(C) PLOS One
This story was originally published by PLOS One and is unaltered.
. . . . . . . . . .
Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle [1]
['Daniel Hoces', 'Laboratory For Mucosal Immunology', 'Institute Of Food', 'Nutrition', 'Health', 'Department Of Health Sciences', 'Technology', 'Eth Zürich', 'Zürich', 'Jiayi Lan']
Date: 2022-09
The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.
A challenging aspect of addressing the influence of the OligoMM12 microbiota on host metabolism is that long-term experiments require hygiene barrier conditions similar to those required to work with germ-free (GF) mice. In particular, standard metabolic cage systems do not permit maintenance of an axenic environment, and moving mice between the open cages typically used in isolator systems where such animals are normally bred, to IVC cage-like systems used for most metabolic cages, can be associated with stress and behavioral abnormalities [ 37 ]. We have therefore built an isolator-housed metabolic cage system. Based on the TSE PhenoMaster system, we can monitor levels of O 2 , CO 2 , and hydrogen every 24 min for up to 8 cages, across 2 separate isolators in parallel, while maintaining a strict hygienic barrier. With this custom-built system, longitudinal monitoring of metabolism can be carried out over periods of several weeks in GF and gnotobiotic mice.
Circadian variations in microbiota function adds an extra layer of complexity to metabolic interactions between the host and the microbiota. Circadian feeding is a major driver of microbiota composition [ 29 , 30 ]. The luminal concentration of fermentation products such as short-chain fatty acids (SCFAs) shows a dramatic circadian oscillation linked both to food intake and to intestinal motility [ 31 ]. Microbiota-derived molecules are known to influence host nutrient absorption [ 32 ] and host metabolic gene expression [ 33 , 34 ]. However, much of our current knowledge is derived from indirect calorimetry measurements made over a time period shorter than 24 h [ 2 , 3 , 35 , 36 ]. Measurements of the same host–microbiota system, if taken at different time points in the circadian cycle of metabolism, could therefore be wrongly interpreted as qualitative shifts in microbiota function. Consequently, to understand the influence of the microbiota on host energy metabolism, it is key to quantify variation over the full circadian cycle.
Gnotobiotic mice, colonized with a simplified microbiota made up of defined species, have become a major tool to identify potential mechanisms of interaction between the microbiota and host [ 18 – 20 ]. Such approaches can generate a mechanistic understanding of how external factors (i.e., diet, infection) act on the different microbiota members individually and at a community level [ 21 , 22 ]. A widely used example, the OligoMM12, is a gnotobiotic consortium of 12 cultivable mouse-derived strains representing the major 5 bacterial phyla in the murine gut [ 23 ]. It is reproducible between facilities [ 24 ] and extensive data now exist on the metabolism of individual species and their metabolic interactions with each other [ 25 – 28 ]. Understanding how and to what extent, this gnotobiotic microbiota reconstitutes the metabolic phenotype of conventional mice is therefore of broad relevance for microbiota research.
The gut microbiota is currently considered a key regulator of host energy metabolism [ 1 ]. In the absence of a microbiota, mice accumulated less fat [ 2 ] and were protected from obesity induced by certain types of high-fat diets [ 3 – 5 ]. Several mechanisms have been proposed to explain this phenomenon and its relationship to metabolic imbalances [ 6 ]. These include endocrine regulation of food intake [ 7 , 8 ], additional energy liberated by the microbiota from dietary fibers [ 9 ], alterations in bile acid profiles [ 10 , 11 ], inflammatory responses induced by some members of the microbiota [ 12 ], and induction of thermogenesis in adipose tissue [ 13 – 15 ]. However, given the complexity of a complete microbiota and its interactions with the host, validating any of these theories and identifying causal relationships remains a major experimental challenge [ 16 , 17 ].
