tadd simple 1d example, WIP - granular-channel-hydro - subglacial hydrology mod… | |
git clone git://src.adamsgaard.dk/granular-channel-hydro | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
commit 9c1dfa711717600fb0bc43f6d6503294c5cddd9b | |
parent ea147780409ef9eacaa3e3cf29f1f10f4a8b8817 | |
Author: Anders Damsgaard Christensen <[email protected]> | |
Date: Mon, 30 Jan 2017 22:36:55 -0800 | |
add simple 1d example, WIP | |
Diffstat: | |
A 1d-test.py | 277 +++++++++++++++++++++++++++++… | |
M granular_channel_drainage/model.py | 18 ++++++++++++++++++ | |
2 files changed, 295 insertions(+), 0 deletions(-) | |
--- | |
diff --git a/1d-test.py b/1d-test.py | |
t@@ -0,0 +1,277 @@ | |
+#!/usr/bin/env python | |
+ | |
+## ABOUT THIS FILE | |
+# The following script uses basic Python and Numpy functionality to solve the | |
+# coupled systems of equations describing subglacial channel development in | |
+# soft beds as presented in `Damsgaard et al. "Sediment plasticity controls | |
+# channelization of subglacial meltwater in soft beds"`, submitted to Journal | |
+# of Glaciology. | |
+# High performance is not the goal for this implementation, which is instead | |
+# intended as a heavily annotated example on the solution procedure without | |
+# relying on solver libraries, suitable for low-level languages like C, Fortran | |
+# or CUDA. | |
+ | |
+ | |
+import numpy | |
+import matplotlib.pyplot as plt | |
+ | |
+ | |
+## Model parameters | |
+Ns = 10 # Number of nodes [-] | |
+Ls = 100e3 # Model length [m] | |
+#dt = 24.*60.*60. # Time step length [s] | |
+#dt = 1. # Time step length [s] | |
+dt = 60.*60.*24 # Time step length [s] | |
+#t_end = 24.*60.*60.*7. # Total simulation time [s] | |
+t_end = dt*4 | |
+tol_Q = 1e-3 # Tolerance criteria for the normalized max. residual for Q | |
+tol_N_c = 1e-3 # Tolerance criteria for the normalized max. residual for N_c | |
+max_iter = 1e4 # Maximum number of solver iterations before failure | |
+output_convergence = True | |
+ | |
+# Physical parameters | |
+rho_w = 1000. # Water density [kg/m^3] | |
+rho_i = 910. # Ice density [kg/m^3] | |
+rho_s = 2700. # Sediment density [kg/m^3] | |
+g = 9.8 # Gravitational acceleration [m/s^2] | |
+theta = 30. # Angle of internal friction in sediment [deg] | |
+ | |
+# Walder and Fowler 1994 sediment transport parameters | |
+K_e = 0.1 # Erosion constant [-], disabled when 0.0 | |
+#K_d = 6. # Deposition constant [-], disabled when 0.0 | |
+K_d = 0.0 # Deposition constant [-], disabled when 0.0 | |
+#D50 = 1e-3 # Median grain size [m] | |
+#tau_c = 0.5*g*(rho_s - rho_i)*D50 # Critical shear stress for transport | |
+d15 = 1e-3 # Characteristic grain size [m] | |
+#tau_c = 0.025*d15*g*(rho_s - rho_i) # Critical shear stress (Carter 2016) | |
+tau_c = 0. | |
+mu_w = 1.787e-3 # Water viscosity [Pa*s] | |
+froude = 0.1 # Friction factor [-] | |
+v_s = d15**2.*g*2.*(rho_s - rho_i)/(9.*mu_w) # Settling velocity (Carter 2016) | |
+ | |
+# Hewitt 2011 channel flux parameters | |
