(C) PLOS One [1]. This unaltered content originally appeared in journals.plosone.org.
Licensed under Creative Commons Attribution (CC BY) license.
url:
https://journals.plos.org/plosone/s/licenses-and-copyright
------------
Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama
['Sergio E. Bermúdez', 'Departamento De Investigación En Entomología Médica', 'Instituto Commemorativo Gorgas De Estudios De La Salud', 'Ciudad De Panama Panama', 'Brittany A. Armstrong', 'Department Of Pediatrics', 'The National School Of Tropical Medicine', 'Baylor College Of Medicine', 'Houston', 'Texas']
Date: 2021-09
Abstract Tick-borne relapsing fever (TBRF) spirochetes are likely an overlooked cause of disease in Latin America. In Panama, the pathogens were first reported to cause human disease in the early 1900s. Recent collections of Ornithodoros puertoricensis from human dwellings in Panama prompted our interest to determine whether spirochetes still circulate in the country. Ornithodoros puertoricensis ticks were collected at field sites around the City of Panama. In the laboratory, the ticks were determined to be infected with TBRF spirochetes by transmission to mice, and we report the laboratory isolation and genetic characterization of a species of TBRF spirochete from Panama. Since this was the first isolation of a species of TBRF spirochete from Central America, we propose to designate the bacteria as Borrelia puertoricensis sp. nov. This is consistent with TBRF spirochete species nomenclature from North America that are designated after their tick vector. These findings warrant further investigations to assess the threat B. puertoricensis sp. nov. may impose on human health.
Author summary Tick-borne relapsing fever (TBRF) is an often misdiagnosed neglected tropical disease primarily impacting those in resource limited settings. Most species are transmitted by argasid ticks, but ixodid ticks and the human body louse are also competent vectors. Infection of TBRF spirochetes is challenging to diagnose because argasid ticks are rapid feeders and rarely spotted on the patient. Moreover, given the nonspecific manifestation of disease and poor clinical awareness, TBRF is overlooked. In Central America, TBRF was studied in the Canal Zone of Panama until the 1930s. Over the last 10 years argasid ticks have been reported to colonize human dwellings in the country but it has remained vague if the disease persists. In this study, we demonstrate the transmission of TBRF spirochetes from field collected ticks and the laboratory isolation and genetic characterization of the species. These findings suggest that TBRF spirochetes continue to circulate in Panama and should prompt health care providers to consider this disease when patients present with a fever of unknown origin. Furthermore, with the laboratory isolation of this bacteria, molecular diagnostic tools can be developed to improve epidemiological studies of TBRF spirochetes in Central America.
Citation: Bermúdez SE, Armstrong BA, Domínguez L, Krishnavajhala A, Kneubehl AR, Gunter SM, et al. (2021) Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama. PLoS Negl Trop Dis 15(8): e0009642.
https://doi.org/10.1371/journal.pntd.0009642 Editor: Philip Stewart, Rocky Mountain Laboratories, NIAID, NIH, UNITED STATES Received: January 21, 2021; Accepted: July 10, 2021; Published: August 16, 2021 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Data Availability: All relevant data are within the manuscript and its Supporting Information files. Funding: This work was supported by NIH (
https://www.nih.gov/) grant AI123652-01 (JEL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing interests: The authors have declared that no competing interests exist.
