Introduction
Introduction Statistics Contact Development Disclaimer Help
tadd system of equations for 3d beam - slidergrid - grid of elastic sliders on …
git clone git://src.adamsgaard.dk/slidergrid
Log
Files
Refs
README
LICENSE
---
commit 897289bb9cc3233e556ccd4b863cdfaf4dea29b0
parent 01b81b008518de59f62d4471b397364dd6b78f9a
Author: Anders Damsgaard Christensen <[email protected]>
Date: Mon, 2 May 2016 09:58:42 -0700
add system of equations for 3d beam
Diffstat:
M doc/doc.pdf | 0
M doc/doc.tex | 295 ++++++++++++++++++++++++++++-…
M slidergrid/slider.h | 4 ++++
3 files changed, 275 insertions(+), 24 deletions(-)
---
diff --git a/doc/doc.pdf b/doc/doc.pdf
Binary files differ.
diff --git a/doc/doc.tex b/doc/doc.tex
t@@ -1,4 +1,4 @@
-\documentclass[11pt]{article}
+\documentclass[11pt,a4paper]{article}
\usepackage{a4wide}
t@@ -14,6 +14,7 @@
%\usepackage{subfig}
%\usepackage{rotating}
\usepackage{amsmath}
+\setcounter{MaxMatrixCols}{20} % allow more than 10 matrix columns
\usepackage[T1]{fontenc} % Font encoding
\usepackage{charter} % Serif body font
t@@ -37,7 +38,7 @@ maxcitenames=2, backend=bibtex8]{biblatex}
\begin{document}
\title{Lagrangian model of the elastic, viscous and plastic deformation of a
- series of bonded points moving on a frictional surface}
+ series of bonded nodes moving on a frictional surface}
\author{Anders Damsgaard}
\date{{\small Institute of Geophysics and Planetary Physics\\Scripps Instituti…
t@@ -46,54 +47,300 @@ of Oceanography\\University of California, San Diego}\\[3…
\maketitle
-
\section{Methods}
-The Lagrangian points are connected with visco-elastic beams which are resisti…
-to relative translational or rotational movement between a pair of bonded
-points. At the beginning of each time step the accumulated strain on each
-inter-point bond is determined by considering the relative motion of the bonde…
-points. The bond deformation is decomposed per kinematic degree of freedom,
-andis determined by an incremental method derived from \citet{Potyondy2004}.
-The strain can be decomposed into bond tension and compression, bond shearing,
-bond twisting, and bond bending. The accumulated strains are used to determin…
-the magnitude of the forces and torques resistive to the deformation.
+The method is derived from \citet{Schlangen1996}, \citet{Radjai2011} and
+\citet{Potyondy2004} but is, relative to the cited works, adapted for three
+spatial dimensions and non-linear properties.
+
+The Lagrangian nodes are connected with visco-elastic beam elements which are
+resistive to relative translational or rotational movement. The kinematic
+degrees of freedom are determined by explicit integration of Newton's second l…
+of motion for translation and rotation. For a point $i$ with bonded
+interactions to nodes $j\in N_c$, the translational accelerations
+($\boldsymbol{a}$) are found from the sums of forces:
+\begin{equation}
+ \boldsymbol{a}_i =
+ \frac{
+ \boldsymbol{f}_i^\text{d}
+ + \boldsymbol{f}_i^\text{f}
+ + \sum^{N_c}_j \left[
+ \boldsymbol{f}_{i,j}^\text{p} +
+ \boldsymbol{f}_{i,j}^\text{s}
+ \right]
+}{m_i}
+ + \boldsymbol{g}
+\label{eq:n2-tran}
+\end{equation}
+where $\boldsymbol{f}_i^\text{d}$ is the gravitational driving stress due to
+surface slope, $\boldsymbol{g}$ is the gravitational acceleration, and
+$\boldsymbol{f}_i^\text{f}$ is the frictional force provided if the point is
+resting on the lower surface. Bonded interaction with another point $j$
+contributes to translational acceleration through bond-parallel and bond-norma…
+shear forces, $\boldsymbol{f}_{i,j}^\text{p}$ and
+$\boldsymbol{f}_{i,j}^\text{s}$, respectively.