+manning = 0.1 # Manning roughness coefficient [m^{-1/3} s] | |
+F = rho_w*g*manning*(2.*(numpy.pi + 2)**2./numpy.pi)**(2./3.) | |
+ | |
+# Channel growth-limit parameters | |
+c_1 = -0.118 # [m/kPa] | |
+c_2 = 4.60 # [m] | |
+ | |
+# Minimum channel size [m^2], must be bigger than 0 | |
+S_min = 1e-2 | |
+ | |
+ | |
+ | |
+## Initialize model arrays | |
+# Node positions, terminus at Ls | |
+s = numpy.linspace(0., Ls, Ns) | |
+ds = s[:-1] - s[1:] | |
+ | |
+# Ice thickness and bed topography | |
+H = 6.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0 | |
+b = numpy.zeros_like(H) | |
+ | |
+N = H*0.1*rho_i*g # Initial effective stress [Pa] | |
+p_w = rho_i*g*H - N # Water pressure [Pa], here at floatation | |
+hydro_pot = rho_w*g*b + p_w # Hydraulic potential [Pa] | |
+ | |
+#m_dot = 7.93e-11 # Water source term [m/s] | |
+m_dot = 5.79e-9 # Water source term [m/s] | |
+#m_dot = 4.5e-8 # Water source term [m/s] | |
+ | |
+# Initialize arrays for channel segments between nodes | |
+S = numpy.ones(len(s) - 1)*S_min # Cross-sectional area of channel segments[m^… | |
+S_max = numpy.zeros_like(S) # Max. channel size [m^2] | |
+dSdt = numpy.empty_like(S) # Transient in channel cross-sectional area [m^2/s] | |
+W = S/numpy.tan(numpy.deg2rad(theta)) # Assuming no channel floor wedge | |
+Q = numpy.zeros_like(S) # Water flux in channel segments [m^3/s] | |
+Q_s = numpy.zeros_like(S) # Sediment flux in channel segments [m^3/s] | |
+N_c = numpy.zeros_like(S) # Effective pressure in channel segments [Pa] | |
+e_dot = numpy.zeros_like(S) # Sediment erosion rate in channel segments [m/s] | |
+d_dot = numpy.zeros_like(S) # Sediment deposition rate in chan. segments [m/s] | |
+c_bar = numpy.zeros_like(S) # Vertically integrated sediment content [m] | |
+tau = numpy.zeros_like(S) # Avg. shear stress from current [Pa] | |
+porosity = numpy.ones_like(S)*0.3 # Sediment porosity [-] | |
+res = numpy.zeros_like(S) # Solution residual during solver iterations | |
+ | |
+ | |
+## Helper functions | |
+def gradient(arr, arr_x): | |
+ # Central difference gradient of an array ``arr`` with node positions at | |
+ # ``arr_x``. | |
+ return (arr[:-1] - arr[1:])/(arr_x[:-1] - arr_x[1:]) | |
+ | |
+def avg_midpoint(arr): | |
+ # Averaged value of neighboring array elements | |
+ return (arr[:-1] + arr[1:])/2. | |
+ | |
+def channel_water_flux(S, hydro_pot_grad): | |
+ # Hewitt 2011 | |
+ return numpy.sqrt(1./F*S**(8./3.)*-hydro_pot_grad) | |
+ | |
+def channel_shear_stress(Q, S): | |
+ # Weertman 1972, Walder and Fowler 1994 | |
+ u_bar = Q*S | |
+ return 1./8.*froude*rho_w*u_bar**2. | |
+ | |
+def channel_erosion_rate(tau): | |
+ # Parker 1979, Walder and Fowler 1994 | |
+ return K_e*v_s*(tau - tau_c).clip(0.)/(g*(rho_s - rho_w)*d15) | |
+ | |
+def channel_deposition_rate_kernel(tau, c_bar, ix): | |
+ # Parker 1979, Walder and Fowler 1994 | |
+ return K_d*v_s*c_bar[ix]*(g*(rho_s - rho_w)*d15/tau[ix])**0.5 | |
+ | |
+def channel_deposition_rate(tau, c_bar, d_dot, Ns): | |
+ # Parker 1979, Walder and Fowler 1994 | |
