Introduction
Introduction Statistics Contact Development Disclaimer Help
tdoc.tex - slidergrid - grid of elastic sliders on a frictional surface
git clone git://src.adamsgaard.dk/slidergrid
Log
Files
Refs
README
LICENSE
---
tdoc.tex (14294B)
---
1 \documentclass[11pt,a4paper]{article}
2
3 \usepackage{a4wide}
4
5 %\usepackage[german, english]{babel}
6 %\usepackage{tabularx}
7 %\usepackage{cancel}
8 %\usepackage{multirow}
9 %\usepackage{supertabular}
10 %\usepackage{algorithmic}
11 %\usepackage{algorithm}
12 %\usepackage{amsthm}
13 %\usepackage{float}
14 %\usepackage{subfig}
15 %\usepackage{rotating}
16 \usepackage{amsmath}
17 \setcounter{MaxMatrixCols}{20} % allow more than 10 matrix columns
18
19 \usepackage[T1]{fontenc} % Font encoding
20 \usepackage{charter} % Serif body font
21 \usepackage[charter]{mathdesign} % Math font
22 \usepackage[scale=0.8]{sourcecodepro} % Monospaced fontenc
23 \usepackage[lf]{FiraSans} % Sans-serif font
24
25 \usepackage{listings}
26
27 \usepackage{hyperref}
28
29 \usepackage{soul} % for st strikethrough command
30
31 %\usepackage[round]{natbib}
32 \usepackage[natbib=true, style=authoryear, bibstyle=authoryear-comp,
33 maxbibnames=10,
34 maxcitenames=2, backend=bibtex8]{biblatex}
35 \bibliography{/home/ad/articles/own/BIBnew.bib}
36
37
38 \begin{document}
39
40 \title{Lagrangian model of the elastic, viscous and plastic deformation …
41 series of bonded nodes moving on a frictional surface}
42
43 \author{Anders Damsgaard}
44 \date{{\small Institute of Geophysics and Planetary Physics\\Scripps Ins…
45 of Oceanography\\University of California, San Diego}\\[3mm] Last revisi…
46 \today}
47
48 \maketitle
49
50 \section{Methods}
51 Our approach treats the short-temporal scale behavior of stick-slip as a
52 rigid-body dynamics problem. The material is represented as a discrete …
53 of Lagrangian points (\emph{nodes}) which are mechanically interacting w…
54 other and the boundary conditions.
55
56 The Lagrangian nodes are connected with visco-elastic beam elements.
57 The bonds are resistive to tension and compression, shearing, twisting, …
58 bending, which ensures elastic uniformity regardless of geometric node
59 arrangement \citep{Bolander1998, Radjai2011}. Alternatively, the node
60 interaction could be parameterized as simple springs which exclusively p…
61 resistance to tension and compression, and resistance to shearing, bendi…
62 twisting would be introduced by discretizing the elastic material into a…
63 irregular network of many more nodes \citep[e.g.][]{Topin2007, Topin2009…
64 we chose the former approach which allows us to keep the number of nodes…
65
66 The kinematic degrees of freedom are determined by explicit integration …
67 Newton's second law of motion for translation and rotation. For a point…
68 with bonded interactions to nodes $j\in N_c$, the translational accelera…
69 ($\boldsymbol{a}$) are found from the sums of forces:
70 \begin{equation}
71 \boldsymbol{a}_i =
72 \frac{
73 \boldsymbol{f}_i^\text{d}
74 + \boldsymbol{f}_i^\text{f}
75 + \sum^{N_c}_j \left[
76 \boldsymbol{f}_{i,j}^\text{p} +
77 \boldsymbol{f}_{i,j}^\text{s}
78 \right]
79 }{m_i}
80 + \boldsymbol{g}
81 \label{eq:n2-tran}
82 \end{equation}
83 where $\boldsymbol{f}_i^\text{d}$ is the gravitational driving stress du…
84 surface slope, $\boldsymbol{g}$ is the gravitational acceleration, and
85 $\boldsymbol{f}_i^\text{f}$ is the frictional force provided if the poin…
86 resting on the lower surface. Bonded interaction with another point $j$
87 contributes to translational acceleration through bond-parallel and bond…
88 shear forces, $\boldsymbol{f}_{i,j}^\text{p}$ and
89 $\boldsymbol{f}_{i,j}^\text{s}$, respectively.