+
+The angular accelerations ($\boldsymbol{\alpha}$) are found from the sums of
+torques:
+\begin{equation}
+ \boldsymbol{\alpha}_i =
+ \sum^{N_c}_j
+ \left[
+ \frac{\boldsymbol{t}^\text{s}_{i,j}}{I_i} +
+ \frac{\boldsymbol{t}^\text{t}_{i,j}}{J_{i,i}}
+ \right]
+\label{eq:n2-ang}
+\end{equation}
+here, $\boldsymbol{t}^\text{s}$ is the torque resulting from shearing motion o…
+the bond, while the torque $\boldsymbol{t}^{t}$ results from relative twisting.
+$I_i$ is the local moment of inertia at the point, and $J_{i,j}$ is polar mome…
+of inertia of the bond.
+
+
+At the beginning of each time step the accumulated strain on each inter-point
+bond is determined by considering the relative motion of the bonded nodes. Th…
+bond deformation is decomposed per kinematic degree of freedom, andis determin…
+by an incremental method derived from \citet{Potyondy2004}. The strain can be
+decomposed into bond tension and compression, bond shearing, bond twisting, an…
+bond bending. The accumulated strains are used to determine the magnitude of
+the forces and torques resistive to the deformation.
The deformation and reactive forces are determined relative to the orientation
of the bond. Common geometrical vectors include the inter-distance vector
-$\boldsymbol{d}$ between points $\boldsymbol{p}_i$ and $\boldsymbol{p}_j$:
+$\boldsymbol{d}$ between nodes $\boldsymbol{p}_i$ and $\boldsymbol{p}_j$:
\begin{equation}
\boldsymbol{d}_{i,j} = \boldsymbol{p}_i - \boldsymbol{p}_j
\end{equation}
-which in normalized form constitutes the bond-parallel normal vector:
+which in normalized form constitutes the bond-parallel unit vector:
\begin{equation}
\boldsymbol{n}_{i,j} = \frac{\boldsymbol{d}_{i,j}}{||\boldsymbol{d}_{i,j}|…
\end{equation}
-The points are moving by translational and rotational velocities. The combine…
-relative velocity between the points is found as \citep{Hinrichsen2004,
+The nodes move by translational and rotational velocities. The combined
+relative velocity between the nodes is found as \citep[e.g.][]{Hinrichsen2004,
Luding2008}:
\begin{equation}
\boldsymbol{v}_{i,j} = \boldsymbol{v}_i - \boldsymbol{v}_j +
- \frac{d_{i,j}}{2} \times \omega_i +
- \frac{d_{i,j}}{2} \times \omega_j
+ \frac{\boldsymbol{d}_{i,j}}{2} \times \boldsymbol{\omega}_i +
+ \frac{\boldsymbol{d}_{i,j}}{2} \times \boldsymbol{\omega}_j
+\end{equation}
+The velocity can be decomposed into spatial components relative to the bond
+orientation, e.g.\ the bond-parallel and bond-shear velocity, respectively:
+\begin{equation}
+ v^\text{p}_{i,j} = \boldsymbol{v}_{i,j} \cdot \boldsymbol{n}_{i,j}
+\end{equation}
+\begin{equation}
+ \boldsymbol{v}^\text{s}_{i,j} = \boldsymbol{v}_{i,j} - \boldsymbol{n}_{i,j}
+ \left(
+ \boldsymbol{v}_{i,j}
+ \cdot
+ \boldsymbol{n}_{i,j}
+ \right)
\end{equation}
+The axial strain is the bond-parallel deformation and is determined as the
+change in inter-point length relative to the initial distance:
+\begin{equation}
+ \epsilon_a = \frac{
+ (\boldsymbol{d}_{i,j} - \boldsymbol{d}^0_{i,j}) \cdot n_{i,j}}
+ {||\boldsymbol{d}^0_{i,j}||}
+\end{equation}
+The cross-sectional area of a bond ($A_{i,j}$) varies with axial strain
+($\epsilon_a$) scaled by Poissons ratio $\nu$:
+\begin{equation}
+ A_{i,j} = A^0_{i,j}
+ - A^0_{i,j}
+ \left(
+ 1 -
+ \left(
+ 1 + \epsilon_a
+ \right)^{-\nu}
+ \right)
+\end{equation}
+The mass of point $i$ is defined as the half of the mass of each of its bonds:
+\begin{equation}
+ m_i = \frac{\rho}{2} \sum^{N_c}_j A^0_{i,j} ||\boldsymbol{d}^0_{i,j}||
+\end{equation}
+The density ($\rho$) is adjusted so that the total mass of all nodes matches t…
+desired value.
