error!)
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_Occurred}{}
 Test whether the error indicator is set.  If set, return the
 exception \emph{type} (the first argument to the last call to one of
 the \cfunction{PyErr_Set*()} functions or to
 \cfunction{PyErr_Restore()}).  If not set, return \NULL.  You do
 not own a reference to the return value, so you do not need to
 \cfunction{Py_DECREF()} it.  \note{Do not compare the return value
   to a specific exception; use \cfunction{PyErr_ExceptionMatches()}
   instead, shown below.  (The comparison could easily fail since the
   exception may be an instance instead of a class, in the case of a
   class exception, or it may the a subclass of the expected
   exception.)}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_ExceptionMatches}{PyObject *exc}
 Equivalent to \samp{PyErr_GivenExceptionMatches(PyErr_Occurred(),
 \var{exc})}.  This should only be called when an exception is
 actually set; a memory access violation will occur if no exception
 has been raised.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_GivenExceptionMatches}{PyObject *given, PyObject *exc}
 Return true if the \var{given} exception matches the exception in
 \var{exc}.  If \var{exc} is a class object, this also returns true
 when \var{given} is an instance of a subclass.  If \var{exc} is a
 tuple, all exceptions in the tuple (and recursively in subtuples)
 are searched for a match.  If \var{given} is \NULL, a memory access
 violation will occur.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_NormalizeException}{PyObject**exc, PyObject**val, PyObject**tb}
 Under certain circumstances, the values returned by
 \cfunction{PyErr_Fetch()} below can be ``unnormalized'', meaning
 that \code{*\var{exc}} is a class object but \code{*\var{val}} is
 not an instance of the  same class.  This function can be used to
 instantiate the class in that case.  If the values are already
 normalized, nothing happens.  The delayed normalization is
 implemented to improve performance.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_Clear}{}
 Clear the error indicator.  If the error indicator is not set, there
 is no effect.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue,
                                    PyObject **ptraceback}
 Retrieve the error indicator into three variables whose addresses
 are passed.  If the error indicator is not set, set all three
 variables to \NULL.  If it is set, it will be cleared and you own a
 reference to each object retrieved.  The value and traceback object
 may be \NULL{} even when the type object is not.  \note{This
 function is normally only used by code that needs to handle
 exceptions or by code that needs to save and restore the error
 indicator temporarily.}
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value,
                                      PyObject *traceback}
 Set  the error indicator from the three objects.  If the error
 indicator is already set, it is cleared first.  If the objects are
 \NULL, the error indicator is cleared.  Do not pass a \NULL{} type
 and non-\NULL{} value or traceback.  The exception type should be a
 class.  Do not pass an invalid exception type or value.
 (Violating these rules will cause subtle problems later.)  This call
 takes away a reference to each object: you must own a reference to
 each object before the call and after the call you no longer own
 these references.  (If you don't understand this, don't use this
 function.  I warned you.)  \note{This function is normally only used
 by code that needs to save and restore the error indicator
 temporarily; use \cfunction{PyErr_Fetch()} to save the current
 exception state.}
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, const char *message}
 This is the most common way to set the error indicator.  The first
 argument specifies the exception type; it is normally one of the
 standard exceptions, e.g. \cdata{PyExc_RuntimeError}.  You need not
 increment its reference count.  The second argument is an error
 message; it is converted to a string object.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
 This function is similar to \cfunction{PyErr_SetString()} but lets
 you specify an arbitrary Python object for the ``value'' of the
 exception.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_Format}{PyObject *exception,
                                          const char *format, \moreargs}
 This function sets the error indicator and returns \NULL.
 \var{exception} should be a Python exception (class, not
 an instance).  \var{format} should be a string, containing format
 codes, similar to \cfunction{printf()}. The \code{width.precision}
 before a format code is parsed, but the width part is ignored.

 % This should be exactly the same as the table in PyString_FromFormat.
 % One should just refer to the other.

 % The descriptions for %zd and %zu are wrong, but the truth is complicated
 % because not all compilers support the %z width modifier -- we fake it
 % when necessary via interpolating PY_FORMAT_SIZE_T.

 % %u, %lu, %zu should have "new in Python 2.5" blurbs.