We used the package MetaboAnalystR [ 51 ] to identify putative compounds that are significantly different in pair comparisons between OligoMM12 mice and their GF and SPF counterparts by untargeted peak extraction. These were then mapped onto metabolic pathways using the KEGG database. We found several pathways differentially enriched when OligoMM12 mice were compared to GF or SPF counterparts during the light and dark phase in liver ( Fig 4C and 4E ) and plasma ( Fig 4D and 4F ), including butanoate metabolism, amino acid biosynthesis and degradation, primary bile acids production, and fatty acid metabolism. Additionally, we selected compounds that belong to these differentially enriched pathways or have been previously identified to have circadian changes in obese patients [ 52 ], confirmed their structure using chemical standards, and performed a targeted peak extraction for a more precise comparison among groups ( S7 and S8 Figs; full list of compounds in S1 Table ). We observed that OligoMM12 show a different pattern when compared to GF or SPF mice depending on the compound analyzed, the site (live or plasma), and the circadian phase. For example, the ketone body β-hydroxybutanoate (which is the conjugated form of β-hydroxybutyrate and part of the butanoate metabolism pathway) is higher in the plasma of the OligoMM12 mice during both light and dark phase. For other compounds such as certain amino acids, and depending on the circadian phase and site, OligoMM12 have a similar pattern to GF (i.e., leucine) or SPF (i.e., L-glutamate and glycine). Finally, for many of these metabolites, the OligoMM12 microbiota produce an intermediate phenotype between GF and SPF mice, as in the case of the bile acids β-murocholate.
(A and B) Principal coordinate analysis using Canberra distances of metabolites identified by untargeted UPLC/MS in liver and plasma during the (A) light phase (Zeitgeber 5) and (B) dark phase (Zeitgeber 16). (C-F) Metabolic pathways identified in the KEGG PATHWAY database; red dots represent pathways containing compounds differentially enriched in OligoMM12 vs.GF and OligoMM12 vs. SPF comparisons and selected compounds obtained by targeted peak extraction from differentially expressed pathways. Samples obtained during the light phase (Zeitgeber 5) and dark phase (Zeitgeber 16) in (C and D) liver and (E and F) plasma. p-values obtained by Tukey’s honest significance test after log 2 transformation of area value. Number of mice per group: Liver ZT5: GF = 4, OligoMM12 = 6, SPF = 7; ZT16: GF = 4, OligoMM12 = 6, SPF = 7 / Plasma ZT5: GF = 4, OligoMM12 = 7, SPF = 7; ZT16: GF = 5, OligoMM12 = 6, SPF = 6. Data underlying this figure are supplied in S1 Data . GF, germ-free; SPF, specific-opportunistic-pathogen-free; UPLC/MS, ultraperformance liquid chromatography coupled with mass spectrometry; ZT, Zeitgeber time.
Finally, to increase our metabolic resolution, we applied ultraperformance liquid chromatography coupled with mass spectrometry (UPLC/MS) to perform untargeted metabolomics in the liver and plasma during the light (Zeitgeber 5) and dark phase (Zeitgeber 16) in GF, OligoMM12, and SPF mice. Correlating to what we observed in the RER during the light phase, GF and OligoMM12 cluster closely and are clearly separated from the SPF in the light phase of principal component analysis for both liver and plasma samples ( Fig 4A ). However, no major shift towards the SPF metabolome was seen during the dark phase for OligoMM12 liver and plasma samples ( Fig 4B ). Therefore, although RER and glycogen levels clearly show GF-like patterns during the light phase and SPF-like patterns during the dark phase, the underlying metabolome circadian shifts attributable to the microbiome in OligoMM12 mice are subtle and generally closer to GF signatures than to SPF signatures in both liver and plasma samples.
SCFA are the other major output of bacterial fermentation in the large intestine, as well as being key bioactive compounds produced by the large intestinal microbiota. SPF mice showed the highest cecal concentrations of acetate, butyrate, and propionate during both the light phase and dark phase, indicating efficient fermentation ( Fig 3F ). Interestingly, OligoMM12 mice showed only 20% to 50% of the SCFA concentrations observed in SPF mice, but instead showed high production of lactate during the dark phase ( Fig 3F ). In GF mice, all analyzed metabolites had levels below the limit of the blank except for lactate, which could correspond to host-produced L-lactate [ 50 ] (our assay is not able to differentiate the enantiomers). As the total mass of cecum content is widely different among GF, OligoMM12, and SPF mice, we also estimated the total quantity of each compound in the cecal content by multiplying the concentration ( Fig 3F ) by the cecal mass for each group ( Fig 1C ) while propagating the uncertainty of each measurement. This transformation has quite a major impact on how these data can be interpreted: When taking cecal mass into account, OligoMM12 mice have considerably higher levels of acetate during the light and dark phase and of propionate during the dark phase than SPF mice, while butyrate levels remain low. There is also an increased abundance of lactate and succinate in the OligoMM12 cecum content ( S5C Fig ). Although we cannot directly link these microbial metabolites to the phenotype of the OligoMM12 mice, this underlines the major differences in microbial metabolite profiles in the large intestine when comparing GF, gnotobiotic, and SPF mice. High lactate production by the microbiome certainly warrants further study for potential effects on the host.