Introduction In the Americas, tick-borne relapsing fever (TBRF) was first reported to cause human disease in Panama in 1909 when spirochetes were detected in the blood of Canal Zone workers [1]. Blood samples from infected workers were used to inoculate monkeys, rats, and mice, which caused a progression and relapses mimicking that observed in humans. These findings suggested that the spirochetes were pathogenic. In 1921, human susceptibility was validated through the infection and monitoring of disease progression of three soldiers [2]. One was infected by needle inoculation with spirochete infected rat blood, the other by inoculation of triturated field collected ticks, and the third by tick bite. Outside of these early studies, very little has been done to investigate TBRF in Central America. Throughout Central and South America there has been confusion regarding the distribution and speciation of argasid ticks that transmit TBRF spirochetes. Early investigations designated Ornithodoros talaje as the vector of TBRF spirochetes throughout the continent. Ornithodoros talaje was originally described in 1849 from Guatemala, and in 1921 Bates, Dunn, and St. John reported that the species was the causative vector of TBRF in Panama [2]. However, as additional work was performed by Dunn he renamed O. talaje and designated the ticks as Ornithodoros venezuelensis, which is also synonymous to Ornithodoros rudis [3]. Further complicating the matter is the distribution of Ornithodoros puertoricensis in Panama because this species is indistinguishable from O. talaje at the nymphal and adult stage [4]. Consequently, Hoogstraal and others have questioned the validity of most records reporting the distribution of O. talaje prior to 1950 because the morphological studies were based on adult ticks [5]. Therefore, it is not entirely clear as to what Ornithodoros species are vectors of TBRF spirochetes in Central and South America. Ornithodoros rudis, O. talaje, and O. puertoricensis are known to parasitize humans and while most work has focused on the former two Ornithodoros species, recent studies demonstrated the continued circulation of O. puertoricensis in Panama [6]. In 2015, argasid ticks were collected in human dwellings in Ancón and the province of Colón where homeowners reported “insect bites.” Morphological characterization indicated the collection of O. puertoricensis and sequencing the 16s ribosomal RNA (rrs) gene further supported these observations. While Borrelia DNA was not detected in these specimens, the identification of O. puertoricensis in human dwellings indicated a potential public health threat and warranted further investigation. In this current study we expanded field collection efforts to determine whether TBRF spirochetes circulate in central Panama, formerly known as the Canal Zone. Field studies to collect O. puertoricensis ticks were initiated at sites around Gamboa and the Ancón community of the City of Panama. In the laboratory, field collected ticks were fed on mice and we successfully isolated spirochetes from murine blood in culture medium. Genetic typing was performed to determine the relatedness of these spirochetes to known Western Hemisphere TBRF Borrelia. Our findings indicate that TBRF spirochetes continue to circulate in Panama and this work will guide future efforts to determine the public health relevance.
Methods Ethics statement Animal studies were approved by the Institutional Animal Care and Use Committee at Baylor College of Medicine. The laboratory animal program adheres to guidelines established by the Association for Assessment and Accreditation of Laboratory Animal Care and the National Institutes of Health Office of Laboratory Animal Welfare. Animal husbandry was provided by trained animal care technicians and veterinary staff. Tick collections From 2016–2018, we conducted field studies centered on collecting ticks in central Panama. One field site was in Gamboa where collection efforts were focused on dens in a residential area. In the Ancón community of the City of Panama efforts were centered at four sites in Summit Botanical Gardens and Zoo. Two collection methods were implemented to capture argasid ticks. In the first approach, dry ice was used as a source of carbon dioxide to lure ticks from dens. The second approach utilized an aspirator to remove debris from dens through suction, and we manually sifted through the material using a series of #10 - #40 mesh strainers. Specimens collected from a given den were placed in 15 ml ventilated centrifuge tubes and each population was kept separate. Animal studies and serology Cohorts of five to 10 field collected ticks were first fed on Institute of Cancer Research (ICR) mice (an outbred colony of Swiss origin maintained at Baylor College of Medicine). To determine if ICR mice were infected with spirochetes, ~2.5 μl of blood was collected for 10 consecutive