(C) PlosOne
This story was originally published on plosone.org. The content has not been altered[1]
Licensed under Creative Commons Attribution (CC BY) license .
url:https://journals.plos.org/plosone/s/licenses-and-copyright
--------------------



Obesity and revision surgery, mortality, and patient-reported outcomes after primary knee replacement surgery in the National Joint Registry: A UK cohort study

['Jonathan Thomas Evans', 'Musculoskeletal Research Unit', 'Translational Health Sciences', 'Bristol Medical School', 'Bristol', 'United Kingdom', 'Sofia Mouchti', 'Ashley William Blom', 'National Institute For Health Research Bristol Biomedical Research Centre', 'University Hospitals Bristol Nhs Foundation Trust']
Date: None

After adjustment for age, sex, American Society of Anaesthesiologists (ASA) grade, indication for operation, year of primary TKR, and fixation type, patients with high BMI were more likely to undergo revision surgery within 10 years compared to those with “normal” BMI (obese class II hazard ratio (HR) 1.21, 95% CI: 1.10, 1.32 (p < 0.001) and obese class III HR 1.13, 95% CI: 1.02, 1.26 (p = 0.026)). All BMI classes had revision estimates within the recognised 10-year benchmark of 5%. Overweight and obese class I patients had lower mortality than patients with “normal” BMI (HR 0.76, 95% CI: 0.65, 0.90 (p = 0.001) and HR 0.69, 95% CI: 0.58, 0.82 (p < 0.001)). All BMI categories saw absolute increases in OKS after 6 months (range 18–20 points). The relative improvement in OKS was lower in overweight and obese patients than those with “normal” BMI, but the difference was below the minimal detectable change (MDC; 4 points). The main limitations were missing BMI particularly in the early years of data collection and a potential selection bias effect of surgeons selecting the fitter patients with raised BMI for surgery.

There is growing evidence that some commissioners of health services in the UK are either restricting access to TKR for patients with high BMI or encouraging weight loss prior to referral for surgery [ 15 , 16 ]. This may be as a result of a belief that these patients are at a higher risk of complications. Surgeons may express concerns that increased load on a prosthesis increases the risk of failure due to loosening or wear or that the operation itself is more difficult, resulting in an increase in perioperative problems [ 17 ]. This is despite evidence that overall, the absolute risk of postoperative complications within the first 6 months of TKR is low in patients with a high BMI [ 18 ].

Total knee replacement (TKR) is one of the most common orthopaedic operations and is generally considered to be both safe, cost-effective, and clinically effective in reducing symptoms of pain and functional limitation in most patients [ 1 , 2 ]. Almost 1 in 10 people in the UK can expect to receive a TKR at some point in their lifetime, and approximately 100,000 have been performed in the UK each year for the last 4 years [ 3 – 5 ]. The main reasons for performing a TKR are joint pain and/or functional limitation in combination with radiographic evidence of arthritis; despite this, there is no consensus on the severity of symptoms that indicate the need for surgery [ 2 , 6 , 7 ]. Performing TKRs on the wrong patients may lead to poorer outcomes and lead to early revision surgery, which is both less effective than primary surgery and costly to patients and the health service [ 8 , 9 ]. Specific risk factors for poor outcomes that have previously been described include greater age, comorbidities, frailty, high body mass index (BMI), psychological factors, and the patient having a poor expectation of the success of surgery [ 10 – 13 ]. With an ageing population, the number of people having a TKR can be expected to increase, placing an increasing burden on the National Health Service (NHS) in respect of funding and capacity [ 14 ].

Confounding variables considered included age at primary TKR grouped as <50, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, 75 to 79, 80 to 84, and ≥85 measured in years; sex; American Society of Anaesthesiologists (ASA) physical status classification grouped as P1, P2, P3, or P4 to P5; year of receiving the primary TKR grouped as 2005 to 2007 and as individual years between 2008 and 2016; cemented, uncemented, or hybrid fixation; reason for operation classified as osteoarthritis, osteoarthritis plus another indication, or other indications only; quintiles of the Index of Multiple Deprivation (IMD) coded between 1 (most deprived) and 5 (least deprived); Charlson comorbidity index grouped as 0 (no comorbidities), 1 (mild), 2 (moderate), and 3+ (severe) comorbidities; and preoperative EQ5D 3L Anxiety/Depression domain. The IMD is the official measure of relative deprivation for small areas (Lower Layer Super Output Areas) in England. The measure is calculated using 7 domains including income, employment, education, health, crime, and environment. It ranks every small area from 1 (most deprived) to 32,844 (least deprived) [ 22 ].