Hydrogen, a by-product of fiber fermentation by the microbiota, was also measured in the exhaust air of the metabolic cages. We found a clear circadian pattern in hydrogen production in OligoMM12 and SPF mice ( Fig 3E ). Hydrogen levels in OligoMM12 and SPF mice decreased down to the limit of blank (GF level as reference) during the light phase, to later peak after food intake resumes during the dark phase. In addition, OligoMM12 mice showed a higher production of hydrogen than SPF mice during the dark phase even after regression-based normalization by cecal mass ( Fig 3E ), i.e., the OligoMM12 microbiota produced hydrogen at a higher rate per cecal content mass than the SPF microbiota. Notably, this circadian rhythm of hydrogen production was not associated with changes either in community composition or bacterial load of the cecal microbiota in OligoMM12 mice ( S6 Fig ), but rather with altered metabolic activity of the bacteria present.
Hepatic glycogen levels show a circadian rhythm, which usually peaks early during the transition between dark to light phase (ZT2 to 4) and drops to its minimum during the early hours of the dark phase (ZT14 to 16) in nocturnal rodents [ 48 , 49 ]. We found similar accumulation of hepatic glycogen in GF, OligoMM12, and SPF mice at ZT5; however, GF and OligoMM12 liver glycogen levels drop lower than SPF mice at ZT16 ( Fig 3D ), potentially consistent with more rapid exhaustion of hepatic glycogen supplies.
Differences in RER provided a clue that there could be differences in energy storage in mice with different microbiota status. Microbial fermentation products, including SCFAs and lactate, can be directly used as energy and carbon sources by the murine host and are generated by the microbiota via processes that liberate molecular hydrogen. We therefore quantified hepatic concentrations of glycogen, and cecal concentrations SCFA, at ZT5 (5 h into the light phase) and ZT16 (4 h into the dark phase). Hydrogen was measured continuously during the circadian cycle.
(A) Comparison of circadian changes in RER among GF, OligoMM12, and SPF C57B6/J mice. RER curves obtained by smoothing function of data obtained every 24 min per mouse over 10 d. Mean RER during the light phase (Zeitgeber 0–12) and dark phase (Zeitgeber 12–24). (B) Cumulative food intake during described ZT periods. Mice included in this analysis are those that underwent long-term indirect calorimetry, and they are a subset of the mice represented in Fig 2F . (C) Locomotor activity, average light phase and dark phase breaks/minute daily. (D) Hepatic glycogen and triglyceride concentration in samples obtained at Zeitgeber 5 and 16 (N = 3 per group). (E) Hydrogen production, curves obtained by smoothing function of data obtained every 24 min per mouse. Area-under-curve after regression-based normalization by cecal mass during the light and dark phase (N of mice per group: OligoMM12 = 11, SPF = 10). (F) Concentration of SCFAs (acetate, butyrate, propionate) and intermediate metabolites (lactate, succinate) products in cecal content during the light phase (ZT5: GF = 4, OligoMM12 = 7, SPF = 7 mice) and dark phase (ZT16: GF = 5, OligoMM12 = 7, SPF = 7 mice). Number of mice per group in all figures unless otherwise specified: GF = 13, OligoMM12 = 12, SPF = 10. p-values obtained by Tukey’s honest significance test. Data underlying this figure are supplied in S1 Data . GF, germ-free; RER, respiratory exchange ratio; SCFA, short-chain fatty acid; SPF, specific-opportunistic-pathogen-free; ZT, Zeitgeber time.
Respiratory exchange ratio (RER; the ratio of CO 2 produced per O 2 consumed) is widely used as an informative proxy for substrate utilization (i.e., glucose or fatty acids) for oxidation in tissues. We observed that GF mice have a lower RER compared to SPF mice in both light and dark phases, indicative of increased fat/decreased glucose metabolism in GF mice ( Fig 3A ). Intriguingly, OligoMM12 mice show circadian dependence in recovery of SPF-like metabolism, phenocopying GF mice during the light phase, and SPF mice during the dark phase ( Fig 3A ). These changes in RER are not related to differences in feeding patterns as all mice have a similar food intake pattern during the periods in which their RERs differ the most ( Fig 3B ). Another critical determinant of RER is locomotion. Unfortunately, we did not have a system available to track locomotion within isolators. Therefore, we could not carry out reasonable locomotion analyses of GF mice without contamination. However, the OligoMM12 microbiota is sufficiently stable to work with in standard housing for short periods of time. We therefore compared locomotion activity in a standard TSE PhenoMaster system for OligoMM12 and SPF mice. This revealed no major changes in locomotion between the 2 groups at any phase of the circadian cycle (Figs 3C and S5A and S5B ).