days and analyzed by dark field microscopy. After 30 days the animals were exsanguinated and antibody responses were evaluated by immunoblotting, as described below. Remaining live ticks from one location were subsequently allowed to feed on a MyD88-/- mouse. When spirochetes were visualized in the blood, the animal was exsanguinated and serum was used to inoculate modified Barbour-Stoenner-Kelly (mBSK-R) medium [7]. Spirochetes were passaged into 50 ml culture tubes for DNA isolation. Immunoblotting was performed to assess serological responses of ICR mice that were fed upon by O. puertoricensis. Protein lysates from 1 x 107 Borrelia turicatae 91E135 were used for SDS-PAGE and proteins were transferred to polyvinylidene fluoride (PVDF) membranes, as previously described [8]. Serum samples were diluted 1:200 and used to probe PVDF membranes. The secondary molecule used was Protein G-HRP (Life Technologies, Carlsbad, CA, USA) diluted 1:4,000. Antibody responses were detected with the ECL Western Blotting Detection Reagent (GE Healthcare, Buckinghamshire, UK) and immunoblots were imaged with a ChemiDoc MP (Bio-Rad, Hercules, California, USA). Molecular analysis of field collected ticks In the laboratory, tick identity was confirmed by molecular methods. We extracted DNA from at least five specimens from each den using the DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany). PCR was performed on the rrs locus as previously described with the following primer pairs 16s + 1: CTGCTCAATGATTTTTTAAATTGC and 16s-1: CCGGTCTGAACTCAGATCATGTA [6,9]. Amplicons were Sanger sequenced by GeneWiz (South Plainfield, New Jersey, USA) and the data were assembled and trimmed using Vector NTI software (Life Technologies, Carlsbad, CA, USA). Genetic analysis of the Borrelia isolated from O. puertoricensis Pulsed-field electrophoresis and a phylogenetic analysis were performed to characterize the novel Borrelia. Spirochetes passaged no more than five times in medium were grown in 50 ml culture tubes and genomic DNA was isolated by phenol-chloroform extraction, as previously described [10]. To evaluate plasmid content, pulsed-field electrophoresis was performed using a PPI-200 Programmable Power Inverter (MJ Research, Watertown, MA), as previously reported with minor modifications [11]. Genomic DNA (1 μg) from B. turicatae 91E135, Borrelia parkeri SLO, Borrelia hermsii DAH, Borrelia anserina BA2, and the novel Borrelia were electrophoresed in 1% agarose gels with 0.5x TBE buffer (45 mM Tris, 45 mM boric acid, and 1.8 mM EDTA) for 15 min at 100 V and run on Program 3 for 40 hr at 90 V. We also amplified Borrelia DNA gyrase subunit B gene (gyrB), flagellin gene (flaB), rrs, and the intragenic spacer (IGS) locus by polymerase chain reaction (PCR). Table 1 lists the primer sequences used, and PCR was performed as previously described [11]. PCR amplicons were purified using QIAquick PCR Purification Kit (Qiagen, Hilden, Germany), and were Sanger sequenced by GeneWiz (South Plainfield, New Jersey, USA). Chromatograms were visualized and the ends trimmed using Vector NTI software (Life Technologies, Carlsbad, CA, USA) and submitted for a BLASTn analysis. Sequences were submitted to GenBank under accession number MT790749 (rrs), MT855497 (gyrB), MT845212 (flaB), and MT790750 (IGS). PPT PowerPoint slide
PNG larger image
TIFF original image Download: Table 1. Oligonucleotides used for PCR and MLSA of TBRF spirochetes.
https://doi.org/10.1371/journal.pntd.0009642.t001 For the phylogenetic analysis three conserved single copy genes were evaluated, rrs, glycerophosphodiester phosphodiesterase (glpQ), and flaB. These genes were used so we could incorporate sequences that were available for the South American species, Borrelia venezuelensis [16]. While sequence for rrs and flaB were produced by PCR and Sanger sequencing (Table 1), we obtained glpQ (accession number: MZ229856) after generating the genome of the novel Borrelia (manuscript in preparation). GenBank accession numbers were obtained for nine species of relapsing fever spirochete (S1 Table). Nucleotide sequences were first aligned with MAFFT (v7.475) using the auto option and ends were manually trimmed [17–20]. A maximum-likelihood tree was inferred using a concatenation approach in IQ-TREE2 (v2.1.2) with an edge-linked proportional partition model bootstrapped 1,000 times with ultrafast bootstraps [18–20]. Each partition’s substitution model was determined using the MFP option [21]. The MFP option selects the best-fit model from available substitution models that minimizes the Bayesian information criterion score for each partition. Each gene was partitioned individually based on the best-fit model selected by MFP, which were as follows: rrs, HKY+F+I; flaB, HKY+F+G4; glpQ, TIM+F+G4. The resulting tree was visualized using iTOL (v5) and annotated in Inkscape [22]. The tree was rooted on Borrelia turcica IST7.