90
91 The angular accelerations ($\boldsymbol{\alpha}$) are found from the sum…
92 torques:
93 \begin{equation}
94 \boldsymbol{\alpha}_i =
95 \sum^{N_c}_j
96 \left[
97 \frac{\boldsymbol{t}^{i,j}_{\bar{x}}}{I^\text{p}_{i,j}} +
98 \frac{\boldsymbol{t}^{i,j}_{\bar{y}}}{I^\text{n}_{i,j}} +
99 \frac{\boldsymbol{t}^{i,j}_{\bar{z}}}{I^\text{n}_{i,j}}
100 \right]
101 \label{eq:n2-ang}
102 \end{equation}
103 here, $\boldsymbol{t}^\text{s}$ is the torque resulting from shearing mo…
104 the bond, while the torque $\boldsymbol{t}^{t}$ results from relative tw…
105 $I^\text{n}_{i,j}$ is the bond-normal mass moment of inertia at the poin…
106 $I^\text{p}$ is polar mass moment of inertia of the bond. The above equ…
107 implies the simplifying assumption that the nodes are bonded in a config…
108 with geometric symmetry, which is a good approximation inside the grid b…
109 slightly worse at the grid edges.
110
111
112 \subsection{Visco-elastic interaction between nodes}
113 The total force ($\boldsymbol{f}$) and torque ($\boldsymbol{t}$) on two …
114 ($i$ and $j$) is found by determining the stress response of a three-dim…
115 elastic Timoshenko beam to strain \citet{Schlangen1996, Austrell2004,
116 Aastroem2013}.
117 In the following the forces and torques are described for node $i$ but a…
118 of equal magnitude and with opposite sign for node $j$. The interaction
119 accounts for resistance to tension and compression, shear, torsion, and …
120 The equations below are derived from the stiffness matrix in
121 \citet{Austrell2004}. The components for the three-dimensional force ve…
122 node $i$ are:
123 \begin{equation}
124 \begin{split}
125 f_{\bar{x}}^i & = \frac{EA}{L}
126 \left( p_{\bar{x}}^{*,i} - p_{\bar{x}}^{*,j} \right)\\
127 %
128 f_{\bar{y}}^i & = \frac{12EI_A}{L^3}
129 \left( p_{\bar{y}}^{*,i} - p_{\bar{y}}^{*,j} \right)
130 + \frac{6EI_A}{L^2}
131 \left( \Omega_{\bar{z}}^{*,i} + \Omega_{\bar{z}}^{*,j} \right)\\
132 %
133 f_{\bar{z}}^i & = \frac{12EI_A}{L^3}
134 \left( p_{\bar{z}}^{*,i} - p_{\bar{z}}^{*,j} \right)
135 - \frac{6EI_A}{L^2}
136 \left( \Omega_{\bar{y}}^{*,i} + \Omega_{\bar{y}}^{*,j} \right)
137 \end{split}
138 \end{equation}
139 where $\bar{x}, \bar{y}, \bar{z}$ are the bond-relative coordinates.
