Introduction
Introduction Statistics Contact Development Disclaimer Help
tplot results for all c values - sphere - GPU-based 3D discrete element method …
git clone git://src.adamsgaard.dk/sphere
Log
Files
Refs
LICENSE
---
commit ae993c5f50daa01d742ab7681b7215da75581145
parent 75f00d3a5b69b8cb76c535aa57bcf66fbcbba7f9
Author: Anders Damsgaard <[email protected]>
Date: Wed, 27 Aug 2014 10:16:39 +0200
plot results for all c values
Diffstat:
M python/consolidation-curve.py | 82 ++++++++++++++++-------------…
1 file changed, 42 insertions(+), 40 deletions(-)
---
diff --git a/python/consolidation-curve.py b/python/consolidation-curve.py
t@@ -9,8 +9,8 @@ import numpy
import matplotlib.pyplot as plt
c_phi = 1.0
-#c_grad_p_list = [1.0, 0.1, 0.01]
-c_grad_p_list = [1.0]
+c_grad_p_list = [1.0, 0.1, 0.01]
+#c_grad_p_list = [1.0]
sigma0 = 10.0e3
#sigma0 = 5.0e3
t@@ -20,50 +20,52 @@ H = [[], [], []]
c = 0
for c_grad_p in c_grad_p_list:
- sim = sphere.sim('cons-sigma0=' + str(sigma0) + '-c_phi=' + \
- str(c_phi) + '-c_grad_p=' + str(c_grad_p), fluid=True)
- t[c] = numpy.empty(sim.status())
- H[c] = numpy.empty(sim.status())
+ sid = 'cons-sigma0=' + str(sigma0) + '-c_phi=' + \
+ str(c_phi) + '-c_grad_p=' + str(c_grad_p)
+ if os.path.isfile('../output/' + sid + '.status.dat'):
+ sim = sphere.sim(sid, fluid=True)
+ t[c] = numpy.empty(sim.status())
+ H[c] = numpy.empty(sim.status())
- #sim.visualize('walls')
- #sim.writeVTKall()
+ #sim.visualize('walls')
+ #sim.writeVTKall()
- #sim.plotLoadCurve()
- #sim.readfirst(verbose=True)
- for i in numpy.arange(1, sim.status()+1):
- sim.readstep(i, verbose=False)
- t[c][i-1] = sim.time_current[0]
- H[c][i-1] = sim.w_x[0]
+ #sim.plotLoadCurve()
+ #sim.readfirst(verbose=True)
+ for i in numpy.arange(1, sim.status()+1):
+ sim.readstep(i, verbose=False)
+ t[c][i-1] = sim.time_current[0]
+ H[c][i-1] = sim.w_x[0]
- '''
- # find consolidation parameters
- self.H0 = H[0]
- self.H100 = H[-1]
- self.H50 = (self.H0 + self.H100)/2.0
- T50 = 0.197 # case I
+ '''
+ # find consolidation parameters
+ self.H0 = H[0]
+ self.H100 = H[-1]
+ self.H50 = (self.H0 + self.H100)/2.0
+ T50 = 0.197 # case I
- # find the time where 50% of the consolidation (H50) has happened by
- # linear interpolation. The values in H are expected to be
- # monotonically decreasing. See Numerical Recipies p. 115
- i_lower = 0
- i_upper = self.status()-1
- while (i_upper - i_lower > 1):
- i_midpoint = int((i_upper + i_lower)/2)
- if (self.H50 < H[i_midpoint]):
- i_lower = i_midpoint
- else:
- i_upper = i_midpoint
- self.t50 = t[i_lower] + (t[i_upper] - t[i_lower]) * \
- (self.H50 - H[i_lower])/(H[i_upper] - H[i_lower])
+ # find the time where 50% of the consolidation (H50) has happened by
+ # linear interpolation. The values in H are expected to be
+ # monotonically decreasing. See Numerical Recipies p. 115
+ i_lower = 0
+ i_upper = self.status()-1
+ while (i_upper - i_lower > 1):
+ i_midpoint = int((i_upper + i_lower)/2)
+ if (self.H50 < H[i_midpoint]):
+ i_lower = i_midpoint
+ else:
+ i_upper = i_midpoint
+ self.t50 = t[i_lower] + (t[i_upper] - t[i_lower]) * \
+ (self.H50 - H[i_lower])/(H[i_upper] - H[i_lower])
- self.c_v = T50*self.H50**2.0/(self.t50)
- if self.fluid == True:
- e = numpy.mean(sb.phi[:,:,3:-8]) # ignore boundaries
- else:
- e = sb.voidRatio()
- '''
+ self.c_v = T50*self.H50**2.0/(self.t50)
+ if self.fluid == True:
+ e = numpy.mean(sb.phi[:,:,3:-8]) # ignore boundaries
+ else:
+ e = sb.voidRatio()
+ '''
- H[c] -= H[c][0]
+ H[c] -= H[c][0]
c += 1
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.