The outcome variables for this study are revision surgery (defined as the addition, removal, or modification of any part of the construct) [ 3 ], mortality within 90 days of the primary operation, and patient-reported outcome assessed using the change in OKS after 6 months. The OKS is a patient-completed questionnaire that assesses knee pain and function with 12 questions, each scored from 0 to 4, completed using Likert scales, and the scores are summed to give a score from 0 (worst) to 48 (best) [ 20 ]. In cohort studies (such as the NJR), the minimal detectable change (MDC) in OKS at the group level has been shown to be 4 points [ 21 ].

Fig 2 demonstrates that the cumulative probability of revision rises with increasing BMI at the time of operation. Table 3 shows the number of knee replacements “at risk” (not yet failed or censored for death or administratively) at each time point for each BMI class in the original dataset, from which the model was built. After 10 years, patients with BMI ≥40 kg/m 2 had 4.0% (95% CI: 3.6, 4.5) cumulative probability of revision compared with 2.8% (95% CI: 2.5, 3.3) in those with BMI 18.5 to 24.99 kg/m 2 ( Table 4 ). Table 5 presents the hazard ratios (HRs) for each BMI group (derived from the flexible parametric models) for revision relative to patients with BMI of 18.5 to 24.99 kg/m 2 encompassing the full 11 years of follow-up. The adjusted model shows that patients with BMI 30 to 34.99 kg/m 2 , 35 to 39.99 kg/m 2 , and ≥40 kg/m 2 were 8% (HR 1.08, 95% CI: 0.99, 1.18 (p = 0.073)), 21% (HR 1.21, 95% CI: 1.10, 1.32 (p < 0.001)), and 13% (HR 1.13, 95% CI: 1.02, 1.26 (p = 0.026)) more likely to undergo a revision than patients with BMI 18.5 to 24.99 kg/m 2 , respectively, although it should be noted that the confidence intervals for the 30 to 34.99 kg/m 2 category do cross the null value. Fig 3 shows the hazard of revision when BMI is modelled as a continuous variable with splines at WHO cutoffs. This model is consistent with models using BMI as a categorical variable.

Discussion

Statement of principal findings In this study using a large national joint replacement registry, after adjusting for age, sex, ASA, indication for operation, year of operation, and fixation type, patients classified as overweight or obese (BMI ≥25kg/m2) had a reduced 90-day mortality risk but an increased risk of revision surgery compared to those in the “normal” category. The 10-year cumulative risk of revision in patients with BMI 18.5 to 24 kg/m2 (reference group) was 2.8% and ranged from 2.3% in people with lowest BMI to 4.0% in those with the highest BMI. Patients in the “underweight” group (BMI <18.5kg/m2) had the highest mortality 90 days after TKR, but even in this large national arthroplasty registry dataset, the number of patients affected was small with 10 deaths in 1,338 patients. Regarding PROMs, all categories of BMI showed an absolute improvement in median OKS after 6 months compared to median preoperative scores. The relative improvement in OKS was slightly lower in overweight and obese patients at the time of surgery compared to patients with “normal” BMI, and the differences between groups were below the minimally important difference in change score. The 6-month absolute OKS appeared lower in higher BMI categories relatively, which reflects a lower starting point in these categories.

Strengths and weaknesses of the study To our knowledge, this is the first study on obesity and knee replacement to examine all 3 domains of implant revision, mortality, and patient-reported outcomes. The failings of examining single domains have previously been highlighted, in that just because a TKR has not been revised does not necessarily mean it was a success [26]. We used what we believe is the largest joint replacement registry in the world, with near complete coverage of all operations performed in the target population. Analyses were not restricted to certain groups of patients or implant providers, allowing us to generalise the results to most patients undergoing elective primary TKR in England and Wales. The most notable limitation is the missing data on BMI. Before 2005, this variable was not collected, and between 2005 and 2016, the completeness of BMI data in our study dataset rose from 20.5% to 83.0%. Patient demographics were similar between operations with complete and non-complete BMIs, suggesting that there was unlikely to be responder bias. The main differences between groups (Table 1) were the distribution of patients between the ASA 1 and 2 groups and fixation type. Results of patients with ASA 1 and 2 tend to be similar, and so we do not feel this is likely to have biased results. More patients with missing BMI had cementless or hybrid fixation compared to those with BMI reported. Given the NJR annual report suggests poorer implant survival in cementless TKR [3], this difference could result in reduced survival overall and depending on how BMI is distributed among high-BMI patients could bias our results either way, although these fixation methods are only used in a small proportion of patients (4.1% of those with complete data and 7.6% of those with incomplete data). Overweight and obese patients receiving the operation are probably healthier and fitter than similar people not having surgery, which is likely to result in selection bias. As with all registry data, analyses are only as good as data entered; the first NJR data quality audit suggested that 95.7% of primary TKRs and 90.3% of revision TKRs were captured in financial year 204/15. Despite this high level of completeness, at the time of data collection, the NJR did not routinely capture operations where implants were not added, removed, or modified. This means that if a patient returned to theatre for an operation that did not involve the change of any implants, it would not have been captured by the NJR and would therefore not be reported by our study. It is possible that patients may require revision surgery but are deemed unsuitable because of comorbidities, and, as such, are not identified by the NJR as a failure. While this is a recognised limitation of registry research, it may be particularly relevant in this study if patients with high BMI at the time of primary surgery are considered at higher risk of developing future comorbidities that would render them less fit for revision surgery. OKS data were only available up to 6 months after TKR so we were unable to assess patient-reported pain and function as long postoperatively as we could describe revision outcomes. It is possible that recovery trajectories could vary according to BMI (i.e., higher BMI patients taking longer to recover). This could mean that patients in one particular group may not have achieved their peak postoperative outcome score by the 6-month point reported in this study. While the OKS has been widely validated, it has not been specifically validated in a solely high BMI group. This could potentially create some bias in comparison of subgroups of BMI if those with high BMI are more likely to score certain questions either higher or lower than patients with normal BMI. This study is observational in nature, and, as such, statements about causality cannot be made. Data used are routine data, and, as such, not collected specifically for inclusion in this study; this may lead to misclassification of covariates, missing data, and residual confounding.

