Introduction
Introduction Statistics Contact Development Disclaimer Help
tupdated documentation to correct interaction force term - sphere - GPU-based 3…
git clone git://src.adamsgaard.dk/sphere
Log
Files
Refs
LICENSE
---
commit 60f837c2139f0dd664e1e009a6dec97be806cbcf
parent 2d996a75c458c8904aded32488f73e5f37dc9135
Author: Anders Damsgaard <[email protected]>
Date: Thu, 3 Apr 2014 10:58:30 +0200
updated documentation to correct interaction force term
Diffstat:
A doc/html/_images/math/0e86ca4660ab… | 0
A doc/html/_images/math/3357706feda9… | 0
A doc/html/_images/math/399743cbf7c4… | 0
A doc/html/_images/math/4fd7ec1b618d… | 0
A doc/html/_images/math/7f7495bf6b7e… | 0
A doc/html/_images/math/8d0831e0e18a… | 0
A doc/html/_images/math/9ec27d87740d… | 0
A doc/html/_images/math/a00f5eb30a7a… | 0
A doc/html/_images/math/a1e91a45b485… | 0
A doc/html/_images/math/b13f21416d84… | 0
A doc/html/_images/math/b70dd9c116fc… | 0
A doc/html/_images/math/dbb95aa092c1… | 0
A doc/html/_images/math/f94ccd83304b… | 0
A doc/html/_images/math/faee932adbe0… | 0
A doc/html/_images/math/ff29b7920019… | 0
M doc/html/_sources/cfd.txt | 36 ++++++++++++++++++++---------…
M doc/html/cfd.html | 52 ++++++++++++++++++-----------…
M doc/html/genindex.html | 4 ++++
M doc/html/objects.inv | 0
M doc/html/python_api.html | 6 ++++++
M doc/html/searchindex.js | 4 ++--
M doc/pdf/sphere.pdf | 0
M doc/sphinx/cfd.rst | 36 ++++++++++++++++++++---------…
23 files changed, 89 insertions(+), 49 deletions(-)
---
diff --git a/doc/html/_images/math/0e86ca4660ab213ac57b980a736e32499978d2dc.png…
Binary files differ.
diff --git a/doc/html/_images/math/3357706feda99b545e69da682825a94b64782cb6.png…
Binary files differ.
diff --git a/doc/html/_images/math/399743cbf7c481198eba2ac4794bf67ef9d5c294.png…
Binary files differ.
diff --git a/doc/html/_images/math/4fd7ec1b618d0e036da7606d6876e79d81480584.png…
Binary files differ.
diff --git a/doc/html/_images/math/7f7495bf6b7e8e4c468863b6fd083f72f3a844ac.png…
Binary files differ.
diff --git a/doc/html/_images/math/8d0831e0e18af6fd3f3f1060516faab8016dc054.png…
Binary files differ.
diff --git a/doc/html/_images/math/9ec27d87740d654f43e3238d5bfe718e521368ce.png…
Binary files differ.
diff --git a/doc/html/_images/math/a00f5eb30a7a379b737fd4fafa61160bc0fce4a8.png…
Binary files differ.
diff --git a/doc/html/_images/math/a1e91a45b4858dfcbacc9b0d3b28418f1a990df1.png…
Binary files differ.
diff --git a/doc/html/_images/math/b13f21416d84e13708696f34dea81026cda583c9.png…
Binary files differ.
diff --git a/doc/html/_images/math/b70dd9c116fc5a16341030868952b58cd10afa88.png…
Binary files differ.
diff --git a/doc/html/_images/math/dbb95aa092c199cb518b2fdf22908d217988c251.png…
Binary files differ.
diff --git a/doc/html/_images/math/f94ccd83304b6a8e5d454843c2d462d9bb6cba57.png…
Binary files differ.
diff --git a/doc/html/_images/math/faee932adbe0b3f8663c9be6fa88d65f456385a7.png…
Binary files differ.
diff --git a/doc/html/_images/math/ff29b7920019a21a45545381f042a08acfba3530.png…
Binary files differ.
