tdoc.tex - slidergrid - grid of elastic sliders on a frictional surface | |
git clone git://src.adamsgaard.dk/slidergrid | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
tdoc.tex (14294B) | |
--- | |
1 \documentclass[11pt,a4paper]{article} | |
2 | |
3 \usepackage{a4wide} | |
4 | |
5 %\usepackage[german, english]{babel} | |
6 %\usepackage{tabularx} | |
7 %\usepackage{cancel} | |
8 %\usepackage{multirow} | |
9 %\usepackage{supertabular} | |
10 %\usepackage{algorithmic} | |
11 %\usepackage{algorithm} | |
12 %\usepackage{amsthm} | |
13 %\usepackage{float} | |
14 %\usepackage{subfig} | |
15 %\usepackage{rotating} | |
16 \usepackage{amsmath} | |
17 \setcounter{MaxMatrixCols}{20} % allow more than 10 matrix columns | |
18 | |
19 \usepackage[T1]{fontenc} % Font encoding | |
20 \usepackage{charter} % Serif body font | |
21 \usepackage[charter]{mathdesign} % Math font | |
22 \usepackage[scale=0.8]{sourcecodepro} % Monospaced fontenc | |
23 \usepackage[lf]{FiraSans} % Sans-serif font | |
24 | |
25 \usepackage{listings} | |
26 | |
27 \usepackage{hyperref} | |
28 | |
29 \usepackage{soul} % for st strikethrough command | |
30 | |
31 %\usepackage[round]{natbib} | |
32 \usepackage[natbib=true, style=authoryear, bibstyle=authoryear-comp, | |
33 maxbibnames=10, | |
34 maxcitenames=2, backend=bibtex8]{biblatex} | |
35 \bibliography{/home/ad/articles/own/BIBnew.bib} | |
36 | |
37 | |
38 \begin{document} | |
39 | |
40 \title{Lagrangian model of the elastic, viscous and plastic deformation … | |
41 series of bonded nodes moving on a frictional surface} | |
42 | |
43 \author{Anders Damsgaard} | |
44 \date{{\small Institute of Geophysics and Planetary Physics\\Scripps Ins… | |
45 of Oceanography\\University of California, San Diego}\\[3mm] Last revisi… | |
46 \today} | |
47 | |
48 \maketitle | |
49 | |
50 \section{Methods} | |
51 Our approach treats the short-temporal scale behavior of stick-slip as a | |
52 rigid-body dynamics problem. The material is represented as a discrete … | |
53 of Lagrangian points (\emph{nodes}) which are mechanically interacting w… | |
54 other and the boundary conditions. | |
55 | |
56 The Lagrangian nodes are connected with visco-elastic beam elements. | |
57 The bonds are resistive to tension and compression, shearing, twisting, … | |
58 bending, which ensures elastic uniformity regardless of geometric node | |
59 arrangement \citep{Bolander1998, Radjai2011}. Alternatively, the node | |
60 interaction could be parameterized as simple springs which exclusively p… | |
61 resistance to tension and compression, and resistance to shearing, bendi… | |
62 twisting would be introduced by discretizing the elastic material into a… | |
63 irregular network of many more nodes \citep[e.g.][]{Topin2007, Topin2009… | |
64 we chose the former approach which allows us to keep the number of nodes… | |
65 | |
66 The kinematic degrees of freedom are determined by explicit integration … | |
67 Newton's second law of motion for translation and rotation. For a point… | |
68 with bonded interactions to nodes $j\in N_c$, the translational accelera… | |