-
-\subsection{Bond tension and compression}
+\subsection{Resistance to tension and compression}
+Bond tension and compression takes place when the relative translational
+distance between a pair of bonded nodes changes, and is the most important
+deformational mode in this model. The current axial strain is determined with…
+second-order central difference scheme. It is determined from the previous
+point positions and projected future positions:
+\begin{equation}
+ \Delta d^t_{i,j} = \frac{d_{i,j}^{*,t+\Delta t} - d_{i,j}^{t-\Delta t}}{2}
+\end{equation}
+The future point distance in the above ($d_{i,j}^{*,t+\Delta}$) is found by
+applying a second-order Taylor expansion:
+\begin{equation}
+ \boldsymbol{p}_i^{*,t+\Delta t} =
+ \boldsymbol{p}_i^{t} +
+ \boldsymbol{v}_i^{t} \Delta t +
+ \frac{1}{2}\boldsymbol{a}_i^{t} \Delta t^2
+\end{equation}
-\subsection{Bond shear}
-\subsection{Bond twist}
+The bond-parallel force is determined from Young's modulus ($E$) and the
+cross-sectional area ($A_{i,j}$) of the bond:
+\begin{equation}
+ \boldsymbol{f}^{i,j}_\text{p} =
+ \frac{E A_{i,j}}{|| \boldsymbol{d}^0_{i,j} ||}
+ \left(
+ \boldsymbol{d}_{i,j} -
+ \boldsymbol{d}^0_{i,j}
+ \right)
+\end{equation}
-\subsection{Bond bend}
+\subsection{Shear resistance}
+The bond-shear force is determined incrementally for the duration of the
+interaction:
+\begin{equation}
+ \boldsymbol{f}^{i,j}_\text{s} = \int^t \Delta \boldsymbol{f}^{i,j}_\text{s…
+ %\, dt
+\end{equation}
+where the increment in shear force is determined from the shear modulus ($G$),
+the cross-sectional area ($A_{i,j}$) of the bond, and the
+\begin{equation}
+ \Delta \boldsymbol{f}^{i,j}_\text{s} =
+ \frac{G A_{i,j}}{||\boldsymbol{d}^{i,j}||}
+ \Delta \boldsymbol{d}^{i,j}_\text{s}
+\end{equation}
-\subsection{Temporal integration}
+\subsection{Twisting resistance}
+\subsection{Bending resistance}
+\subsection{Temporal integration}
+Once the force and torque sum components at time $t$ have been determined, the
+kinematic degrees of freedom at time $t+\Delta t$ can be found by explicit
+temporal integration of moment balance equations~\ref{eq:n2-tran}
+and~\ref{eq:n2-ang}.