diff --git a/doc/html/_sources/cfd.txt b/doc/html/_sources/cfd.txt
t@@ -23,11 +23,13 @@ and the momentum equation:
\rho \frac{\partial \boldsymbol{v}}{\partial t}
+ \rho (\boldsymbol{v} \cdot \nabla \boldsymbol{v})
= \nabla \cdot \boldsymbol{\sigma}
- + \rho \boldsymbol{f}
+ - \boldsymbol{f}^i
+ + \rho \boldsymbol{g}
Here, :math:`\boldsymbol{v}` is the fluid velocity, :math:`\rho` is the
-fluid density, :math:`\boldsymbol{\sigma}` is the `Cauchy stress tensor`_, and
-:math:`\boldsymbol{f}` is a body force (e.g. gravity). For incompressible
+fluid density, :math:`\boldsymbol{\sigma}` is the `Cauchy stress tensor`_,
+:math:`\boldsymbol{f}^i` is the particle-fluid interaction vector and
+:math:`\boldsymbol{g}` is the gravitational acceleration. For incompressible
Newtonian fluids, the Cauchy stress is given by:
.. math::
t@@ -78,7 +80,8 @@ with a body force :math:`\boldsymbol{f}` becomes:
.. math::
\frac{D (\phi v_x)}{D t}
= \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\sigma}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g
In the Eulerian formulation, an advection term is added, and the Cauchy stress
tensor is represented as isotropic and deviatoric components individually:
t@@ -88,7 +91,8 @@ tensor is represented as isotropic and deviatoric components…
+ \boldsymbol{v} \cdot \nabla (\phi v_x)
= \frac{1}{\rho} \left[ \nabla \cdot (-\phi p \boldsymbol{I})
+ \phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
Using vector identities to rewrite the advection term, and expanding the fluid
stress tensor term:
t@@ -98,9 +102,9 @@ stress tensor term:
+ \nabla \cdot (\phi v_x \boldsymbol{v})
- \phi v_x (\nabla \cdot \boldsymbol{v})
= \frac{1}{\rho} \left[ -\nabla \phi p \right]_x
- + \frac{1}{\rho} \left[ -\phi \nabla p \right]_x
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
Spatial variations in the porosity are neglected,
t@@ -121,7 +125,8 @@ With these assumptions, the momentum equation simplifies t…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= -\frac{1}{\rho} \frac{\partial p}{\partial x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
The remaining part of the advection term is for the :math:`x` component
found as:
t@@ -338,7 +343,8 @@ presented by Langtangen et al. (2002), the predicted velo…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
\Downarrow
t@@ -347,7 +353,8 @@ presented by Langtangen et al. (2002), the predicted velo…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
We want to isolate :math:`\Delta v_x` in the above equation in order to project
the new velocity.
t@@ -356,7 +363,8 @@ the new velocity.
\phi \frac{\Delta v_x}{\Delta t}
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
- v_x \frac{\Delta \phi}{\Delta t}
- \nabla \cdot (\phi v_x \boldsymbol{v})
t@@ -364,7 +372,8 @@ the new velocity.
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x} \frac{\Delta t}{\phi}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
\frac{\Delta t}{\phi}
- + \Delta t f_x
+ - \frac{\Delta t}{\rho\phi} f^i_x
+ + \Delta t g_x
- v_x \frac{\Delta \phi}{\phi}
- \nabla \cdot (\phi v_x \boldsymbol{v}) \frac{\Delta t}{\phi}
t@@ -381,7 +390,8 @@ in `Chorin (1968)`_.
- \frac{\beta}{\rho} \frac{\Delta p^t}{\Delta x} \frac{\Delta t}{\phi^t}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi^t \boldsymbol{\tau}^t) \right]_x
\frac{\Delta t}{\phi}
- + \Delta t f_x
+ - \frac{\Delta t}{\rho\phi} f^i_x
+ + \Delta t g_x
- v^t_x \frac{\Delta \phi}{\phi^t}
- \nabla \cdot (\phi^t v_x^t \boldsymbol{v}^t) \frac{\Delta t}{\phi^t}
diff --git a/doc/html/cfd.html b/doc/html/cfd.html
t@@ -72,13 +72,15 @@ continuity equation for an incompressible fluid material i…
<p><img src="_images/math/b588eea9cec4513a3be72255d8d3df214546bfe7.png" alt="\…