We therefore concluded that daily energy expenditure and daily energy absorption from food vary only within the range of experimental error intrinsic to indirect calorimetry experiments. At a fundamental level, food intake therefore seems to be well regulated by microbiota-released calories. Despite this, OligoMM12 mice have an elevated fat mass. It remains a distinct possibility that gain of fat mass depends on the cumulative effect of very small differences in energy intake and energy expenditure that are simply not resolvable in our system. An alternative explanation is that microbiota composition influences energy storage. In order to gain a deeper insight into underlying mechanisms, we carried out a series of more detailed analyses of metabolism.
We then used these values for food intake, fecal dry mass output, and fecal energy density to estimate energy absorbed from the feces. We found that the higher food consumption in GF mice ( Fig 2F ) almost perfectly counterbalances their corresponding higher energy excretion in feces ( Fig 2G ), such that all mice extract around 9 kcal per day from their food ( Fig 2H ). This is consistent with our measurements of daily energy expenditure by indirect calorimetry ( Fig 2B ), although it fails to explain the observed adiposity in the OligoMM12 mice ( Fig 1G ). Unexpectedly, the efficiency of release of calories from chow remains similar between GF and OligoMM12 mice. The gut content of both OligoMM12 and SPF mice is densely colonized, and the fecal energy density is similar. Therefore, it seems that the lower percentage of energy extracted from the food by the OligoMM12 may be less related to a poorer digestive capacity of the gnotobiotic gut microbes and more to the bioavailability of microbiota-released calories for the mouse ( Fig 2I ).
Remarkably, energy density of dry feces was lower in GF mice (3.7 kcal/g) compared to colonized mice (OligoMM12 and SPF, 4.0 kcal/g), with the latter showing no difference among them ( Fig 2E ). This gap between GF and mice with microbiota can likely be explained by the fact that although fecal bacteria improve energy release from food, a considerable fraction of that energy remains stored in the bacteria present in the feces. We measured bacterial density in the cecum content of OligoMM12 and SPF by bacterial flow cytometry ( S4 Fig ), which gave us a good estimation of bacterial density [ 45 ]. Using the average bacterial density per type of mice (OligoMM12 = 1.1 × 10 11 bacteria cells/g and SPF = 1.6 × 10 11 bacterial cells/g) and assuming certain parameters (dry mass of a bacterium = 2.26 × 10 −13 g/bacteria cell [ 46 ], and energy stored in bacteria = 4.58 kcal/g of dry bacteria mass [ 47 ]); we estimated that the fecal microbiota of colonized mice can contribute between 0.11 kcal/g of dry fecal mass in OligoMM12 to 0.17 kcal/g of dry fecal mass in SPF—which is in the range of energy density difference between fecal energy density in colonized and GF mice.
We next investigated calorie absorption from food by comparing the daily energy ingestion from food and calorie excretion in feces of GF, OligoMM12, and SPF mice. The difference between these 2 values estimates the absorbed calories. As reported previously [ 44 ], GF animals ingested on average between 10% and 20% more standard chow compared to OligoMM12 and SPF mice ( Fig 2C ). Correspondingly, GF animals also excreted a much larger dry mass of feces, while OligoMM12 mice produced an intermediate fecal mass and SPF mice excreted the least ( Fig 2D ).