140 The linear and angular relative displacement of the nodes is described b…
141 and $\Omega^*$. $E$ is Young's modulus, $G$ is the shear modulus, $A$ i…
142 beam cross-sectional area, and $L$ is the original beam length. $I_A$ is…
143 area moment of inertia of the beam ($I_A = a^4 12^{-1}$ where $a$ is the…
144 side length). The torque on node $i$ is:
145 \begin{equation}
146 \begin{split}
147 t_{\bar{x}}^i & = \frac{GJ}{L}
148 \left( \Omega_{\bar{x}}^{*,i} + \Omega_{\bar{x}}^{*,j} \right)\\
149 %
150 t_{\bar{y}}^i & = \frac{6EI_A}{L^2}
151 \left(p_{\bar{z}}^{*,j} - p_{\bar{z}}^{*,i} \right)
152 + \frac{4EI_A}{L}
153 \left( \Omega_{\bar{y}}^{*,i} + \frac{\Omega_{\bar{y}}^{*,j}}{2}
154 \right)\\
155 %
156 t_{\bar{z}}^i & = \frac{6EI_A}{L^2}
157 \left(p_{\bar{y}}^{*,i} - p_{\bar{y}}^{*,j} \right)
158 + \frac{4EI_A}{L}
159 \left( \Omega_{\bar{z}}^{*,i} + \frac{\Omega_{\bar{z}}^{*,j}}{2}
160 \right)\\
161 \end{split}
162 \end{equation}
163 $GJ$ is the Saint-Venant torsional stiffness, where $J$ called the torsi…
164 rigidity multiplier or torsion constant. For a beam with a solid square
165 cross-sectional shape it can be approximated as $J \approx 0.140577 a^4$…
166 $a$ is the side length \citep{Timoshenko1951, Roark1954, Weisstein2016}…
167
168 % Torsional constant:
169 % https://en.wikipedia.org/wiki/Torsion_constant
170 % http://mathworld.wolfram.com/TorsionalRigidity.html (K: K_v)
171 % http://physics.stackexchange.com/questions/83148/where-i-can-find-a-to…
172 % St Venant torsion: K_v = 1/G (Austrell et al. 2004, table 3) Does it …
173 % chapter4.pdf: K_v = J
174 % https://skyciv.com/free-moment-of-inertia-calculator/
175
176
177 The deformation and reactive forces are determined relative to the orien…
178 of the bond. Common geometrical vectors include the inter-distance vect…
179 $\boldsymbol{d}$ between nodes $\boldsymbol{p}_i$ and $\boldsymbol{p}_j$:
180 \begin{equation}
181 \boldsymbol{d}_{i,j} = \boldsymbol{p}_i - \boldsymbol{p}_j
182 \end{equation}
183 which in normalized form constitutes the bond-parallel unit vector:
184 \begin{equation}
185 \boldsymbol{n}_{i,j} = \frac{\boldsymbol{d}_{i,j}}{||\boldsymbol{d}_…
186 \end{equation}
187
188 The nodes move by translational and rotational velocities. The combined
189 relative velocity between the nodes is found as \citep[e.g.][]{Hinrichse…
190 Luding2008}:
191 \begin{equation}
192 \boldsymbol{v}_{i,j} = \boldsymbol{v}_i - \boldsymbol{v}_j +
193 \frac{\boldsymbol{d}_{i,j}}{2} \times \boldsymbol{\omega}_i +
194 \frac{\boldsymbol{d}_{i,j}}{2} \times \boldsymbol{\omega}_j
195 \end{equation}
196 The velocity can be decomposed into spatial components relative to the b…
197 orientation, e.g.\ the bond-parallel and bond-shear velocity, respective…
198 \begin{equation}
199 v^\text{p}_{i,j} = \boldsymbol{v}_{i,j} \cdot \boldsymbol{n}_{i,j}
200 \end{equation}
201 \begin{equation}
202 \boldsymbol{v}^\text{s}_{i,j} = \boldsymbol{v}_{i,j} - \boldsymbol{n…
203 \left(
204 \boldsymbol{v}_{i,j}
205 \cdot
206 \boldsymbol{n}_{i,j}
207 \right)
208 \end{equation}
209
210
211
212 \subsection{Temporal integration}
213 Once the force and torque sum components at time $t$ have been determine…
214 kinematic degrees of freedom at time $t+\Delta t$ can be found by explic…
215 temporal integration of moment balance equations~\ref{eq:n2-tran}
216 and~\ref{eq:n2-ang}.