</div><p>and the momentum equation:</p>
<div class="math">
-<p><img src="_images/math/5b46624e0dc3d79b64f388898e2dff17d232656c.png" alt="\…
+<p><img src="_images/math/a00f5eb30a7a379b737fd4fafa61160bc0fce4a8.png" alt="\…
+ \rho (\boldsymbol{v} \cdot \nabla \boldsymbol{v})
= \nabla \cdot \boldsymbol{\sigma}
-+ \rho \boldsymbol{f}"/></p>
+- \boldsymbol{f}^i
++ \rho \boldsymbol{g}"/></p>
</div><p>Here, <img class="math" src="_images/math/d0b4b390a4806bb739c6b4adbdf…
-fluid density, <img class="math" src="_images/math/769bfdcb2a43bde2cd368d82a6f…
-<img class="math" src="_images/math/69b1fdf87f9a78aaef8057a34aea7a6c17dad726.p…
+fluid density, <img class="math" src="_images/math/769bfdcb2a43bde2cd368d82a6f…
+<img class="math" src="_images/math/dbb95aa092c199cb518b2fdf22908d217988c251.p…
+<img class="math" src="_images/math/a1e91a45b4858dfcbacc9b0d3b28418f1a990df1.p…
Newtonian fluids, the Cauchy stress is given by:</p>
<div class="math">
<p><img src="_images/math/c9264cc703654b5651cb89a1c9f5e178b5d15cd0.png" alt="\…
t@@ -115,27 +117,29 @@ momentum equations. The continuity equation becomes:</p>
</div><p>For the <img class="math" src="_images/math/26eeb5258ca5099acf8fe96b2…
with a body force <img class="math" src="_images/math/69b1fdf87f9a78aaef8057a3…
<div class="math">
-<p><img src="_images/math/900be94839e1ee03a8aa1134961912314905eb27.png" alt="\…
+<p><img src="_images/math/4fd7ec1b618d0e036da7606d6876e79d81480584.png" alt="\…
= \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\sigma}) \right]_x
-+ \phi f_x"/></p>
+- \frac{1}{\rho} f^i_x
++ \phi g"/></p>
</div><p>In the Eulerian formulation, an advection term is added, and the Cauc…
tensor is represented as isotropic and deviatoric components individually:</p>
<div class="math">
-<p><img src="_images/math/32e2ba09618e2d303d91d673a25ef66e29e94750.png" alt="\…
+<p><img src="_images/math/ff29b7920019a21a45545381f042a08acfba3530.png" alt="\…
+ \boldsymbol{v} \cdot \nabla (\phi v_x)
= \frac{1}{\rho} \left[ \nabla \cdot (-\phi p \boldsymbol{I})
+ \phi \boldsymbol{\tau}) \right]_x
-+ \phi f_x"/></p>
+- \frac{1}{\rho} f^i_x
++ \phi g_x"/></p>
</div><p>Using vector identities to rewrite the advection term, and expanding …
stress tensor term:</p>
<div class="math">
-<p><img src="_images/math/dcf5762fe2b4b81adb93ee084951f42a2f1eadbc.png" alt="\…
+<p><img src="_images/math/0e86ca4660ab213ac57b980a736e32499978d2dc.png" alt="\…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
- \phi v_x (\nabla \cdot \boldsymbol{v})
= \frac{1}{\rho} \left[ -\nabla \phi p \right]_x
-+ \frac{1}{\rho} \left[ -\phi \nabla p \right]_x
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
-+ \phi f_x"/></p>
+- \frac{1}{\rho} f^i_x
++ \phi g_x"/></p>
</div><p>Spatial variations in the porosity are neglected,</p>
<div class="math">
<p><img src="_images/math/c42a32017c99646f19bb5807728595d4526c3b30.png" alt="\…
t@@ -146,11 +150,12 @@ zero:</p>
<p><img src="_images/math/44fafcf5a158459730d0dd7c293b93cdcf62f0a4.png" alt="\…
</div><p>With these assumptions, the momentum equation simplifies to:</p>
<div class="math">
-<p><img src="_images/math/6e62843666dcc0fe9a45a1c69c532c82a95a9451.png" alt="\…
+<p><img src="_images/math/7f7495bf6b7e8e4c468863b6fd083f72f3a844ac.png" alt="\…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= -\frac{1}{\rho} \frac{\partial p}{\partial x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
-+ \phi f_x"/></p>
+- \frac{1}{\rho} f^i_x
++ \phi g_x"/></p>
</div><p>The remaining part of the advection term is for the <img class="math"…
found as:</p>
<div class="math">
t@@ -335,11 +340,12 @@ presented by Langtangen et al. (2002), the predicted ve…
<img class="math" src="_images/math/90c8bfc206db2d9f4d0dd102507c9646a70755db.p…