 \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment}
   \lineiii{\%\%}{\emph{n/a}}{The literal \% character.}
   \lineiii{\%c}{int}{A single character, represented as an C int.}
   \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.}
   \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.}
   \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.}
   \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.}
   \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.}
   \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.}
   \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.}
   \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.}
   \lineiii{\%s}{char*}{A null-terminated C character array.}
   \lineiii{\%p}{void*}{The hex representation of a C pointer.
       Mostly equivalent to \code{printf("\%p")} except that it is
       guaranteed to start with the literal \code{0x} regardless of
       what the platform's \code{printf} yields.}
 \end{tableiii}

 An unrecognized format character causes all the rest of the format
 string to be copied as-is to the result string, and any extra
 arguments discarded.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
 This is a shorthand for \samp{PyErr_SetObject(\var{type},
 Py_None)}.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
 This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
 \var{message})}, where \var{message} indicates that a built-in
 operation was invoked with an illegal argument.  It is mostly for
 internal use.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_NoMemory}{}
 This is a shorthand for \samp{PyErr_SetNone(PyExc_MemoryError)}; it
 returns \NULL{} so an object allocation function can write
 \samp{return PyErr_NoMemory();} when it runs out of memory.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrno}{PyObject *type}
 This is a convenience function to raise an exception when a C
 library function has returned an error and set the C variable
 \cdata{errno}.  It constructs a tuple object whose first item is the
 integer \cdata{errno} value and whose second item is the
 corresponding error message (gotten from
 \cfunction{strerror()}\ttindex{strerror()}), and then calls
 \samp{PyErr_SetObject(\var{type}, \var{object})}.  On \UNIX, when
 the \cdata{errno} value is \constant{EINTR}, indicating an
 interrupted system call, this calls
 \cfunction{PyErr_CheckSignals()}, and if that set the error
 indicator, leaves it set to that.  The function always returns
 \NULL, so a wrapper function around a system call can write
 \samp{return PyErr_SetFromErrno(\var{type});} when the system call
 returns an error.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrnoWithFilename}{PyObject *type,
                                                            const char *filename}
 Similar to \cfunction{PyErr_SetFromErrno()}, with the additional
 behavior that if \var{filename} is not \NULL, it is passed to the
 constructor of \var{type} as a third parameter.  In the case of
 exceptions such as \exception{IOError} and \exception{OSError}, this
 is used to define the \member{filename} attribute of the exception
 instance.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_SetFromWindowsErr}{int ierr}
 This is a convenience function to raise \exception{WindowsError}.
 If called with \var{ierr} of \cdata{0}, the error code returned by a
 call to \cfunction{GetLastError()} is used instead.  It calls the
 Win32 function \cfunction{FormatMessage()} to retrieve the Windows
 description of error code given by \var{ierr} or
 \cfunction{GetLastError()}, then it constructs a tuple object whose
 first item is the \var{ierr} value and whose second item is the
 corresponding error message (gotten from
 \cfunction{FormatMessage()}), and then calls
 \samp{PyErr_SetObject(\var{PyExc_WindowsError}, \var{object})}.
 This function always returns \NULL.
 Availability: Windows.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_SetExcFromWindowsErr}{PyObject *type,
                                                        int ierr}
 Similar to \cfunction{PyErr_SetFromWindowsErr()}, with an additional
 parameter specifying the exception type to be raised.
 Availability: Windows.
 \versionadded{2.3}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_SetFromWindowsErrWithFilename}{int ierr,
                                                               const char *filename}
 Similar to \cfunction{PyErr_SetFromWindowsErr()}, with the
 additional behavior that if \var{filename} is not \NULL, it is
 passed to the constructor of \exception{WindowsError} as a third
 parameter.
 Availability: Windows.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_SetExcFromWindowsErrWithFilename}
       {PyObject *type, int ierr, char *filename}
 Similar to \cfunction{PyErr_SetFromWindowsErrWithFilename()}, with
 an additional parameter specifying the exception type to be raised.
 Availability: Windows.
 \versionadded{2.3}
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
 This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
 \var{message})}, where \var{message} indicates that an internal
 operation (e.g. a Python/C API function) was invoked with an illegal
 argument.  It is mostly for internal use.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_WarnEx}{PyObject *category, char *message, int stacklevel}
 Issue a warning message.  The \var{category} argument is a warning
 category (see below) or \NULL; the \var{message} argument is a
 message string.  \var{stacklevel} is a positive number giving a
 number of stack frames; the warning will be issued from the
 currently executing line of code in that stack frame.  A \var{stacklevel}
 of 1 is the function calling \cfunction{PyErr_WarnEx()}, 2 is
 the function above that, and so forth.