217 We use an integration scheme based on the third-order Taylor expansion, …
218 results in a truncation error on the order of $O(\Delta t^4)$ for positi…
219 $O(\Delta t^3)$ for velocities. This scheme includes changes in acceler…
220 the highest order term, which are approximated by backwards differences.…
221 the translational degrees of freedom:
222 \begin{equation}
223 \boldsymbol{p}^i_{t+\Delta t} =
224 \boldsymbol{p}^i_{t} +
225 \boldsymbol{v}^i_{t} \Delta t +
226 \frac{1}{2} \boldsymbol{a}^i_{t} \Delta t^2 +
227 \frac{1}{6} \frac{\boldsymbol{a}^i_{t}
228 - \boldsymbol{a}^i_{t - \Delta t}}{\Delta t} \Delta t^3
229 \end{equation}
230 \begin{equation}
231 \boldsymbol{v}^i_{t+\Delta t} =
232 \boldsymbol{v}^i_{t} +
233 \boldsymbol{a}^i_{t} \Delta t +
234 \frac{1}{2} \frac{\boldsymbol{a}^i_{t}
235 - \boldsymbol{a}^i_{t - \Delta t}}{\Delta t} \Delta t^2
236 \end{equation}
237 At $t=0$ the acceleration change term is defined as zero. The angular d…
238 of freedom are found correspondingly:
239 \begin{equation}
240 \boldsymbol{\Omega}^i_{t+\Delta t} =
241 \boldsymbol{\Omega}^i_{t} +
242 \boldsymbol{\omega}^i_{t} \Delta t +
243 \frac{1}{2} \boldsymbol{\alpha}^i_{t} \Delta t^2 +
244 \frac{1}{6} \frac{\boldsymbol{\alpha}^i_{t}
245 - \boldsymbol{\alpha}^i_{t - \Delta t}}{\Delta t} \Delta t^3
246 \end{equation}
247 \begin{equation}
248 \boldsymbol{\omega}^i_{t+\Delta t} =
249 \boldsymbol{\omega}^i_{t} +
250 \boldsymbol{\alpha}^i_{t} \Delta t +
251 \frac{1}{2} \frac{\boldsymbol{\alpha}^i_{t}
252 - \boldsymbol{\alpha}^i_{t - \Delta t}}{\Delta t} \Delta t^2
253 \end{equation}
254
255 The numerical time step $\Delta t$ is found by considering the largest e…
256 stiffness in the system relative to the smallest mass:
257 \begin{equation}
258 \Delta t =
259 \epsilon
260 \left[
261 \min (m_i)^{-1}
262 \max \left(
263 \max \left(
264 \frac{E A_{i,j}}{||\boldsymbol{d}_{0}^{i,j}||}
265 \right)
266 ,
267 \max \left(
268 \frac{G A_{i,j}}{||\boldsymbol{d}^{i,j}||}
269 \right)
270 \right)
271 \right]^{-1/2}
272 \end{equation}
273 where $\epsilon$ is a safety factor related to the geometric structure o…
274 bonded network. We use $\epsilon = 0.07$.