<img class="math" src="_images/math/a1ffc0a012620941fe660cedabff822ce7162eca.p…
<div class="math">
-<p><img src="_images/math/7ee03c7bfc1e46255c9d2d47d9b733a068c9ec2b.png" alt="\…
+<p><img src="_images/math/8d0831e0e18af6fd3f3f1060516faab8016dc054.png" alt="\…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
-+ \phi f_x
+- \frac{1}{\rho} f^i_x
++ \phi g_x
\Downarrow
t@@ -348,14 +354,16 @@ presented by Langtangen et al. (2002), the predicted ve…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
-+ \phi f_x"/></p>
+- \frac{1}{\rho} f^i_x
++ \phi g_x"/></p>
</div><p>We want to isolate <img class="math" src="_images/math/b5e8dba2403c07…
the new velocity.</p>
<div class="math">
-<p><img src="_images/math/038474380a078000f31889a32a1dcf79ac38c223.png" alt="\…
+<p><img src="_images/math/faee932adbe0b3f8663c9be6fa88d65f456385a7.png" alt="\…
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
-+ \phi f_x
+- \frac{1}{\rho} f^i_x
++ \phi g_x
- v_x \frac{\Delta \phi}{\Delta t}
- \nabla \cdot (\phi v_x \boldsymbol{v})
t@@ -363,7 +371,8 @@ the new velocity.</p>
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x} \frac{\Delta t}{\phi}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
\frac{\Delta t}{\phi}
-+ \Delta t f_x
+- \frac{\Delta t}{\rho\phi} f^i_x
++ \Delta t g_x
- v_x \frac{\Delta \phi}{\phi}
- \nabla \cdot (\phi v_x \boldsymbol{v}) \frac{\Delta t}{\phi}"/></p>
</div><p>The term <img class="math" src="_images/math/fdb63b9e51abe6bbb16acfb5…
t@@ -372,13 +381,14 @@ values in the solution procedure (Langtangen et al. 2002…
corresponds to <a class="reference external" href="https://en.wikipedia.org/wi…
in <a class="reference external" href="http://www.ams.org/journals/mcom/1968-2…
<div class="math">
-<p><img src="_images/math/dbcdbe7c53fa70f8517907ca1b3c440b28512dfc.png" alt="v…
+<p><img src="_images/math/9ec27d87740d654f43e3238d5bfe718e521368ce.png" alt="v…
v_x^* = v_x^t
- \frac{\beta}{\rho} \frac{\Delta p^t}{\Delta x} \frac{\Delta t}{\phi^t}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi^t \boldsymbol{\tau}^t) \right]_x
\frac{\Delta t}{\phi}
-+ \Delta t f_x
+- \frac{\Delta t}{\rho\phi} f^i_x
++ \Delta t g_x
- v^t_x \frac{\Delta \phi}{\phi^t}
- \nabla \cdot (\phi^t v_x^t \boldsymbol{v}^t) \frac{\Delta t}{\phi^t}"/></p>
</div><p>Here, <img class="math" src="_images/math/1eb29f9de3753a59530941141fc…
diff --git a/doc/html/genindex.html b/doc/html/genindex.html
t@@ -168,6 +168,10 @@
</dl></td>
<td style="width: 33%" valign="top"><dl>
+ <dt><a href="python_api.html#sphere.sim.deleteAllParticles">deleteAllParticl…
+ </dt>
+
+
<dt><a href="python_api.html#sphere.sim.disableFluidPressureModulation">disa…
</dt>
diff --git a/doc/html/objects.inv b/doc/html/objects.inv
Binary files differ.
diff --git a/doc/html/python_api.html b/doc/html/python_api.html
t@@ -581,6 +581,12 @@ won&#8217;t work. Default = [0.0, 0.0, 0.0].</li>
</dd></dl>
<dl class="method">
+<dt id="sphere.sim.deleteAllParticles">
+<tt class="descname">deleteAllParticles</tt><big>(</big><big>)</big><a class="…
+<dd><p>Deletes all particles in the simulation object.</p>
+</dd></dl>
+
+<dl class="method">
<dt id="sphere.sim.disableFluidPressureModulation">
<tt class="descname">disableFluidPressureModulation</tt><big>(</big><big>)</bi…
<dd><p>Set the parameters for the sine wave modulating the fluid pressures
diff --git a/doc/html/searchindex.js b/doc/html/searchindex.js
t@@ -1 +1 @@
-Search.setIndex({objects:{"":{sphere:[5,0,1,""]},sphere:{status:[5,1,1,""],con…
-\ No newline at end of file
+Search.setIndex({objects:{"":{sphere:[5,0,1,""]},sphere:{status:[5,2,1,""],con…
+\ No newline at end of file
diff --git a/doc/pdf/sphere.pdf b/doc/pdf/sphere.pdf
Binary files differ.
