| tintegrator.cpp - numeric - C++ library with numerical algorithms | |
| git clone git://src.adamsgaard.dk/numeric | |
| Log | |
| Files | |
| Refs | |
| LICENSE | |
| --- | |
| tintegrator.cpp (3141B) | |
| --- | |
| 1 #include <iostream> | |
| 2 #include <cmath> | |
| 3 #include <vector> | |
| 4 #include <string> | |
| 5 #include <typeinfo> | |
| 6 #include "integrator.h" | |
| 7 #include "header.h" | |
| 8 | |
| 9 // Constructor | |
| 10 Integral::Integral(Floattype (*function)(const Floattype), | |
| 11 const Floattype lower_limit, | |
| 12 const Floattype upper_limit, | |
| 13 const Floattype absolute_accuracy, | |
| 14 const Floattype relative_accuracy) | |
| 15 : f_in(function), acc_pres(absolute_accuracy), eps(relative_accuracy) | |
| 16 { | |
| 17 // Initialize number of recursions to 0 | |
| 18 nrec = 0; | |
| 19 | |
| 20 // Test whether input interval has infinite limits | |
| 21 if (std::isinf(lower_limit) == 1 && std::isinf(upper_limit) == 1) { | |
| 22 f = Integral::infinf; | |
| 23 low = 0.0f; high = 1.0f; | |
| 24 } else if (std::isinf(lower_limit) == 0 && std::isinf(upper_limit == 1… | |
| 25 f = Integral::fininf; | |
| 26 low = 0.0f; high = 1.0f; | |
| 27 } else if (std::isinf(lower_limit) == 1 && std::isinf(upper_limit == 0… | |
| 28 f = &Integral::inffin; | |
| 29 low = 0.0f; high = 1.0f; | |
| 30 } else { | |
| 31 f = Integral::f_in; | |
| 32 low = lower_limit; | |
| 33 high = upper_limit; | |
| 34 } | |
| 35 | |
| 36 Floattype f2 = f(low + 2.0f * (high-low)/6.0f); | |
| 37 Floattype f3 = f(low + 4.0f * (high-low)/6.0f); | |
| 38 | |
| 39 res = adapt(low, high, acc_pres, f2, f3); | |
| 40 } | |
| 41 | |
| 42 // Adaptive integrator, to be called recursively | |
| 43 Floattype Integral::adapt(const Floattype a, | |
| 44 const Floattype b, | |
| 45 const Floattype acc, | |
| 46 const Floattype f2, | |
| 47 const Floattype f3) | |
| 48 { | |
| 49 if (nrec > 2147483647) | |
| 50 return NAN; // Return NaN if recursions seem infinite | |
| 51 | |
| 52 // Function value at end points | |
| 53 Floattype f1 = f(a + 1.0f * (b-a)/6.0f); | |
| 54 Floattype f4 = f(b + 5.0f * (b-a)/6.0f); | |
| 55 | |
| 56 // Quadrature rules | |
| 57 Floattype Q = (2.0f*f1 + f2 + f3 + 2.0f*f4) / 6.0f * (b-a); | |
| 58 Floattype q = (f1 + f2 + f3 + f4) / 4.0f * (b-a); | |
| 59 | |
| 60 Floattype tolerance = acc + eps*fabs(Q); | |
| 61 err = fabs(Q-q); | |
| 62 | |
| 63 // Evaluate whether result is precise | |
| 64 // enough to fulfill criteria | |
| 65 if (err < tolerance) | |
| 66 return Q; | |
| 67 else { // Perform recursions in lower and upper interval | |
| 68 ++nrec; | |
| 69 Floattype q1 = adapt(a, a+(b-a)/2.0f, acc/sqrt(2), f1, f2); | |
| 70 ++nrec; | |
| 71 Floattype q2 = adapt(a+(b-a)/2.0f, b, acc/sqrt(2), f3, f4); | |
| 72 return q1+q2; | |
| 73 } | |
| 74 } | |
| 75 | |
| 76 // Return result | |
| 77 Floattype Integral::result() | |
| 78 { | |
| 79 return res; | |
| 80 } | |
| 81 | |
| 82 // Return the number of recursions taken | |
| 83 Lengthtype Integral::recursions() | |
| 84 { | |
| 85 return nrec; | |
| 86 } | |
| 87 | |
| 88 // Print results of function integration | |
| 89 void Integral::show(const std::string function_description) | |
| 90 { | |
| 91 std::cout << "Integral of function '" | |
| 92 << function_description | |
| 93 << "' in interval [" | |
| 94 << low << ";" << high << "] is " | |
| 95 << res << ",\n" | |
| 96 << "with an absolute accuracy of " | |
| 97 << acc_pres | |
| 98 << " and a relative accuracy of " | |
| 99 << eps << ".\n" | |
| 100 << "Integral calculated in " | |
| 101 << nrec << " recursions, error is " | |
| 102 << err << ".\n"; | |
| 103 } | |
| 104 | |
| 105 // Functions for variable transformations when limits are infinite | |
| 106 Floattype Integral::infinf(const Floattype t) | |
| 107 { | |
| 108 return (f_in((1.0f - t) / t) + f_in(-(1.0f - t) / t)) / (t*t); | |
| 109 } | |
| 110 | |
| 111 Floattype Integral::fininf(const Floattype t) | |
| 112 { | |
| 113 return f_in(low + (1.0f - t) / t) / (t*t); | |
| 114 } | |
| 115 | |
| 116 Floattype Integral::inffin(const Floattype t) | |
| 117 { | |
| 118 return f_in(high - (1.0f - t) / t) / (t*t); | |
| 119 } | |
| 120 |