69 ($\boldsymbol{a}$) are found from the sums of forces: | |
70 \begin{equation} | |
71 \boldsymbol{a}_i = | |
72 \frac{ | |
73 \boldsymbol{f}_i^\text{d} | |
74 + \boldsymbol{f}_i^\text{f} | |
75 + \sum^{N_c}_j \left[ | |
76 \boldsymbol{f}_{i,j}^\text{p} + | |
77 \boldsymbol{f}_{i,j}^\text{s} | |
78 \right] | |
79 }{m_i} | |
80 + \boldsymbol{g} | |
81 \label{eq:n2-tran} | |
82 \end{equation} | |
83 where $\boldsymbol{f}_i^\text{d}$ is the gravitational driving stress du… | |
84 surface slope, $\boldsymbol{g}$ is the gravitational acceleration, and | |
85 $\boldsymbol{f}_i^\text{f}$ is the frictional force provided if the poin… | |
86 resting on the lower surface. Bonded interaction with another point $j$ | |
87 contributes to translational acceleration through bond-parallel and bond… | |
88 shear forces, $\boldsymbol{f}_{i,j}^\text{p}$ and | |
89 $\boldsymbol{f}_{i,j}^\text{s}$, respectively. | |
90 | |
91 The angular accelerations ($\boldsymbol{\alpha}$) are found from the sum… | |
92 torques: | |
93 \begin{equation} | |
94 \boldsymbol{\alpha}_i = | |
95 \sum^{N_c}_j | |
96 \left[ | |
97 \frac{\boldsymbol{t}^{i,j}_{\bar{x}}}{I^\text{p}_{i,j}} + | |
98 \frac{\boldsymbol{t}^{i,j}_{\bar{y}}}{I^\text{n}_{i,j}} + | |
99 \frac{\boldsymbol{t}^{i,j}_{\bar{z}}}{I^\text{n}_{i,j}} | |
100 \right] | |
101 \label{eq:n2-ang} | |
102 \end{equation} | |
103 here, $\boldsymbol{t}^\text{s}$ is the torque resulting from shearing mo… | |
104 the bond, while the torque $\boldsymbol{t}^{t}$ results from relative tw… | |
105 $I^\text{n}_{i,j}$ is the bond-normal mass moment of inertia at the poin… | |
106 $I^\text{p}$ is polar mass moment of inertia of the bond. The above equ… | |
107 implies the simplifying assumption that the nodes are bonded in a config… | |
108 with geometric symmetry, which is a good approximation inside the grid b… | |
109 slightly worse at the grid edges. | |
110 | |
111 | |
112 \subsection{Visco-elastic interaction between nodes} | |
113 The total force ($\boldsymbol{f}$) and torque ($\boldsymbol{t}$) on two … | |
114 ($i$ and $j$) is found by determining the stress response of a three-dim… | |
115 elastic Timoshenko beam to strain \citet{Schlangen1996, Austrell2004, | |
116 Aastroem2013}. | |
117 In the following the forces and torques are described for node $i$ but a… | |
118 of equal magnitude and with opposite sign for node $j$. The interaction | |
119 accounts for resistance to tension and compression, shear, torsion, and … | |
120 The equations below are derived from the stiffness matrix in | |
121 \citet{Austrell2004}. The components for the three-dimensional force ve… | |
122 node $i$ are: | |
123 \begin{equation} | |
124 \begin{split} | |
125 f_{\bar{x}}^i & = \frac{EA}{L} | |
126 \left( p_{\bar{x}}^{*,i} - p_{\bar{x}}^{*,j} \right)\\ | |
127 % | |
128 f_{\bar{y}}^i & = \frac{12EI_A}{L^3} | |
129 \left( p_{\bar{y}}^{*,i} - p_{\bar{y}}^{*,j} \right) | |
130 + \frac{6EI_A}{L^2} | |
131 \left( \Omega_{\bar{z}}^{*,i} + \Omega_{\bar{z}}^{*,j} \right)\\ | |
132 % | |
133 f_{\bar{z}}^i & = \frac{12EI_A}{L^3} | |