+We use an integration scheme based on the third-order Taylor expansion, which
+results in a truncation error on the order of $O(\Delta t^4)$ for positions an…
+$O(\Delta t^3)$ for velocities. This scheme includes changes in acceleration …
+the highest order term, which are approximated by backwards differences. For
+the translational degrees of freedom:
+\begin{equation}
+ \boldsymbol{p}^i_{t+\Delta t} =
+ \boldsymbol{p}^i_{t} +
+ \boldsymbol{v}^i_{t} \Delta t +
+ \frac{1}{2} \boldsymbol{a}^i_{t} \Delta t^2 +
+ \frac{1}{6} \frac{\boldsymbol{a}^i_{t}
+ - \boldsymbol{a}^i_{t - \Delta t}}{\Delta t} \Delta t^3
+\end{equation}
+\begin{equation}
+ \boldsymbol{v}^i_{t+\Delta t} =
+ \boldsymbol{v}^i_{t} +
+ \boldsymbol{a}^i_{t} \Delta t +
+ \frac{1}{2} \frac{\boldsymbol{a}^i_{t}
+ - \boldsymbol{a}^i_{t - \Delta t}}{\Delta t} \Delta t^2
+\end{equation}
+At $t=0$ the acceleration change term is defined as zero. The angular degrees
+of freedom are found correspondingly:
+\begin{equation}
+ \boldsymbol{\Omega}^i_{t+\Delta t} =
+ \boldsymbol{\Omega}^i_{t} +
+ \boldsymbol{\omega}^i_{t} \Delta t +
+ \frac{1}{2} \boldsymbol{\alpha}^i_{t} \Delta t^2 +
+ \frac{1}{6} \frac{\boldsymbol{\alpha}^i_{t}
+ - \boldsymbol{\alpha}^i_{t - \Delta t}}{\Delta t} \Delta t^3
+\end{equation}
+\begin{equation}
+ \boldsymbol{\omega}^i_{t+\Delta t} =
+ \boldsymbol{\omega}^i_{t} +
+ \boldsymbol{\alpha}^i_{t} \Delta t +
+ \frac{1}{2} \frac{\boldsymbol{\alpha}^i_{t}
+ - \boldsymbol{\alpha}^i_{t - \Delta t}}{\Delta t} \Delta t^2
+\end{equation}
+The numerical time step $\Delta t$ is found by considering the largest elastic
+stiffness in the system relative to the smallest mass:
+\begin{equation}
+ \Delta t =
+ \epsilon
+ \left[
+ \min (m_i)^{-1}
+ \max \left(
+ \max \left(
+ \frac{E A_{i,j}}{||\boldsymbol{d}_{0}^{i,j}||}
+ \right)
+ ,
+ \max \left(
+ \frac{G A_{i,j}}{||\boldsymbol{d}^{i,j}||}
+ \right)
+ \right)
+ \right]^{-1/2}
+\end{equation}
+where $\epsilon$ is a safety factor related to the geometric structure of the
+bonded network. We use $\epsilon = 0.07$.
+
+The total force ($\boldsymbol{f}$) and torque ($\boldsymbol{t}$) on two nodes
+($i$ and $j$) with translational ($\boldsymbol{p}$) and angular
+($\boldsymbol{\Omega}$) positions interconnected with a three-dimensional
+elastic beam can be expressed as the following set of equations. The
+interaction accounts for resistance to tension and compression, shear, torsion…
+and bending. The symmetrical matrix on the right hand side constitutes the
+\emph{stiffness matrix} \citep{Schlangen1996, Austrell2004}:
+\begin{equation}
+ \begin{bmatrix}
+ f_\text{x}^i\\[0.6em]
+ f_\text{y}^i\\[0.6em]
+ f_\text{z}^i\\[0.6em]
+ t_\text{x}^i\\[0.6em]
+ t_\text{y}^i\\[0.6em]
+ t_\text{z}^i\\[0.6em]
+ f_\text{x}^j\\[0.6em]
+ f_\text{y}^j\\[0.6em]