Strengths and weaknesses of the study in relation to other studies The results described here conflict with previously observed associations of higher BMI with increased all-cause mortality in general nonsurgical populations [27]. This may reflect a healthy surgery effect (obesity paradox), where those with high BMI selected for surgery are fitter with fewer comorbidities than those who do not present themselves, or are deemed unsuitable, for surgery. Our observation that mortality rates following primary TKR were similar or lower at high BMI is consistent with some previous studies [28]. A U-shaped relationship between BMI and mortality has been noted in 2 studies with higher mortality in underweight patients (BMI <18.5 kg/m2) compared to patients with a “normal” BMI according to WHO criteria [19,29]. Individual units or surgeons may employ different methods of determining a patient’s fitness for surgery as well as differing pre- and postoperative care for these patients. The data available in our study did not allow this to be explored in more depth. Our results do suggest that the processes already in place are suitable in identifying those high-BMI patients at increased risk of death and that restricting access to surgery at the point of referral is unlikely to be of benefit. In an analysis of data from over 54,000 patients undergoing primary TKR in the UK, there was a 1.02% increased hazard of revision for each unit of BMI, which is consistent with our study [30]. In a systematic review and meta-analysis including studies of primary TKR reported before February 2017, Pozzobon and colleagues note that in 5 studies, long-term pain, and, in 10 studies, disability, were greater in patients with BMI ≥30 kg/m2 compared with BMI <30 kg/m2 [31]. Due to the use of different outcome measures, the authors did not report whether these outcomes were clinically relevant. Our findings are generally conflicting with those of Chaudhry and colleagues, who in 2019 published a meta-analysis suggesting higher risk of revision and worse patient-reported outcomes in “severely, morbidly and super-obese patients” [32]. The main limitation of their analyses was the quality of included studies. Their conclusions focused on revision rate being driven by septic revisions, a subgroup we did not specifically look at in our study. Similarly, to Chaudhry and colleagues, we reported an increased revision risk in patients with higher BMI but concluded the cumulative revision estimate was still below the nationally recognised benchmark.

Meaning of the study: Possible explanations and implications for clinicians and policy makers The results of this study are important for patients, surgeons, and healthcare commissioners, in that patients with a high BMI do not appear to have clinically relevant poorer outcomes compared to those with “normal” BMI. This is particularly relevant given the large absolute numbers of obese patients (273,565; 55.4%) that have received surgery and the incidence of symptomatic knee osteoarthritis and its progression increases with BMI [33]. Regardless of the observed differences in the 10-year cumulative revision estimates between groups, these estimates are all still comfortably within the nationally recognised benchmark of 5% at 10 years. Patients with higher than “normal” BMI showed smaller relative improvements in pain and function scores at 6 months after TKR, but this is outweighed by substantial improvements across all BMI categories. Improvements in OKS across categories ranged from 18 to 20 points, consistent with patient reporting of knee problems being “much better” than before surgery, and the difference between groups was lower than the clinically relevant difference of 4/48 reported by Beard and colleagues [21]. It is important to emphasise that, although we have detected statistically significant differences due to the very large sample size, they are not clinically meaningful differences.

[1] Url: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003704

(C) GlobalVoices
Licensed under Creative Commons Attribution 3.0 Unported (CC BY 4.0)
URL: https://creativecommons.org/licenses/by/4.0/


via Magical.Fish Gopher News Feeds:
gopher://magical.fish/1/feeds/news/plosone/