(C) NASA
This story was originally published by NASA and is unaltered.
. . . . . . . . . .



Summary of the 2023 GRACE Follow-On Science Team Meeting [1]

[]

Date: 2024-05

Several presenters reported on efforts to advance concepts to downscale G/G-FO data to bring the information closer to decision-making scales and expand water-related applications, as well as to fill gaps and expand the data record with multisensor observations. One presenter described a new spectral approach that employs wavelet multiresolution analysis to combine seasonal terrestrial water storage change data from G/G-FO with those from global navigation satellite system (GNSS) ground station networks to downscale the observations to smaller hydrological basins and to better separate processes over complex topographical terrain. This method can also be used by fusing G/G-FO and hydrological model data [e.g., from NASA’s Global Land Data Assimilation System (GLDAS) models at continental scales]. Importantly, the method yields trends and long-term signals that match G/G-FO observations – a strength of the observing system. Another approach used a statistical Bayesian framework to incorporate G/G-FO observations and Soil Moisture Change data from different available sources [e.g., NASA’s Soil Moisture Active Passive (SMAP) mission] to obtain nonparametric likelihood functions that allow for downscaling. A statistical technique called cyclostationary empirical orthogonal function (CSEOF) analysis – which is used to interpret space-time variability in a large dataset – allowed researchers to fill short data gaps (~1 year) in G/G-FO record (e.g., between 2017 and 2018 – the gap between GRACE and GRACE–FO) without having any additional data. With the support of physically-related data (e.g., precipitation and temperature), CSEOFs can be used to reconstruct water changes into the past or fill larger data gaps. Such datasets improve understanding of trends and natural variability and anticipate future trends in response to climatic changes.

[END]
---
[1] Url: https://science.nasa.gov/uncategorized/summary-of-the-2023-grace-follow-on-science-team-meeting/

Published and (C) by NASA
Content appears here under this condition or license: Public Domain.

via Magical.Fish Gopher News Feeds:
gopher://magical.fish/1/feeds/news/nasa/