275
276
277 \appendix
278 \section{Stiffness matrix}
279 \begin{equation}
280 \begin{bmatrix}
281 f_{\bar{x}}^i\\[0.6em]
282 f_{\bar{y}}^i\\[0.6em]
283 f_{\bar{z}}^i\\[0.6em]
284 t_{\bar{x}}^i\\[0.6em]
285 t_{\bar{y}}^i\\[0.6em]
286 t_{\bar{z}}^i\\[0.6em]
287 f_{\bar{x}}^j\\[0.6em]
288 f_{\bar{y}}^j\\[0.6em]
289 f_{\bar{z}}^j\\[0.6em]
290 t_{\bar{x}}^j\\[0.6em]
291 t_{\bar{y}}^j\\[0.6em]
292 t_{\bar{z}}^j\\
293 \end{bmatrix}
294 =
295 \begin{bmatrix}
296 \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{-EA}{L} & 0 & 0 & 0 & 0…
297 0 & \frac{12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 & \frac{6EI_{\bar{z}}…
298 0 & \frac{-12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 &
299 \frac{6EI_{\bar{z}}}{L^2}\\[0.5em]
300 0 & 0 & \frac{12EI_{\bar{y}}}{L^3} & 0 & \frac{-6EI_{\bar{y}}}{L…
301 & 0 & 0 & \frac{-12EI_{\bar{y}}}{L^3} & 0 & \frac{-6EI_{\bar{y}}…
302 0\\[0.5em]
303 0 & 0 & 0 & \frac{GJ}{L} & 0 & 0 & 0 & 0 & 0 & \frac{-GJ}{L} & 0…
304 0\\[0.5em]
305 0 & 0 & \frac{-6EI_{\bar{y}}}{L^2} & 0 & \frac{4EI_{\bar{y}}}{L}…
306 & 0 & \frac{6EI_{\bar{y}}}{L^2} & 0 & \frac{2EI_{\bar{y}}}{L} &
307 0\\[0.5em]
308 0 & \frac{6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & \frac{4EI_{\bar{z}}}…
309 & \frac{-6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 &
310 \frac{2EI_{\bar{z}}}{L}\\[0.5em]
311 \frac{-EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{EA}{L} & 0 & 0 & 0 & 0…
312 0 & \frac{-12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 & \frac{-6EI_{\bar{z…
313 & 0 & \frac{12EI_{\bar{z}}}{L^3} & 0 & 0 & 0 &
314 \frac{-6EI_{\bar{z}}}{L^2}\\[0.5em]
315 0 & 0 & \frac{-12EI_{\bar{y}}}{L^3} & 0 & \frac{-6EI_{\bar{y}}}{…
316 & 0 & 0 & \frac{12EI_{\bar{y}}}{L^3} & 0 & \frac{6EI_{\bar{y}}}{…
317 0\\[0.5em]
318 0 & 0 & 0 & \frac{-GJ}{L} & 0 & 0 & 0 & 0 & 0 & \frac{GJ}{L} & 0…
319 0\\[0.5em]
320 0 & 0 & \frac{-6EI_{\bar{y}}}{L^2} & 0 & \frac{2EI_{\bar{y}}}{L}…
321 & 0 & \frac{6EI_{\bar{y}}}{L^2} & 0 & \frac{4EI_{\bar{y}}}{L} &
322 0\\[0.5em]
323 0 & \frac{6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & \frac{2EI_{\bar{z}}}…
324 & \frac{-6EI_{\bar{z}}}{L^2} & 0 & 0 & 0 & \frac{4EI_{\bar{z}}}{L}\\
325 \end{bmatrix}
326 \begin{bmatrix}
327 p_{\bar{x}}^i\\[0.6em]
328 p_{\bar{y}}^i\\[0.6em]
329 p_{\bar{z}}^i\\[0.6em]
330 \Omega_{\bar{x}}^i\\[0.6em]
331 \Omega_{\bar{y}}^i\\[0.6em]
332 \Omega_{\bar{z}}^i\\[0.6em]
333 p_{\bar{x}}^j\\[0.6em]
334 p_{\bar{y}}^j\\[0.6em]
335 p_{\bar{z}}^j\\[0.6em]
336 \Omega_{\bar{x}}^j\\[0.6em]
337 \Omega_{\bar{y}}^j\\[0.6em]
338 \Omega_{\bar{z}}^j\\
339 \end{bmatrix}
340 \end{equation}
341
342
343
344 \printbibliography{}
345
346 \end{document}
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.