(A) Linear regression of energy expenditure and lean body mass based on EchoMRI during light and dark phase. Each colored vertical line represents energy expenditure measurements during the experiment for 1 mouse. (B) Energy expenditure during 24-h period or during the 12-h light or dark phase. Values represent area-under-curve normalized by regression-based analysis using lean body mass obtained by EchoMRI and dissected fat mass. (C) Average daily food intake per mouse. Mice represented in this figure include those that underwent long-term indirect calorimetry ( Fig 3 ) and mice that only contribute to daily fecal pellet quantification/bomb calorimetry. (N of mice per group: GF = 24, OligoMM12 = 19, SPF = 10) (D) Dry fecal output per mouse collected during a 24-h period. (N of mice per group: GF = 12, OligoMM12 = 8, SPF = 4) (E) Energy content of dry fecal output by bomb calorimetry. (N of mice per group: GF = 21, OligoMM12 = 11, SPF = 11). (F-I) Estimation energy metabolism parameters. Number represented estimate mean value ± 1.96*combined standard uncertainty from measurements used for calculations. (F) Estimated daily energy input (food intake* 3.94 kcal/g). (G) Estimated daily energy excretion (daily fecal dry mass*fecal energy content). (H) Estimated daily energy extraction (daily energy input–daily energy excretion). (I) Estimated energy extraction from food as percentage of energy input ((daily energy input − daily energy excretion)/daily energy input*100). Note that calculations in F, G, and H are per mouse and are not normalized to body mass. Number of mice per group in all figures unless otherwise specified: GF = 9, OligoMM12 = 8, SPF = 10. p-values obtained by Tukey’s honest significance test. Data underlying this figure are supplied in S1 Data . GF, germ-free; SPF, specific-opportunistic-pathogen-free.
As described before, energy expenditure showed a linear relation with lean body mass ( Fig 2A ) and varied over the circadian cycle ( S3A Fig ). Although raw energy expenditure appears higher in SPF mice ( S3B Fig ), this difference disappears on normalization using a regression model that included lean body mass and total dissected fat mass as predictive variables ( Fig 2B ). This lack of difference was also observed when light and dark phase were analyzed separately ( Fig 2B ). “Classical” normalization procedures (dividing by mass) also showed no difference between groups when “total body mass after cecum dissection” ( S3C Fig ) or lean body mass ( S3D Fig ) was used for normalization of energy expenditure. Unsurprisingly, we did calculate a significant difference during the dark phase in energy expenditure between GF and SPF mice if “total body mass” was used for normalization ( S3E Fig ), which is an artefact attributable to the inclusion of around 10% extra body mass in the GF mice, contributed by inert cecal water. Therefore, at least when comparing to the SPF microbiota used in this study, absence of a microbiota does not result in altered daily energy expenditure in metabolically active tissues.
In contrast, EchoMRI fat mass measurements pre- and post-cecum dissection were poorly correlated in GF mice ( S2F–S2H Fig ) attributable to a highly variable percentage scoring of cecal content as either fat or water. As total fat mass is in the order of 2 to 4 g and the cecum of a GF mouse can easily have a mass of 3 g ( Fig 1C ), it is clear that aberrantly scoring 50% of the cecum as “fat” will have a massive impact on the EchoMRI-measured “fat mass”. Correspondingly, in GF mice, cecum removal resulted in a decrease in EchoMRI fat mass readout of between 5% and 48% ( S2I and S2J Fig ). Worryingly, we also observed a shift towards higher fat mass readings in SPF mice after cecum removal ( S2I and S2J Fig ), which occurred over and above the known phenomena of inaccuracies in fat mass estimation when comparing live and dead animals [ 38 , 39 ] ( S2K Fig ). In summary, these results further highlighting the need for caution in interpreting EchoMRI readouts for fat mass in mice with major differences in intestinal composition. Therefore, we proceeded to directly weigh the fat depots accessible to dissection (interscapular brown adipose tissue (iBAT); and inguinal and visceral white adipose tissue (iWAT and vWAT)). There was no significant difference between GF and SPF mice in size of the explored fat depots; however, OligoMM12 mice accumulated more fat in all explored depots than GF mice, including more iBAT and vWAT, compared to SPF mice ( Fig 1G ).
Measurements of body composition in mice are often performed using EchoMRI, which yields data on lean, fat, and water mass. We observed a nonsignificant increasing trend in lean body mass from GF to SPF mice ( Fig 1F ). GF mice had a significantly lower percentage of lean body mass than colonized mice ( S2B Fig ). As cecal content water retention can contribute up to 10% of the total body weight of a GF mouse ( Fig 1C ), we hypothesized that this would be the major contributor to a lower percentage lean mass. However, EchoMRI readouts of fat mass seemed inconsistent with this assumption. We therefore compared EchoMRI readouts of “lean” and “fat” body mass before and after removal of the cecum. We found a strong correlation between the total lean mass measured by EchoMRI with and without the cecum ( S2C Fig ), i.e., cecum removal consistently reduced the lean mass readout by 5% to 10% ( S2D and S2E Fig ). Therefore, cecum removal has a relatively consistent effect on lean mass across groups. For ease of comparison to published work, we decided to use lean mass obtained by EchoMRI before dissection for definitive energy expenditure calculations.