Discussion This study demonstrates the continued circulation of TBRF spirochetes in Ornithodoros ticks collected from central Panama, in the former Canal Zone. The collection sites of O. puertoricensis suggest that vertebrate hosts of these ticks may be small rodents and Dasyprocta species, and this was further supported by the observation of D. punctata in two dens from which ticks were collected. Furthermore, these ticks were infected with spirochetes, and isolation of B. puertoricensis sp. nov. was achieved in the laboratory. Through genetic characterization, the spirochetes most closely grouped with the North American species Borrelia parkeri and contained ~11 linear plasmids. Previous collections of O. puertoricensis in regions of Panama spurred our interested to determine whether TBRF spirochetes circulate in the country [6]. Since 2013 more attention has centered on collecting Ornithodoros ticks in Panama [6,23,24], and there have been increased reports of O. puertoricensis colonizing human dwellings from Ancón and Charco La Piedra [25]. Given the longevity of argasids and the ability of TBRF spirochetes to persistently colonize their vector [26], it is not entirely surprising to identify spirochete-infected O. puertoricensis. While this current study focused collection efforts at a botanical garden and zoo in the Ancón community, middle- and low-income communities surround the field sites and we recommend the evaluation of community exposure to the spirochetes. This study was centered on obtaining a bacterial isolate from O. puertoricensis ticks, and we did not determine the prevalence of infected ticks in endemic regions. Our decision to focus on obtaining a spirochete isolate instead of molecular detection of Borrelia in ticks was based on inconsistencies of PCR to identify infected ticks. Furthermore, molecular detection of Borrelia DNA in field collected ticks does not confirm that the arthropods are competent vectors. However, now that we have isolated a novel Borrelia after feeding O. puertoricensis on mice, molecular prevalence studies on field collected ticks are more valid. Ornithodoros puertoricensis is a well-recognized species in Panama and caution should be taken with the historical records of Ornithodoros species in the country because of the challenge associated with speciating these ticks. In the early 1920s the vector of TBRF in Panama was initially described as Ornithodoros talaje [2]. This was based on the morphological analysis of nymphs and adult ticks. Concern regarding the speciation of argasid ticks, inducing O. talaje, began to arise in the early and mid-1900s when new investigations determined several Latin American Ornithodoros species were incorrectly designated as O. talaje [27]. Furthermore, recent work by Venzal and colleagues demonstrated that O. talaje and O. puertoricensis are only distinguishable at the larval stage [4]. Clearly, more work is needed to identify Ornithodoros species distributed in Panama and capable of transmitting pathogenic TBRF spirochetes to humans. Our inability to establish an infection in ICR mice after feeding O. puertoricensis demonstrated the intricacies of host competence for TBRF spirochetes. While most of these species are maintained in rodent-tick life cycles, it is important to identify the particular rodents that serve as competent hosts. This was demonstrated by Burgdorfer and Mavros with the TBRF species, Borrelia hermsii [28]. They infected rodents commonly found near locations where human cases of relapsing fever occurred. The animals included Eutamias amoenus (chipmunks), Tamiasciurs hudsoicus richardoni (pine squirrels), Glaucomys sabrinus (flying squirrels), Spermophilus columbianus columbianus (Colombian ground squirrels), Spermophilus lateralis tescorum (golden-mantled ground squirrels), Neotoma cinerea cinerea (wood rats), Peromyscus maniculatus (white-footed deer mice), and Microtus pennsylvanicus (meadow voles). From these studies, only three species became infected, as determined by the visualization of spirochetes in the blood. In our study, we observed an abundance of D. puncatata at our field sites and collected O. puertoricensis from burrows that had been occupied by the animals. However, a limitation in this study was that we did not assess these animals’ in maintaining TBRF spirochetes. Future studies should focus on determining the role of D. puncatata in the ecology of TBRF. While the Ancón community of the City of Panama was shown here to be an endemic focus for TBRF spirochetes, additional foci in surrounding Central and South American countries should not be ruled out. Pathogenic spirochetes have been implicated in a case of human disease from a tourist traveling between Guatemala and Belize, while B. venezuelensis was isolated from argasid ticks recovered in Brazil [16,29]. Given that there are now Central and South American isolates of TBRF spirochetes, comparative genomic studies can be implemented to aid in identifying diagnostic markers for the spirochetes and to clarify the plasmid content of the bacteria. A genomic analysis will also determine whether these species encode the diagnostic antigen, Borrelia immunogenic protein A (BipA). We envision that BipA could be used in seroprevalence studies to identify endemic foci and evaluate the exposure of humans and wild and domestic animals to the spirochetes. Moreover, future work should address the geographic range of B. puertoricensis in Central and South America and focus on the identification of the vertebrate reservoir hosts.
Acknowledgments We thank Summit Municipal Park personnel, in particular the director Edgar Araúz. We also thank research staff and the veterinarians at Summit Botanical Gardens, Diorene Smith and Bernardo Castillo. We thank Tom G. Schwan for providing isolates of B. turicatae, B. hermsii, and B. parkeri.
[END]
[1] Url:
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0009642
(C) Plos One. "Accelerating the publication of peer-reviewed science."
Licensed under Creative Commons Attribution (CC BY 4.0)
URL:
https://creativecommons.org/licenses/by/4.0/
via Magical.Fish Gopher News Feeds:
gopher://magical.fish/1/feeds/news/plosone/