(C) NASA
This story was originally published by NASA and is unaltered.
. . . . . . . . . .



Digging Deeper to Find Life on Ocean Worlds [1]

[]

Date: 2023-12

Finally, a cryobot mission requires a robust and redundant communication link through the ice shell to enable the lander to relay data to an orbiting relay asset or directly to Earth. Fiber optic cables are the industry standard for communicating with terrestrial melt probes and deep-sea vehicles, but require careful validation for deployment through ice shells, which are active. The movement of ice in these shells could break the cable. A team led by Dr. Kate Craft at the Johns Hopkins Applied Physics Laboratory has been investigating the propensity of tethers embedded in ice to break during ice-shear events, as well as methods to mitigate such breakage. While preliminary results from this study are highly encouraging, other teams are exploring wireless techniques for communicating through the ice, including radio frequency, acoustic, and magnetic transceivers. These communication systems must be integrated onto the aft end of the probe and depoyed during its descent. Current projects funded under the NASA COLDTech program are taking the first steps toward addressing key risks for the communications system. Future work must validate performance across a broader range of conditions and demonstrate integration on a cryobot.

[END]
---
[1] Url: https://science.nasa.gov/science-research/science-enabling-technology/digging-deeper-to-find-life-on-ocean-worlds/

Published and (C) by NASA
Content appears here under this condition or license: Public Domain.

via Magical.Fish Gopher News Feeds:
gopher://magical.fish/1/feeds/news/nasa/