After data recording for indirect calorimetry, mice were fasted for 4 to 5 h and killed (approximately at Zeitgeber time (ZT) 6 ± 1 h), and body mass and body composition were measured. As cecal mass (cecal tissue plus its content) is massively affected by the colonization status [ 35 ], we first assessed the cecal mass in GF, OligoMM12, and SPF and its impact on body mass. We found that cecal mass was inversely correlated to the microbiota complexity, starting at approximately 0.5 g in SPF mice, increasing to around 1.5 g in OligoMM12 mice and reaching 3 g on average in GF mice ( Fig 1C ). Note that this represents around 10% of total body mass in GF mice ( S2A Fig ), which translates into a trend to increased total body mass in GF mice ( Fig 1D ). This trend was completely reverted after removal of the cecum from total mass ( Fig 1E ).
(A) Schematic representation of isolator-based indirect calorimetry system, with a TSE PhenoMaster calorimeter connected to 2 flexible surgical isolators with 4 metabolic cages each. (B) Pictures of isolator-based indirect calorimetry system inside the facility. (C) Cecal mass (tissue including luminal content). (D) Total body mass at the end of the experiment and before cecum removal. (E) Total body mass after cecum removal. (F) Lean body mass acquired by EchoMRI before cecum removal (N of mice per group with EchoMRI and indirect calorimetry measurements: GF = 12, OligoMM12 = 8, SPF = 11). (G) Fat mass from iBAT, iWAT, and vWAT. Number of mice per group in all figures unless otherwise specified: GF = 16, OligoMM12 = 12, SPF = 11. p-values obtained by Tukey’s honest significance test. Data underlying this figure are supplied in S1 Data . GF, germ-free; iBAT, interscapular brown adipose tissue; iWAT, inguinal white adipose tissue; SPF, specific-opportunistic-pathogen-free; vWAT, visceral white adipose tissue.
To compare to published literature on GF and colonized mouse metabolism, we compared male, adult age-matched (12 to 14 wk old) GF, gnotobiotic (OligoMM12), and conventionally raised (SPF) mice, all bred and raised in flexible-film isolators and with a C57BL/6J genetic background. Indirect calorimetry measurements were carried out in flexible-film surgical isolators accommodating a TSE PhenoMaster system ( Fig 1A and 1B ). Mice were adapted for between 24 and 36 h to the single-housing condition inside isolator-based metabolic chambers before data collection. Variations on O 2 , CO 2 , and hydrogen, along with food and water consumption, were recorded every 24 min on each metabolic cage. We could confirm that GF mice maintain their GF status over at least 10 d of accommodation in these cages, via culture-dependent and culture-independent techniques ( S2A–S2D Fig ).
Discussion
Since the early days of nutritional studies, there has been a clear interest to understand the role of microbiota in host morphology, physiology, and nutrition [54,55]. Pioneering work comparing GF rats with conventionally raised counterparts already described differences in food intake, energy extraction from diet, and energy expenditure by indirect calorimetry [44,56]. More recently, researchers have explored the effect of specific complex microbiota communities and how they influence energy metabolism and body composition in the host [9,57,58]. Here, we extend and clarify some of these observations via use of a well-established gnotobiotic mouse model consisting of 12 cultivable microbiota strains and a custom-built isolator-housed metabolic cage system that permits longitudinal analysis of GF and gnotobiotic animals.
By carefully checking the validity of different measurement types, we found no significant difference in lean body mass among GF, gnotobiotic (OligoMM12), and conventionally raised (SPF) mice. Although lean mass represented a lower percentage of the total mass in GF mice, this was mainly attributable to increased cecal water retention in these animals. Interestingly, there was a significant increase in fat depots in OligoMM12 mice compared to GF and SPF animals. Previous studies have also found increased fat depots during conventional/low-fat diet feeding in mice colonized with a gnotobiotic microbiota community [21] or SPF [2,14,58] when compared with GF mice. Our results using fat depot dissection showed only a very weak trend for white adipose tissues between GF and SPF mice, which may be attributable to differences in housing (temperature, cage-type, chow composition) and colony (genetic background, SPF microbiota composition, age). It has been shown that GF mice transplanted with microbiota derived from obese donors accumulated more fat mass compared to those transplanted with microbiota derived from lean donors [9,36,57], with correlates identified to individual species/strain abundance [59,60]. SPF microbiota matching more closely to those from obese donors could therefore be expected to give differing results to ours. In contrast, minimal microbiota communities such as the OligoMM12 can be perfectly replicated across sites [24] and can help to clarify the complex processes linking microbiota and host metabolism [61]. Further exploration of the metabolic effects of the OligoMM12 microbiota community, and extended versions thereof, has potential to clarify if specific strains, species, or functional classes [62] are sufficient and necessary to drive the development of increased fat depots in these mice.