134 \left( p_{\bar{z}}^{*,i} - p_{\bar{z}}^{*,j} \right) | |
135 - \frac{6EI_A}{L^2} | |
136 \left( \Omega_{\bar{y}}^{*,i} + \Omega_{\bar{y}}^{*,j} \right) | |
137 \end{split} | |
138 \end{equation} | |
139 where $\bar{x}, \bar{y}, \bar{z}$ are the bond-relative coordinates. | |
140 The linear and angular relative displacement of the nodes is described b… | |
141 and $\Omega^*$. $E$ is Young's modulus, $G$ is the shear modulus, $A$ i… | |
142 beam cross-sectional area, and $L$ is the original beam length. $I_A$ is… | |
143 area moment of inertia of the beam ($I_A = a^4 12^{-1}$ where $a$ is the… | |
144 side length). The torque on node $i$ is: | |
145 \begin{equation} | |
146 \begin{split} | |
147 t_{\bar{x}}^i & = \frac{GJ}{L} | |
148 \left( \Omega_{\bar{x}}^{*,i} + \Omega_{\bar{x}}^{*,j} \right)\\ | |
149 % | |
150 t_{\bar{y}}^i & = \frac{6EI_A}{L^2} | |
151 \left(p_{\bar{z}}^{*,j} - p_{\bar{z}}^{*,i} \right) | |
152 + \frac{4EI_A}{L} | |
153 \left( \Omega_{\bar{y}}^{*,i} + \frac{\Omega_{\bar{y}}^{*,j}}{2} | |
154 \right)\\ | |
155 % | |
156 t_{\bar{z}}^i & = \frac{6EI_A}{L^2} | |
157 \left(p_{\bar{y}}^{*,i} - p_{\bar{y}}^{*,j} \right) | |
158 + \frac{4EI_A}{L} | |
159 \left( \Omega_{\bar{z}}^{*,i} + \frac{\Omega_{\bar{z}}^{*,j}}{2} | |
160 \right)\\ | |
161 \end{split} | |
162 \end{equation} | |
163 $GJ$ is the Saint-Venant torsional stiffness, where $J$ called the torsi… | |
164 rigidity multiplier or torsion constant. For a beam with a solid square | |
165 cross-sectional shape it can be approximated as $J \approx 0.140577 a^4$… | |
166 $a$ is the side length \citep{Timoshenko1951, Roark1954, Weisstein2016}… | |
167 | |
168 % Torsional constant: | |
169 % https://en.wikipedia.org/wiki/Torsion_constant | |
170 % http://mathworld.wolfram.com/TorsionalRigidity.html (K: K_v) | |
171 % http://physics.stackexchange.com/questions/83148/where-i-can-find-a-to… | |
172 % St Venant torsion: K_v = 1/G (Austrell et al. 2004, table 3) Does it … | |
173 % chapter4.pdf: K_v = J | |
174 % https://skyciv.com/free-moment-of-inertia-calculator/ | |
175 | |
176 | |
177 The deformation and reactive forces are determined relative to the orien… | |
178 of the bond. Common geometrical vectors include the inter-distance vect… | |
179 $\boldsymbol{d}$ between nodes $\boldsymbol{p}_i$ and $\boldsymbol{p}_j$: | |
180 \begin{equation} | |
181 \boldsymbol{d}_{i,j} = \boldsymbol{p}_i - \boldsymbol{p}_j | |
182 \end{equation} | |
183 which in normalized form constitutes the bond-parallel unit vector: | |
184 \begin{equation} | |
185 \boldsymbol{n}_{i,j} = \frac{\boldsymbol{d}_{i,j}}{||\boldsymbol{d}_… | |
186 \end{equation} | |
187 | |
188 The nodes move by translational and rotational velocities. The combined | |
189 relative velocity between the nodes is found as \citep[e.g.][]{Hinrichse… | |
190 Luding2008}: | |
191 \begin{equation} | |
192 \boldsymbol{v}_{i,j} = \boldsymbol{v}_i - \boldsymbol{v}_j + | |
193 \frac{\boldsymbol{d}_{i,j}}{2} \times \boldsymbol{\omega}_i + | |
194 \frac{\boldsymbol{d}_{i,j}}{2} \times \boldsymbol{\omega}_j | |
195 \end{equation} | |