+ # Find deposition rate from upstream to downstream, margin at is=0 | |
+ #for ix in numpy.arange(Ns-2, -1, -1): | |
+ for ix in numpy.arange(Ns - 1): | |
+ if ix == 0: # No sediment deposition at upstream end | |
+ c_bar[ix] = 0. | |
+ d_dot[ix] = 0. | |
+ else: | |
+ c_bar[ix] = (e_dot[ix - 1] - d_dot[ix - 1])*dt | |
+ d_dot[ix] = channel_deposition_rate_kernel(tau, c_bar, ix) | |
+ | |
+ return d_dot, c_bar | |
+ | |
+ | |
+def channel_growth_rate(e_dot, d_dot, porosity, W): | |
+ # Damsgaard et al, in prep | |
+ return (e_dot - d_dot)/porosity*W | |
+ | |
+def update_channel_size_with_limit(S, dSdt, dt, N): | |
+ # Damsgaard et al, in prep | |
+ S_max = ((c_1*N/1000. + c_2)*\ | |
+ numpy.tan(numpy.deg2rad(theta))).clip(min=S_min) | |
+ S = numpy.minimum(S + dSdt*dt, S_max).clip(min=S_min) | |
+ W = S/numpy.tan(numpy.deg2rad(theta)) # Assume no channel floor wedge | |
+ return S, W, S_max | |
+ | |
+def flux_and_pressure_solver(S): | |
+ # Iteratively find new fluxes and effective pressures in nested loops | |
+ | |
+ it_Q = 0 | |
+ max_res_Q = 1e9 # arbitrary large value | |
+ while max_res_Q > tol_Q: | |
+ | |
+ Q_old = Q.copy() | |
+ # dQ/ds = m_dot -> Q_out = m*delta(s) - Q_in | |
+ # Propagate information along drainage direction (upwind) | |
+ Q[1:] = m_dot*ds[1:] - Q[:-1] | |
+ max_res_Q = numpy.max(numpy.abs((Q - Q_old)/(Q + 1e-16))) | |
+ | |
+ if output_convergence: | |
+ print('it_Q = {}: max_res_Q = {}'.format(it_Q, max_res_Q)) | |
+ | |
+ it_N_c = 0 | |
+ max_res_N_c = 1e9 # arbitrary large value | |
+ while max_res_N_c > tol_N_c: | |
+ | |
+ N_c_old = N_c.copy() | |
+ # dN_c/ds = FQ^2/S^{8/3} - psi -> | |
+ #if it_N_c % 2 == 0: # Alternate direction between iterations | |
+ #N_c[1:] = F*Q[1:]**2./(S[1:]**(8./3.))*ds[1:] \ | |
+ #- psi[1:]*ds[1:] + N_c[:-1] # Downstream | |
+ #else: | |
+ N_c[:-1] = -F*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1] \ | |
+ + psi[:-1]*ds[:-1] + N_c[1:] # Upstream | |
+ | |
+ # Dirichlet BC at terminus | |
+ N_c[-1] = 0. | |
+ | |
+ max_res_N_c = numpy.max(numpy.abs((N_c - N_c_old)/(N_c + 1e-16))) | |
+ | |
+ if output_convergence: | |
+ print('it_N_c = {}: max_res_N_c = {}'.format(it_N_c, | |
+ max_res_N_c)) | |
+ | |
+ if it_N_c >= max_iter: | |
+ raise Exception('t = {}, step = {}:'.format(t, step) + | |
+ 'Iterative solution not found for N_c') | |
+ it_N_c += 1 | |
+ #import ipdb; ipdb.set_trace() | |
+ | |
+ #import ipdb; ipdb.set_trace() | |
+ if it_Q >= max_iter: | |
+ raise Exception('t = {}, step = {}:'.format(t, step) + | |
+ 'Iterative solution not found for Q') | |
+ it_Q += 1 | |
+ | |
+ return Q, N_c | |
+ | |
+def plot_state(step): | |
+ # Plot parameters along profile | |
+ plt.plot(s_c/1000., S, '-k', label='$S$') | |
+ plt.plot(s_c/1000., S_max, '--k', label='$S_{max}$') | |
+ plt.plot(s_c/1000., Q, '-b', label='$Q$') | |
+ plt.plot(s_c/1000., N_c/1000., '--r', label='$N_c$') | |
+ #plt.plot(s, b, ':k', label='$b$') | |
+ #plt.plot(s, b, ':k', label='$b$') | |
+ plt.legend() | |
+ plt.xlabel('Distance from terminus [km]') | |
