Introduction
Introduction Statistics Contact Development Disclaimer Help
tFix calculation of reynolds number and visualization calls - sphere - GPU-base…
git clone git://src.adamsgaard.dk/sphere
Log
Files
Refs
LICENSE
---
commit fd6493eb51899c881c017dff8bae975365da046f
parent 439019dc191d4e17968abd9d9ea70164a2489b84
Author: Anders Damsgaard <[email protected]>
Date: Mon, 2 Sep 2019 15:31:10 +0200
Fix calculation of reynolds number and visualization calls
Diffstat:
M python/sphere.py | 25 +++++++++++++------------
1 file changed, 13 insertions(+), 12 deletions(-)
---
diff --git a/python/sphere.py b/python/sphere.py
t@@ -2097,7 +2097,7 @@ class sim:
dporos.SetNumberOfTuples(grid.GetNumberOfPoints())
# array of scalars: Reynold's number
- self.ReynoldsNumber()
+ Re = self.ReynoldsNumber()
Re = vtk.vtkDoubleArray()
Re.SetName("Reynolds number [-]")
Re.SetNumberOfComponents(1)
t@@ -2143,7 +2143,7 @@ class sim:
vel.SetTuple(idx, self.v_f[x, y, z, :])
poros.SetValue(idx, self.phi[x, y, z])
dporos.SetValue(idx, self.dphi[x, y, z])
- Re.SetValue(idx, self.Re[x, y, z])
+ Re.SetValue(idx, Re[x, y, z])
if self.cfd_solver[0] == 1:
k.SetValue(idx, self.k[x, y, z])
K.SetValue(idx, self.K[x, y, z])
t@@ -6083,7 +6083,8 @@ class sim:
plt.close(fig)
def plotSinFunction(self, baseval, A, f, phi=0.0, xlabel='$t$ [s]',
- ylabel='$y$', plotstyle='.', outformat='png'):
+ ylabel='$y$', plotstyle='.', outformat='png',
+ verbose=True):
'''
Plot the values of a sinusoidal modulated base value. Saves the output
as a plot in the current folder.
t@@ -6742,9 +6743,8 @@ class sim:
tau[i] += -sb.force[j, 0]/A
if i > 0:
- xdisp[i] = self.xdisp[i-1] + \
- sb.time_file_dt[0]*shearvel
- sigma_eff[i] = sb.w_force[0] / A
+ xdisp[i] = xdisp[i-1] + sb.time_file_dt[0]*shearvel
+ sigma_eff[i] = sb.w_force[0]/A
sigma_def[i] = sb.w_sigma0[0]
# dilation in meters
t@@ -6770,7 +6770,7 @@ class sim:
shear_strain = xdisp/w_x0
# Copy values so they can be modified during smoothing
- shear_strain_smooth = self.shear_strain
+ shear_strain_smooth = shear_strain
tau_smooth = tau
sigma_def_smooth = sigma_def
t@@ -6787,14 +6787,14 @@ class sim:
if smoothing_window == 'flat': # moving average
w = numpy.ones(smoothing, 'd')
else:
- w = getattr(np, smoothing_window)(smoothing)
+ w = getattr(self.np, smoothing_window)(smoothing)
y = numpy.convolve(w/w.sum(), s, mode='same')
tau_smooth = y[smoothing-1:-smoothing+1]
# Plot stresses
if outformat != 'txt':
shearinfo = "$\\tau_p$={:.3} Pa at $\gamma$={:.3}".format(\
- self.tau_p, self.tau_p_shearstrain)
+ tau_p, tau_p_shearstrain)
fig.text(0.01, 0.01, shearinfo, horizontalalignment='left',
fontproperties=FontProperties(size=14))
ax1 = plt.subplot2grid((2, 1), (0, 0))
t@@ -6817,9 +6817,9 @@ class sim:
ax2.set_ylabel('Dilation, $\Delta h/(2\\bar{r})$ [m]')
if smoothing > 2:
ax2.plot(shear_strain_smooth[1:-(smoothing+1)/2],
- dilation_smooth[1:-(smoothing+1)/2], '-')
+ dilation[1:-(smoothing+1)/2], '-')
else:
- ax2.plot(shear_strain, self.dilation, '-')
+ ax2.plot(shear_strain, dilation, '-')
ax2.grid()
if xlim:
t@@ -6927,7 +6927,7 @@ class sim:
tau_p = tau_eff[i]
tau_p_shearstrain = xdisp[i]/w_x0
- shear_strain = self.xdisp/w_x0
+ shear_strain = xdisp/w_x0
# Plot stresses
if outformat != 'txt':
t@@ -7320,6 +7320,7 @@ class sim:
return
# Optional save of figure content
+ filename = ''
if xlim:
filename = '{0}-{1}-{3}.{2}'.format(self.sid, method, outformat,
xlim[-1])
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.