Introduction
Introduction Statistics Contact Development Disclaimer Help
tsmall corrections - sphere - GPU-based 3D discrete element method algorithm wi…
git clone git://src.adamsgaard.dk/sphere
Log
Files
Refs
LICENSE
---
commit db7408de0d0dcc2b1b2d951eb69f499961de9d81
parent aba33eb02abf7b0213f694c21402793291b459a8
Author: Anders Damsgaard <[email protected]>
Date: Thu, 14 Aug 2014 14:55:37 +0200
small corrections
Diffstat:
M python/sphere.py | 14 ++++++--------
1 file changed, 6 insertions(+), 8 deletions(-)
---
diff --git a/python/sphere.py b/python/sphere.py
t@@ -4158,7 +4158,6 @@ class sim:
stopped at the end of the simulation (i.e. flat curve).
'''
t = numpy.empty(self.status())
- dH = numpy.empty_like(t)
H = numpy.empty_like(t)
sim = sphere.sim(self.sid, fluid=self.fluid)
sim.readfirst(i)
t@@ -4167,18 +4166,16 @@ class sim:
sim.readstep(i)
t[i-1] = sim.time_current[0]
H[i-1] = sim.w_x[0]
- dH[i-1] = h - sim.w_x[0]
# find consolidation parameters
self.H0 = H[0]
- #self.H100 = h - dh[-1]
self.H100 = H[-1]
self.H50 = (self.H0 + self.H100)/2.0
T50 = 0.197 # case I
# find the time where 50% of the consolidation (H50) has happened by
- # linear interpolation. The values in dh are expected to be
- # monotonically decreasing! See Numerical Recipies p. 115
+ # linear interpolation. The values in H are expected to be
+ # monotonically decreasing. See Numerical Recipies p. 115
i_lower = 0
i_upper = self.status()-1
while (i_upper - i_lower > 1):
t@@ -4198,9 +4195,10 @@ class sim:
plt.title('Consolidation coefficient $c_v$ = %.4e m^2/s at %f kPa' \
% (self.c_v, self.w_devs[0]/1000.0))
plt.semilogx(t, dh, '+-')
- plt.axhline(y = self.D0)
- plt.axhline(y = self.D50)
- plt.axhline(y = self.D100)
+ plt.axhline(y = self.H0)
+ plt.axhline(y = self.H50)
+ plt.axhline(y = self.H100)
+ plt.axvline(x = self.t50)
plt.grid()
plt.savefig(self.sid + '-loadcurve.' + graphics_format)
plt.clf()
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.