+ plt.tight_layout() | |
+ if step == -1: | |
+ plt.savefig('chan-0.init.pdf') | |
+ else: | |
+ plt.savefig('chan-' + str(step) + '.pdf') | |
+ plt.clf() | |
+ | |
+s_c = avg_midpoint(s) # Channel section midpoint coordinates [m] | |
+ | |
+## Initialization | |
+# Find gradient in hydraulic potential between the nodes | |
+hydro_pot_grad = gradient(hydro_pot, s) | |
+ | |
+# Find effective pressure in channels [Pa] | |
+N_c = avg_midpoint(N) | |
+ | |
+# Find fluxes in channel segments [m^3/s] | |
+Q = channel_water_flux(S, hydro_pot_grad) | |
+ | |
+# Water-pressure gradient from geometry [Pa/m] | |
+#psi = -rho_i*g*gradient(H, s) - (rho_w - rho_i)*g*gradient(b, s) | |
+psi = -rho_i*g*gradient(H, s) - (rho_w - rho_i)*g*gradient(b, s) | |
+ | |
+# Prepare figure object for plotting during the simulation | |
+fig = plt.figure('channel', figsize=(3.3, 2.)) | |
+plot_state(-1) | |
+ | |
+#import ipdb; ipdb.set_trace() | |
+ | |
+## Time loop | |
+t = 0.; step = 0 | |
+while t < t_end: | |
+ | |
+ # Find average shear stress from water flux for each channel segment | |
+ tau = channel_shear_stress(Q, S) | |
+ | |
+ # Find erosion rates for each channel segment | |
+ e_dot = channel_erosion_rate(tau) | |
+ # TODO: erosion law smooth for now with tau_c = 0. | |
+ d_dot, c_bar = channel_deposition_rate(tau, c_bar, d_dot, Ns) | |
+ # TODO: d_dot and c_bar values unreasonably high | |
+ # Deposition disabled for now with K_d = 0. | |
+ | |
+ # Determine change in channel size for each channel segment | |
+ dSdt = channel_growth_rate(e_dot, d_dot, porosity, W) | |
+ | |
+ # Update channel cross-sectional area and width according to growth rate | |
+ # and size limit for each channel segment | |
+ S, W, S_max = update_channel_size_with_limit(S, dSdt, dt, N_c) | |
+ | |
+ #import pdb; pdb.set_trace() | |
+ # Find new fluxes and effective pressures | |
+ Q, N_c = flux_and_pressure_solver(S) | |
+ # TODO: Q is zig zag | |
+ | |
+ #import ipdb; ipdb.set_trace() | |
+ | |
+ plot_state(step) | |
+ | |
+ # Update time | |
+ t += dt | |
+ step += 1 | |
+ #print(step) | |
+ #break | |
diff --git a/granular_channel_drainage/model.py b/granular_channel_drainage/mod… | |
t@@ -14,6 +14,24 @@ class model: | |
''' | |
self.name = name | |
+ def genreateRegularGrid(self, Lx, Ly, Nx, Ny): | |
+ ''' | |
+ Generate a uniform, regular and orthogonal grid using Landlab. | |
+ | |
+ :param Lx: A tuple containing the length along x of the model | |
+ domain. | |
+ :type Lx: float | |
+ :param Ly: A tuple containing the length along y of the model | |
+ domain. | |
+ :type Ly: float | |
+ :param Nx: The number of random model nodes along ``x`` in the model. | |
+ :type Nx: int | |
+ :param Ny: The number of random model nodes along ``y`` in the model. | |
+ :type Ny: int | |
+ ''' | |
+ self.grid_type = 'Regular' | |
+ self.grid = landlab.grid.RasterModelGrid(shape=(Nx, Ny), spacing=Lx/Nx) | |
+ | |
def generateVoronoiDelaunayGrid(self, Lx, Ly, Nx, Ny, | |
structure='pseudorandom', | |
distribution='uniform'): |