 This function normally prints a warning message to \var{sys.stderr};
 however, it is also possible that the user has specified that
 warnings are to be turned into errors, and in that case this will
 raise an exception.  It is also possible that the function raises an
 exception because of a problem with the warning machinery (the
 implementation imports the \module{warnings} module to do the heavy
 lifting).  The return value is \code{0} if no exception is raised,
 or \code{-1} if an exception is raised.  (It is not possible to
 determine whether a warning message is actually printed, nor what
 the reason is for the exception; this is intentional.)  If an
 exception is raised, the caller should do its normal exception
 handling (for example, \cfunction{Py_DECREF()} owned references and
 return an error value).

 Warning categories must be subclasses of \cdata{Warning}; the
 default warning category is \cdata{RuntimeWarning}.  The standard
 Python warning categories are available as global variables whose
 names are \samp{PyExc_} followed by the Python exception name.
 These have the type \ctype{PyObject*}; they are all class objects.
 Their names are \cdata{PyExc_Warning}, \cdata{PyExc_UserWarning},
 \cdata{PyExc_UnicodeWarning}, \cdata{PyExc_DeprecationWarning},
 \cdata{PyExc_SyntaxWarning}, \cdata{PyExc_RuntimeWarning}, and
 \cdata{PyExc_FutureWarning}.  \cdata{PyExc_Warning} is a subclass of
 \cdata{PyExc_Exception}; the other warning categories are subclasses
 of \cdata{PyExc_Warning}.

 For information about warning control, see the documentation for the
 \module{warnings} module and the \programopt{-W} option in the
 command line documentation.  There is no C API for warning control.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_Warn}{PyObject *category, char *message}
 Issue a warning message.  The \var{category} argument is a warning
 category (see below) or \NULL; the \var{message} argument is a
 message string.  The warning will appear to be issued from the function
 calling \cfunction{PyErr_Warn()}, equivalent to calling
 \cfunction{PyErr_WarnEx()} with a \var{stacklevel} of 1.

 Deprecated; use \cfunction{PyErr_WarnEx()} instead.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_WarnExplicit}{PyObject *category,
               const char *message, const char *filename, int lineno,
               const char *module, PyObject *registry}
 Issue a warning message with explicit control over all warning
 attributes.  This is a straightforward wrapper around the Python
 function \function{warnings.warn_explicit()}, see there for more
 information.  The \var{module} and \var{registry} arguments may be
 set to \NULL{} to get the default effect described there.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
 This function interacts with Python's signal handling.  It checks
 whether a signal has been sent to the processes and if so, invokes
 the corresponding signal handler.  If the
 \module{signal}\refbimodindex{signal} module is supported, this can
 invoke a signal handler written in Python.  In all cases, the
 default effect for \constant{SIGINT}\ttindex{SIGINT} is to raise the
 \withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}}
 \exception{KeyboardInterrupt} exception.  If an exception is raised
 the error indicator is set and the function returns \code{-1};
 otherwise the function returns \code{0}.  The error indicator may or
 may not be cleared if it was previously set.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
 This function simulates the effect of a
 \constant{SIGINT}\ttindex{SIGINT} signal arriving --- the next time
 \cfunction{PyErr_CheckSignals()} is called,
 \withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}}
 \exception{KeyboardInterrupt} will be raised.  It may be called
 without holding the interpreter lock.
 % XXX This was described as obsolete, but is used in
 % thread.interrupt_main() (used from IDLE), so it's still needed.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyErr_NewException}{char *name,
                                                PyObject *base,
                                                PyObject *dict}
 This utility function creates and returns a new exception object.
 The \var{name} argument must be the name of the new exception, a C
 string of the form \code{module.class}.  The \var{base} and
 \var{dict} arguments are normally \NULL.  This creates a class
 object derived from \exception{Exception} (accessible in C as
 \cdata{PyExc_Exception}).

 The \member{__module__} attribute of the new class is set to the
 first part (up to the last dot) of the \var{name} argument, and the
 class name is set to the last part (after the last dot).  The
 \var{base} argument can be used to specify alternate base classes;
 it can either be only one class or a tuple of classes.
 The \var{dict} argument can be used to specify a dictionary of class
 variables and methods.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyErr_WriteUnraisable}{PyObject *obj}
 This utility function prints a warning message to \code{sys.stderr}
 when an exception has been set but it is impossible for the
 interpreter to actually raise the exception.  It is used, for
 example, when an exception occurs in an \method{__del__()} method.