diff --git a/doc/sphinx/cfd.rst b/doc/sphinx/cfd.rst
t@@ -23,11 +23,13 @@ and the momentum equation:
\rho \frac{\partial \boldsymbol{v}}{\partial t}
+ \rho (\boldsymbol{v} \cdot \nabla \boldsymbol{v})
= \nabla \cdot \boldsymbol{\sigma}
- + \rho \boldsymbol{f}
+ - \boldsymbol{f}^i
+ + \rho \boldsymbol{g}
Here, :math:`\boldsymbol{v}` is the fluid velocity, :math:`\rho` is the
-fluid density, :math:`\boldsymbol{\sigma}` is the `Cauchy stress tensor`_, and
-:math:`\boldsymbol{f}` is a body force (e.g. gravity). For incompressible
+fluid density, :math:`\boldsymbol{\sigma}` is the `Cauchy stress tensor`_,
+:math:`\boldsymbol{f}^i` is the particle-fluid interaction vector and
+:math:`\boldsymbol{g}` is the gravitational acceleration. For incompressible
Newtonian fluids, the Cauchy stress is given by:
.. math::
t@@ -78,7 +80,8 @@ with a body force :math:`\boldsymbol{f}` becomes:
.. math::
\frac{D (\phi v_x)}{D t}
= \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\sigma}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g
In the Eulerian formulation, an advection term is added, and the Cauchy stress
tensor is represented as isotropic and deviatoric components individually:
t@@ -88,7 +91,8 @@ tensor is represented as isotropic and deviatoric components…
+ \boldsymbol{v} \cdot \nabla (\phi v_x)
= \frac{1}{\rho} \left[ \nabla \cdot (-\phi p \boldsymbol{I})
+ \phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
Using vector identities to rewrite the advection term, and expanding the fluid
stress tensor term:
t@@ -98,9 +102,9 @@ stress tensor term:
+ \nabla \cdot (\phi v_x \boldsymbol{v})
- \phi v_x (\nabla \cdot \boldsymbol{v})
= \frac{1}{\rho} \left[ -\nabla \phi p \right]_x
- + \frac{1}{\rho} \left[ -\phi \nabla p \right]_x
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
Spatial variations in the porosity are neglected,
t@@ -121,7 +125,8 @@ With these assumptions, the momentum equation simplifies t…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= -\frac{1}{\rho} \frac{\partial p}{\partial x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
The remaining part of the advection term is for the :math:`x` component
found as:
t@@ -338,7 +343,8 @@ presented by Langtangen et al. (2002), the predicted velo…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
\Downarrow
t@@ -347,7 +353,8 @@ presented by Langtangen et al. (2002), the predicted velo…
+ \nabla \cdot (\phi v_x \boldsymbol{v})
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
We want to isolate :math:`\Delta v_x` in the above equation in order to project
the new velocity.
t@@ -356,7 +363,8 @@ the new velocity.
\phi \frac{\Delta v_x}{\Delta t}
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
- + \phi f_x
+ - \frac{1}{\rho} f^i_x
+ + \phi g_x
- v_x \frac{\Delta \phi}{\Delta t}
- \nabla \cdot (\phi v_x \boldsymbol{v})
t@@ -364,7 +372,8 @@ the new velocity.
= - \frac{1}{\rho} \frac{\Delta p}{\Delta x} \frac{\Delta t}{\phi}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi \boldsymbol{\tau}) \right]_x
\frac{\Delta t}{\phi}
- + \Delta t f_x
+ - \frac{\Delta t}{\rho\phi} f^i_x
+ + \Delta t g_x
- v_x \frac{\Delta \phi}{\phi}
- \nabla \cdot (\phi v_x \boldsymbol{v}) \frac{\Delta t}{\phi}
t@@ -381,7 +390,8 @@ in `Chorin (1968)`_.
- \frac{\beta}{\rho} \frac{\Delta p^t}{\Delta x} \frac{\Delta t}{\phi^t}
+ \frac{1}{\rho} \left[ \nabla \cdot (\phi^t \boldsymbol{\tau}^t) \right]_x
\frac{\Delta t}{\phi}
- + \Delta t f_x
+ - \frac{\Delta t}{\rho\phi} f^i_x
+ + \Delta t g_x
- v^t_x \frac{\Delta \phi}{\phi^t}
- \nabla \cdot (\phi^t v_x^t \boldsymbol{v}^t) \frac{\Delta t}{\phi^t}
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.