We further observed no significant difference in energy expenditure in GF, OligoMM12, and SPF. This is in line with some studies that have reported no significant difference in energy expenditure between GF and SPF mice [3,13]. These results are in contrast to other work [2,15,35,56], but the discrepancies can potentially be explained by the methods applied for normalizing energy-expenditure data. Normalization of mass-dependent variables by a per-mass (or allometric transformation) ratio has been recognized as a common source of controversy [63–65], especially with large changes in body mass composition [66,67], and there have been several publications calling for the use of better statistical methods [41,68,69]. Water and indigestible solute retention in the cecum lumen of GF and gnotobiotic mice can contribute up to 10% of the total body mass and should be considered metabolically inert. It is therefore unsurprising that when the cecal content mass is very different among groups, using total body mass for normalization introduces a considerable bias in normalized energy expenditure estimation. Interestingly, it was long ago observed that surgical removal of the cecum equalized the oxygen consumption between GF and conventional rats, as well as other measurements normalized by total body mass [35]. With normalization using linear regression models based on lean mass and fat mass [43], we and others found no significant differences in energy expenditure by indirect calorimetry between GF and SPF mice under standard chow diet conditions [3,13].
An additional important confounder that we encountered was high variability of fat mass readouts obtained by EchoMRI when comparing mice with major differences in intestinal colonization levels. This could be attributed to variable calling of the fluid-filled ceca of gnotobiotic animals as either fat or water, compared with more accurate calling in conventional mice, revealing an important limitation of these systems. Surprisingly, the EchoMRI estimate of fat mass increased in SPF mice after abdominal dissection and cecum removal. Previous studies reported a tendency to higher values of fat mass in dead animals when compared to live [38,39], which we could replicate. However, this was a much smaller effect than cecum removal. We could not find reports of EchoMRI measurements after major anatomical changes such as cecum removal, and we cannot accurately explain this phenomenon. Therefore, we recommend caution in the use of EchoMRI for fat mass measurements in mice with marked anatomical differences (i.e., enlarged cecum) and recommend physically dissected fat mass as a more useful readout.
We are also keen to point out the more general limitations of our observations: Only 1 gnotobiotic microbiota and 1 SPF microbiota were analyzed, and our conclusions pertain exclusively to these. We in no way exclude the possibility that some microbiota constituents or conformations can influence host energy expenditure [36] and/or body composition [9,57,70]. In addition, it should be noted that indirect calorimetry is an inherently noisy data type, and small differences in daily energy expenditure are impossible to resolve via this technique [69,71].
Nevertheless, the lack of measurable difference in energy expenditure between GF, OligoMM12, and SPF mice is aligned with our finding that the amount of energy obtained by ad libitum food intake was also remarkably similar among the groups. GF mice seem to accurately compensate the lower capacity of energy extraction from diet by increasing food intake. While this seems generally to be in agreement with models that described the regulation of appetite (and therefore energy intake) by the basal energy requirement of the individual [72,73], it remains surprising given the discrepancy in the types of substrates available for oxidative metabolism in colonized and GF mice, revealed by RER differences. Although GF mice have a longer total gastrointestinal transit time than SPF mice [74], very little calorie absorption from food can occur after ingested food reaches the cecum of a GF mouse, while an SPF mouse will release usable energy from their food via microbial fermentation for several more hours in the cecum and colon, generating a major time difference in the absorption of calories after eating in GF and SPF animals. This compensation seems also to function in mice colonized with the OligoMM12 microbiota, where despite robust microbial fermentation (read out as hydrogen and fermentation product production) and identical fecal energy density to SPF mice, energy recovery from ingested food is poor due to the volume of feces shed. A clear conclusion from these observations is that microbiota-dependent changes in metabolic substrates, and timing of calorie absorption, are well integrated in the murine central regulation of appetite over the course of a day [75].