+ f_\text{z}^j\\[0.6em]
+ t_\text{x}^j\\[0.6em]
+ t_\text{y}^j\\[0.6em]
+ t_\text{z}^j\\
+ \end{bmatrix}
+ =
+ \begin{bmatrix}
+ \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{-EA}{L} & 0 & 0 & 0 & 0 & 0\\…
+ 0 & \frac{12EI_\text{z}}{L^3} & 0 & 0 & 0 & \frac{6EI_\text{z}}{L^2} &…
+ 0 & 0 & \frac{12EI_\text{y}}{L^3} & 0 & \frac{-6EI_\text{y}}{L^2} & 0 …
+ 0 & 0 & 0 & \frac{GK_\text{v}}{L} & 0 & 0 & 0 & 0 & 0 & \frac{-GK_\tex…
+ 0 & 0 & \frac{-6EI_\text{y}}{L^2} & 0 & \frac{4EI_\text{y}}{L} & 0 & 0…
+ 0 & \frac{6EI_\text{z}}{L^2} & 0 & 0 & 0 & \frac{4EI_\text{z}}{L} & 0 …
+ \frac{-EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{EA}{L} & 0 & 0 & 0 & 0 & 0\\…
+ 0 & \frac{-12EI_\text{z}}{L^3} & 0 & 0 & 0 & \frac{-6EI_\text{z}}{L^2}…
+ 0 & 0 & \frac{-12EI_\text{y}}{L^3} & 0 & \frac{-6EI_\text{y}}{L^2} & 0…
+ 0 & 0 & 0 & \frac{-GK_\text{v}}{L} & 0 & 0 & 0 & 0 & 0 & \frac{GK_\tex…
+ 0 & 0 & \frac{-6EI_\text{y}}{L^2} & 0 & \frac{2EI_\text{y}}{L} & 0 & 0…
+ 0 & \frac{6EI_\text{z}}{L^2} & 0 & 0 & 0 & \frac{2EI_\text{z}}{L} & 0 …
+ \end{bmatrix}
+ \begin{bmatrix}
+ p_\text{x}^i\\[0.6em]
+ p_\text{y}^i\\[0.6em]
+ p_\text{z}^i\\[0.6em]
+ \Omega_\text{x}^i\\[0.6em]
+ \Omega_\text{y}^i\\[0.6em]
+ \Omega_\text{z}^i\\[0.6em]
+ p_\text{x}^j\\[0.6em]
+ p_\text{y}^j\\[0.6em]
+ p_\text{z}^j\\[0.6em]
+ \Omega_\text{x}^j\\[0.6em]
+ \Omega_\text{y}^j\\[0.6em]
+ \Omega_\text{z}^j\\
+ \end{bmatrix}
+\end{equation}
+$E$ is Young's modulus, $G$ is the shear stiffnes, $A$ is the beam
+cross-sectional area, and $L$ is the original beam length. $I_\text{y}$ is the
+moment of inertia normal to the beam in the $\bar{y}$-direction, and
+$I_\text{z}$ is the moment of inertia normal to the beam in the
+$\bar{z}$-direction. $K_\text{v}$ is the Saint-Venant torsional stiffness.
+
+% Torsional constant:
+% https://en.wikipedia.org/wiki/Torsion_constant
+% http://mathworld.wolfram.com/TorsionalRigidity.html
+% http://physics.stackexchange.com/questions/83148/where-i-can-find-a-torsiona…
+% St Venant torsion: K_v = 1/G (Austrell et al. 2004, table 3) Does it make s…
diff --git a/slidergrid/slider.h b/slidergrid/slider.h
t@@ -31,6 +31,10 @@ typedef struct {
// moment of inertia [kg m*m]
Float moment_of_inertia;
+ // Macroscopic mechanical properties
+ Float youngs_modulus;
+ Float shear_modulus;
+
// inter-slider bond-parallel Kelvin-Voigt contact model parameters
Float bond_parallel_kv_stiffness; // Hookean elastic stiffness [N/m]
Float bond_parallel_kv_viscosity; // viscosity [N/(m*s)]
You are viewing proxied material from mx1.adamsgaard.dk. The copyright of proxied material belongs to its original authors. Any comments or complaints in relation to proxied material should be directed to the original authors of the content concerned. Please see the disclaimer for more details.