196 The velocity can be decomposed into spatial components relative to the b… | |
197 orientation, e.g.\ the bond-parallel and bond-shear velocity, respective… | |
198 \begin{equation} | |
199 v^\text{p}_{i,j} = \boldsymbol{v}_{i,j} \cdot \boldsymbol{n}_{i,j} | |
200 \end{equation} | |
201 \begin{equation} | |
202 \boldsymbol{v}^\text{s}_{i,j} = \boldsymbol{v}_{i,j} - \boldsymbol{n… | |
203 \left( | |
204 \boldsymbol{v}_{i,j} | |
205 \cdot | |
206 \boldsymbol{n}_{i,j} | |
207 \right) | |
208 \end{equation} | |
209 | |
210 | |
211 | |
212 \subsection{Temporal integration} | |
213 Once the force and torque sum components at time $t$ have been determine… | |
214 kinematic degrees of freedom at time $t+\Delta t$ can be found by explic… | |
215 temporal integration of moment balance equations~\ref{eq:n2-tran} | |
216 and~\ref{eq:n2-ang}. | |
217 We use an integration scheme based on the third-order Taylor expansion, … | |
218 results in a truncation error on the order of $O(\Delta t^4)$ for positi… | |
219 $O(\Delta t^3)$ for velocities. This scheme includes changes in acceler… | |
220 the highest order term, which are approximated by backwards differences.… | |
221 the translational degrees of freedom: | |
222 \begin{equation} | |
223 \boldsymbol{p}^i_{t+\Delta t} = | |
224 \boldsymbol{p}^i_{t} + | |
225 \boldsymbol{v}^i_{t} \Delta t + | |
226 \frac{1}{2} \boldsymbol{a}^i_{t} \Delta t^2 + | |
227 \frac{1}{6} \frac{\boldsymbol{a}^i_{t} | |
228 - \boldsymbol{a}^i_{t - \Delta t}}{\Delta t} \Delta t^3 | |
229 \end{equation} | |
230 \begin{equation} | |
231 \boldsymbol{v}^i_{t+\Delta t} = | |
232 \boldsymbol{v}^i_{t} + | |
233 \boldsymbol{a}^i_{t} \Delta t + | |
234 \frac{1}{2} \frac{\boldsymbol{a}^i_{t} | |
235 - \boldsymbol{a}^i_{t - \Delta t}}{\Delta t} \Delta t^2 | |
236 \end{equation} | |
237 At $t=0$ the acceleration change term is defined as zero. The angular d… | |
238 of freedom are found correspondingly: | |
239 \begin{equation} | |
240 \boldsymbol{\Omega}^i_{t+\Delta t} = | |
241 \boldsymbol{\Omega}^i_{t} + | |
242 \boldsymbol{\omega}^i_{t} \Delta t + | |
243 \frac{1}{2} \boldsymbol{\alpha}^i_{t} \Delta t^2 + | |
244 \frac{1}{6} \frac{\boldsymbol{\alpha}^i_{t} | |
245 - \boldsymbol{\alpha}^i_{t - \Delta t}}{\Delta t} \Delta t^3 | |
246 \end{equation} | |
247 \begin{equation} | |
248 \boldsymbol{\omega}^i_{t+\Delta t} = | |
249 \boldsymbol{\omega}^i_{t} + | |
250 \boldsymbol{\alpha}^i_{t} \Delta t + | |
251 \frac{1}{2} \frac{\boldsymbol{\alpha}^i_{t} | |
252 - \boldsymbol{\alpha}^i_{t - \Delta t}}{\Delta t} \Delta t^2 | |
253 \end{equation} | |
254 | |
255 The numerical time step $\Delta t$ is found by considering the largest e… | |
256 stiffness in the system relative to the smallest mass: | |
257 \begin{equation} | |
258 \Delta t = | |
259 \epsilon | |
260 \left[ | |
261 \min (m_i)^{-1} | |
262 \max \left( | |
263 \max \left( | |
264 \frac{E A_{i,j}}{||\boldsymbol{d}_{0}^{i,j}||} | |
265 \right) | |
266 , | |
267 \max \left( | |
268 \frac{G A_{i,j}}{||\boldsymbol{d}^{i,j}||} | |
269 \right) | |
270 \right) | |
271 \right]^{-1/2} | |
272 \end{equation} | |