Interestingly, energy density of dry feces in GF mice was lower compared to OligoMM12 and SPF mice. Previous results have found a similar difference (approximately 0.1 kcal/g) when comparing GF and SPF rats under standard chow [44]. We theorized that this difference is due the contribution of energy stored in bacterial mass, which we estimated is in the range of 0.5 kcal/g per gram of feces. However, this observed difference in the fecal caloric content seems to depend on the type of diet, as GF and SPF mice under a high-fat diet showed a similar caloric content [4]. In addition, caloric uptake by the microbiota may be dependent on specific microbiota composition. Although we did not observe a difference in the fecal energy content among OligoMM12 and SPF mice, previous studies have shown that particular microbiota compositions allow more energy to be lost in the fecal output [9].
Despite this broadly successful regulation of food intake and energy expenditure, at the molecular level, major differences were observed between the mice with different microbiota. First, OligoMM12 mice displayed an RER at the GF level during the light phase (when mice typically sleep and fast) but raised up to SPF levels during the dark phase (i.e., when mice are active and eating). It therefore appears that the OligoMM12 microbiota better recapitulates the microbiome effects on the host energy substrate use during the dark (active) phase when food-derived carbohydrates are abundant in the large intestine, but not in the light (sleeping) phase when mainly host-derived carbon sources are available in the large intestine. We could directly exclude food intake and locomotion as major drivers of this altered RER. Interestingly, SPF had a higher RER than OligoMM12 and GF mice during the light phase despite no difference in the levels of hepatic glycogen at the beginning of this phase. This indicates that GF and OligoMM12 are using more fatty acids, and potentially that SPF mice have more prolonged access to carbohydrate substrates produced by their more complex microbiota or stored in other body sites. Improved carbon release from dietary fiber by the SPF microbiota would also be in line with a predominance of succinate and lactate in the OligoMM12 cecum, at the expense of propionate and butyrate that are more abundant in the SPF cecum. In complex microbiotas, lactate is typically further metabolized to butyrate by specific firmicutes [76–78], which may be lacking or insufficiently abundant in the OligoMM12 mice. As lactate can inhibit lipolysis in adipocytes [79,80], this raises an interesting theme for follow-up studies to define the role of microbiota-derived lactate in host metabolism. Partially in line with the RER data, we also observed that the liver and plasma metabolite profiles of OligoMM12 mice clustered closer to GF mice than to SPF mice. Although a small shift in the liver metabolome could be observed in the OligoMM12 liver during the dark phase, this clearly demonstrates major metabolic effects of a complete microbiota that are not reconstituted by the OligoMM12 strains. In addition, certain amino acids were differentially represented between OligoMM12 and GF or SPF mice, as it has been described previously [81,82]. Interestingly, OligoMM12 had a bile acid profile closer to GF than SPF mice, for example, showing GF levels of hepatic β-murocholic acid and taurine-β-murocholic acid, the predominant bile acid in the liver of GF mice [11]. Follow-up studies with manipulation of the OligoMM12 microbiota or metabolic interventions are a promising tool to pull apart the circadian effects on RER, the influence of an unusual fermentation product profile, and other more subtle metabolic changes on overall metabolic health of the murine host.
In conclusion, our study showed that isolator-based indirect calorimetry is possible and allows detailed analysis of the metabolism of GF and gnotobiotic mice in real time. Data generated with this system demonstrated that microbiota-released calories are well integrated in host energy balance and that daily energy expenditure was not significantly influenced by microbiota composition in our mice. Nevertheless, mice colonized with the OligoMM12 gnotobiotic microbiota accumulated more fat mass and display a GF-like RER during the light phase but an SPF-like RER during the dark phase, indicative of altered metabolic substrate usage and energy storage. Correspondingly, the liver metabolome of mice colonized with the OligoMM12 showed alterations in bile acid, fatty acid, and amino acid metabolism, despite overall clustering with the GF liver metabolome. This reveals the potential for gnotobiotic microbiota communities to investigate the mechanisms underlying the influence of microbiota on host metabolic health. As microbial dysbiosis is associated with a range of human diseases, circadian analysis of energy balance represents a crucial tool in the mining of microbiome data for therapeutic and diagnostic purposes.
[END]
---
[1] Url:
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001743
Published and (C) by PLOS One
Content appears here under this condition or license: Creative Commons - Attribution BY 4.0.
via Magical.Fish Gopher News Feeds:
gopher://magical.fish/1/feeds/news/plosone/