 The function is called with a single argument \var{obj} that
 identifies the context in which the unraisable exception occurred.
 The repr of \var{obj} will be printed in the warning message.
\end{cfuncdesc}

\section{Standard Exceptions \label{standardExceptions}}

All standard Python exceptions are available as global variables whose
names are \samp{PyExc_} followed by the Python exception name.  These
have the type \ctype{PyObject*}; they are all class objects.  For
completeness, here are all the variables:

\begin{tableiii}{l|l|c}{cdata}{C Name}{Python Name}{Notes}
 \lineiii{PyExc_BaseException\ttindex{PyExc_BaseException}}{\exception{BaseException}}{(1), (4)}
 \lineiii{PyExc_Exception\ttindex{PyExc_Exception}}{\exception{Exception}}{(1)}
 \lineiii{PyExc_StandardError\ttindex{PyExc_StandardError}}{\exception{StandardError}}{(1)}
 \lineiii{PyExc_ArithmeticError\ttindex{PyExc_ArithmeticError}}{\exception{ArithmeticError}}{(1)}
 \lineiii{PyExc_LookupError\ttindex{PyExc_LookupError}}{\exception{LookupError}}{(1)}
 \lineiii{PyExc_AssertionError\ttindex{PyExc_AssertionError}}{\exception{AssertionError}}{}
 \lineiii{PyExc_AttributeError\ttindex{PyExc_AttributeError}}{\exception{AttributeError}}{}
 \lineiii{PyExc_EOFError\ttindex{PyExc_EOFError}}{\exception{EOFError}}{}
 \lineiii{PyExc_EnvironmentError\ttindex{PyExc_EnvironmentError}}{\exception{EnvironmentError}}{(1)}
 \lineiii{PyExc_FloatingPointError\ttindex{PyExc_FloatingPointError}}{\exception{FloatingPointError}}{}
 \lineiii{PyExc_IOError\ttindex{PyExc_IOError}}{\exception{IOError}}{}
 \lineiii{PyExc_ImportError\ttindex{PyExc_ImportError}}{\exception{ImportError}}{}
 \lineiii{PyExc_IndexError\ttindex{PyExc_IndexError}}{\exception{IndexError}}{}
 \lineiii{PyExc_KeyError\ttindex{PyExc_KeyError}}{\exception{KeyError}}{}
 \lineiii{PyExc_KeyboardInterrupt\ttindex{PyExc_KeyboardInterrupt}}{\exception{KeyboardInterrupt}}{}
 \lineiii{PyExc_MemoryError\ttindex{PyExc_MemoryError}}{\exception{MemoryError}}{}
 \lineiii{PyExc_NameError\ttindex{PyExc_NameError}}{\exception{NameError}}{}
 \lineiii{PyExc_NotImplementedError\ttindex{PyExc_NotImplementedError}}{\exception{NotImplementedError}}{}
 \lineiii{PyExc_OSError\ttindex{PyExc_OSError}}{\exception{OSError}}{}
 \lineiii{PyExc_OverflowError\ttindex{PyExc_OverflowError}}{\exception{OverflowError}}{}
 \lineiii{PyExc_ReferenceError\ttindex{PyExc_ReferenceError}}{\exception{ReferenceError}}{(2)}
 \lineiii{PyExc_RuntimeError\ttindex{PyExc_RuntimeError}}{\exception{RuntimeError}}{}
 \lineiii{PyExc_SyntaxError\ttindex{PyExc_SyntaxError}}{\exception{SyntaxError}}{}
 \lineiii{PyExc_SystemError\ttindex{PyExc_SystemError}}{\exception{SystemError}}{}
 \lineiii{PyExc_SystemExit\ttindex{PyExc_SystemExit}}{\exception{SystemExit}}{}
 \lineiii{PyExc_TypeError\ttindex{PyExc_TypeError}}{\exception{TypeError}}{}
 \lineiii{PyExc_ValueError\ttindex{PyExc_ValueError}}{\exception{ValueError}}{}
 \lineiii{PyExc_WindowsError\ttindex{PyExc_WindowsError}}{\exception{WindowsError}}{(3)}
 \lineiii{PyExc_ZeroDivisionError\ttindex{PyExc_ZeroDivisionError}}{\exception{ZeroDivisionError}}{}
\end{tableiii}

\noindent
Notes:
\begin{description}
\item[(1)]
 This is a base class for other standard exceptions.

\item[(2)]
 This is the same as \exception{weakref.ReferenceError}.

\item[(3)]
 Only defined on Windows; protect code that uses this by testing that
 the preprocessor macro \code{MS_WINDOWS} is defined.

\item[(4)]
 \versionadded{2.5}
\end{description}


\section{Deprecation of String Exceptions}

All exceptions built into Python or provided in the standard library
are derived from \exception{BaseException}.
\withsubitem{(built-in exception)}{\ttindex{BaseException}}

String exceptions are still supported in the interpreter to allow
existing code to run unmodified, but this will also change in a future
release.