273 where $\epsilon$ is a safety factor related to the geometric structure o… | |
274 bonded network. We use $\epsilon = 0.07$. | |
275 | |
276 | |
277 \appendix | |
278 \section{Stiffness matrix} | |
279 \begin{equation} | |
280 \begin{bmatrix} | |
281 f_{\bar{x}}^i\\[0.6em] | |
282 f_{\bar{y}}^i\\[0.6em] | |
283 f_{\bar{z}}^i\\[0.6em] | |
284 t_{\bar{x}}^i\\[0.6em] | |
285 t_{\bar{y}}^i\\[0.6em] | |
286 t_{\bar{z}}^i\\[0.6em] | |
287 f_{\bar{x}}^j\\[0.6em] | |
288 f_{\bar{y}}^j\\[0.6em] | |
289 f_{\bar{z}}^j\\[0.6em] | |
290 t_{\bar{x}}^j\\[0.6em] | |
291 t_{\bar{y}}^j\\[0.6em] | |
292 t_{\bar{z}}^j\\ | |
293 \end{bmatrix} | |
294 = | |
295 \begin{bmatrix} | |
296 \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{-EA}{L} & 0 & 0 & 0 & 0… | |
297 0 & \frac{12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 & \frac{6EI_{\bar{z}}… | |
298 0 & \frac{-12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 & | |
299 \frac{6EI_{\bar{z}}}{L^2}\\[0.5em] | |
300 0 & 0 & \frac{12EI_{\bar{y}}}{L^3} & 0 & \frac{-6EI_{\bar{y}}}{L… | |
301 & 0 & 0 & \frac{-12EI_{\bar{y}}}{L^3} & 0 & \frac{-6EI_{\bar{y}}… | |
302 0\\[0.5em] | |
303 0 & 0 & 0 & \frac{GJ}{L} & 0 & 0 & 0 & 0 & 0 & \frac{-GJ}{L} & 0… | |
304 0\\[0.5em] | |
305 0 & 0 & \frac{-6EI_{\bar{y}}}{L^2} & 0 & \frac{4EI_{\bar{y}}}{L}… | |
306 & 0 & \frac{6EI_{\bar{y}}}{L^2} & 0 & \frac{2EI_{\bar{y}}}{L} & | |
307 0\\[0.5em] | |
308 0 & \frac{6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & \frac{4EI_{\bar{z}}}… | |
309 & \frac{-6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & | |
310 \frac{2EI_{\bar{z}}}{L}\\[0.5em] | |
311 \frac{-EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{EA}{L} & 0 & 0 & 0 & 0… | |
312 0 & \frac{-12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 & \frac{-6EI_{\bar{z… | |
313 & 0 & \frac{12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 & | |
314 \frac{-6EI_{\bar{z}}}{L^2}\\[0.5em] | |
315 0 & 0 & \frac{-12EI_{\bar{y}}}{L^3} & 0 & \frac{-6EI_{\bar{y}}}{… | |
316 & 0 & 0 & \frac{12EI_{\bar{y}}}{L^3} & 0 & \frac{6EI_{\bar{y}}}{… | |
317 0\\[0.5em] | |
318 0 & 0 & 0 & \frac{-GJ}{L} & 0 & 0 & 0 & 0 & 0 & \frac{GJ}{L} & 0… | |
319 0\\[0.5em] | |
320 0 & 0 & \frac{-6EI_{\bar{y}}}{L^2} & 0 & \frac{2EI_{\bar{y}}}{L}… | |
321 & 0 & \frac{6EI_{\bar{y}}}{L^2} & 0 & \frac{4EI_{\bar{y}}}{L} & | |
322 0\\[0.5em] | |
323 0 & \frac{6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & \frac{2EI_{\bar{z}}}… | |
324 & \frac{-6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & \frac{4EI_{\bar{z}}}{L}\\ | |
325 \end{bmatrix} | |
326 \begin{bmatrix} | |
327 p_{\bar{x}}^i\\[0.6em] | |
328 p_{\bar{y}}^i\\[0.6em] | |
329 p_{\bar{z}}^i\\[0.6em] | |
330 \Omega_{\bar{x}}^i\\[0.6em] | |
331 \Omega_{\bar{y}}^i\\[0.6em] | |
332 \Omega_{\bar{z}}^i\\[0.6em] | |
333 p_{\bar{x}}^j\\[0.6em] | |
334 p_{\bar{y}}^j\\[0.6em] | |
335 p_{\bar{z}}^j\\[0.6em] | |
336 \Omega_{\bar{x}}^j\\[0.6em] | |
337 \Omega_{\bar{y}}^j\\[0.6em] | |
338 \Omega_{\bar{z}}^j\\ | |
339 \end{bmatrix} | |
340 \end{equation} | |
341 | |
342 | |
343 | |
344 \printbibliography{} | |
345 | |
346 \end{document} |