Introduction
Introduction Statistics Contact Development Disclaimer Help
tsave values from shear visualization in object - sphere - GPU-based 3D discret…
git clone git://src.adamsgaard.dk/sphere
Log
Files
Refs
LICENSE
---
commit 3f3d9a2a75100827aa45919187110a03c2d7013b
parent 1c2410fe794079eef38c903222d8414177cd9a1e
Author: Anders Damsgaard <[email protected]>
Date: Fri, 5 Sep 2014 11:59:30 +0200
save values from shear visualization in object
Diffstat:
M python/sphere.py | 39 +++++++++++++++++------------…
1 file changed, 21 insertions(+), 18 deletions(-)
---
diff --git a/python/sphere.py b/python/sphere.py
t@@ -4921,24 +4921,24 @@ class sim:
# First iteration: Allocate arrays and find constant values
if (i == 0):
# Shear displacement
- xdisp = numpy.zeros(lastfile+1, dtype=numpy.float64)
+ self.xdisp = numpy.zeros(lastfile+1, dtype=numpy.float…
# Normal stress
- sigma_eff = numpy.zeros(lastfile+1, dtype=numpy.float64)
+ self.sigma_eff = numpy.zeros(lastfile+1, dtype=numpy.float…
# Normal stress
- sigma_def = numpy.zeros(lastfile+1, dtype=numpy.float64)
+ self.sigma_def = numpy.zeros(lastfile+1, dtype=numpy.float…
# Shear stress
- tau = numpy.zeros(lastfile+1, dtype=numpy.float64)
+ self.tau = numpy.zeros(lastfile+1, dtype=numpy.float…
# Upper wall position
- dilation = numpy.zeros(lastfile+1, dtype=numpy.float64)
+ self.dilation = numpy.zeros(lastfile+1, dtype=numpy.float…
# Upper wall position
- tau_u = 0.0 # Peak shear stress
+ self.tau_u = 0.0 # Peak shear stress
# Shear strain value of peak sh. stress
- tau_u_shearstrain = 0.0
+ self.tau_u_shearstrain = 0.0
fixvel = numpy.nonzero(sb.fixvel > 0.0)
#fixvel_upper = numpy.nonzero(sb.vel[fixvel,0] > 0.0)
t@@ -4949,12 +4949,12 @@ class sim:
# Summation of shear stress contributions
for j in fixvel[0]:
if (sb.vel[j,0] > 0.0):
- tau[i] += -sb.force[j,0]
+ self.tau[i] += -sb.force[j,0]
if (i > 0):
- xdisp[i] = xdisp[i-1] + sb.time_file_dt[0] * shearvel
- sigma_eff[i] = sb.w_force[0] / A
- sigma_def[i] = sb.w_devs[0]
+ self.xdisp[i] = self.xdisp[i-1] +sb.time_file_dt[0]*shearv…
+ self.sigma_eff[i] = sb.w_force[0] / A
+ self.sigma_def[i] = sb.w_devs[0]
# dilation in meters
#dilation[i] = sb.w_x[0] - w_x0
t@@ -4967,18 +4967,20 @@ class sim:
if numpy.isnan(d_bar):
raise Exception("Error, d_bar is NaN. Please check that th…
+ " radii are initialized.")
- dilation[i] = (sb.w_x[0] - w_x0)/d_bar
+ self.dilation[i] = (sb.w_x[0] - w_x0)/d_bar
# Test if this was the max. shear stress
- if (tau[i] > tau_u):
- tau_u = tau[i]
- tau_u_shearstrain = xdisp[i]/w_x0
+ if (self.tau[i] > self.tau_u):
+ self.tau_u = tau[i]
+ self.tau_u_shearstrain = xdisp[i]/w_x0
+ self.shear_strain = self.xdisp/self.w_x0
+
# Plot stresses
if (outformat != 'txt'):
shearinfo = "$\\tau_u$ = {:.3} Pa at $\gamma$ = {:.3}".format(\
- tau_u, tau_u_shearstrain)
+ self.tau_u, self.tau_u_shearstrain)
fig.text(0.01, 0.01, shearinfo, horizontalalignment='left',
fontproperties=FontProperties(size=14))
ax1 = plt.subplot2grid((2,1), (0,0))
t@@ -4988,7 +4990,8 @@ class sim:
#ax1.plot(xdisp / w_x0, sigma_eff, '+-g', label="$\sigma'$")
#ax1.plot(xdisp / w_x0, sigma_def, '+-b', label="$\sigma_0$")
#ax1.plot(xdisp / w_x0, tau, '+-r', label="$\\tau$")
- ax1.plot(xdisp / w_x0, tau/sigma_eff, '.-', label="$\\tau$")
+ ax1.plot(self.shear_strain, self.tau/self.sigma_eff,\
+ '.-', label="$\\tau$")
#ax1.legend(loc=4)
ax1.grid()
t@@ -4998,7 +5001,7 @@ class sim:
#ax2.set_ylabel('Dilation [m]')
#ax2.set_ylabel('Dilation [%]')
ax2.set_ylabel('Dilation, $\Delta h/(2\\bar{r})$ [m]')
- ax2.plot(xdisp/w_x0, dilation, '.-')
+ ax2.plot(self.shear_strain, self.dilation, '.-')
ax2.grid()
fig.tight_layout()
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.