Introduction
Introduction Statistics Contact Development Disclaimer Help
tvisualize mean pressures as time series (incomplete) - sphere - GPU-based 3D d…
git clone git://src.adamsgaard.dk/sphere
Log
Files
Refs
LICENSE
---
commit c502aa76c0c7154f05fe425ad4f16f60743ba3d2
parent 64696bcfffc330d89cebbd151b578e8b282282ca
Author: Anders Damsgaard <[email protected]>
Date: Wed, 1 Oct 2014 12:39:41 +0200
visualize mean pressures as time series (incomplete)
Diffstat:
A python/shear-results-pressures.py | 76 +++++++++++++++++++++++++++++…
1 file changed, 76 insertions(+), 0 deletions(-)
---
diff --git a/python/shear-results-pressures.py b/python/shear-results-pressures…
t@@ -0,0 +1,76 @@
+#!/usr/bin/env python
+import matplotlib
+matplotlib.use('Agg')
+matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'})
+matplotlib.rc('text', usetex=True)
+matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
+import shutil
+
+import os
+import numpy
+import sphere
+from permeabilitycalculator import *
+import matplotlib.pyplot as plt
+from matplotlib.ticker import MaxNLocator
+
+matplotlib.rcParams['image.cmap'] = 'bwr'
+
+sigma0 = float(sys.argv[1])
+#c_grad_p = 1.0
+c_grad_p = float(sys.argv[2])
+c_phi = 1.0
+
+sid = 'shear-sigma0=' + str(sigma0) + '-c_phi=' + \
+ str(c_phi) + '-c_grad_p=' + str(c_grad_p) + '-hi_mu-lo_visc'
+sim = sphere.sim(sid, fluid=True)
+sim.readfirst(verbose=False)
+
+# cell midpoint cell positions
+zpos_c = numpy.zeros(sim.num[2])
+dz = sim.L[2]/sim.num[2]
+for i in numpy.arange(sim.num[2]):
+ zpos_c[i] = i*dz + 0.5*dz
+
+shear_strain = numpy.zeros(sim.status())
+
+dev_pres = numpy.zeros((sim.num[2], sim.status()))
+
+for i in numpy.arange(sim.status()):
+
+ sim.readstep(i, verbose=False)
+
+ '''
+ dev_pres[:,i] = numpy.average(numpy.average(sim.p_f, axis=0), axis=0)
+
+ for z in numpy.arange(0, sim.w_x[0]+1):
+ pres_static = (sim.w_x[0] - zpos_c[z])*sim.rho_f*numpy.abs(sim.g[2])\
+ + sim.p_f[0,0,-1]
+ dev_pres[z,i] -= pres_static
+ '''
+ dev_pres[:,i] = numpy.arange(0, sim.num[2])
+
+ shear_strain[i] = sim.shearStrain()
+
+
+#fig = plt.figure(figsize=(8,4*(len(steps))+1))
+fig = plt.figure(figsize=(8,6))
+
+plt.pcolormesh(shear_strain, zpos_c, dev_pres/1000.0, rasterized=True)
+plt.xlim([0, shear_strain[-1]])
+plt.ylim([zpos_c[0], sim.w_x[0]])
+plt.xlabel('Shear strain $\\gamma$ [-]')
+plt.ylabel('Vertical position $z$ [m]')
+cb = plt.colorbar()
+cb.set_label('Deviatoric pressure $p_\\text{f}$ [kPa]')
+cb.solids.set_rasterized(True)
+
+
+#plt.MaxNLocator(nbins=4)
+plt.tight_layout()
+plt.subplots_adjust(wspace = .05)
+#plt.MaxNLocator(nbins=4)
+
+filename = 'shear-' + str(int(sigma0/1000.0)) + 'kPa-pressures.pdf'
+plt.savefig(filename)
+shutil.copyfile(filename, '/home/adc/articles/own/2-org/' + filename)
+print(filename)
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.