(C) Common Dreams
This story was originally published by Common Dreams and is unaltered.
. . . . . . . . . .



Reducing plastic production: Economic loss or environmental gain? [1]

['Mateo Cordier', 'Takuro Uehara', 'Bethany Jorgensen', 'Juan Baztan']

Date: 2024-01-19

Lau et al. ( Reference Lau, Shiran, Bailey, Cook, Stuchtey, Koskella, Velis, Godfrey, Boucher, Murphy, Thompson, Jankowska, Castillo Castillo, Pilditch, Dixon, Koerselman, Kosior, Favoino, Gutberlet, Baulch, Atreya, Fischer, He, Petit, Sumaila, Neil, Bernhofen, Lawrence and Palardy2020 , Science 369 , 1455–1461) show that reducing plastic production and replacing plastics with alternative materials could reduce the production of plastics by 47% in 2040. This would reduce plastic pollution in terrestrial and aquatic ecosystems. Other interventions are also needed, such as cleanups in oceans, rivers, beaches and all terrestrial ecosystems. Interventions such as reusing old plastic products, improved collection, sorting, recycling and disposal of municipal solid plastic waste are also required in many countries. Implementing all these interventions globally, in theory, would allow the environmental target of zero plastic debris in the global ecosystem by 2040 to be met. This would cost between US$ 18,000 billion and US$ 158,000 billion, meaning the cost of action is between the Gross Domestic Product (GDP) of China and 1.6 times the world GDP. On the other hand, if we do nothing to address plastic pollution, the cost of global environmental damages (estimated to be US$ 14,000–282,000 billion) could be significantly higher than the cost of taking actions to end plastic pollution. These actions will certainly produce environmental gain. They might also produce an economic gain but this requires further research to reduce uncertainty margins and confirm inaction is substantially more expensive than action.

The accelerated accumulation of plastic debris in the environment since the 2000s raises three questions that can no longer be avoided: (i) should we clean terrestrial and aquatic ecosystems polluted with plastics; (ii) should we stop producing and consuming plastics to avoid future pollution and (iii) is the cost of both options affordable and lower than the cost of inaction? The following sections help answer these questions. Section “ Global estimations of plastic debris accumulated in the ecosystems ” provides global estimations of the total amount of plastic debris accumulated in aquatic and terrestrial ecosystems. Section “Global cost of actions towards zero plastic debris in ecosystems by 2040” presents strategies to reduce plastic contamination of ecosystems and the cost of action. Section “ Global cost of plastic pollution: The cost of inaction ” shows the global cost of the impacts that will result from plastic pollution in case of inaction from now to 2040. Section “ Global benefits obtained from plastics ” provides a calculation of the net benefits (i.e., benefits minus costs) earned from plastic sales. Section “ Discussion and conclusion ” discusses the results, compares the cost and net benefits of action and inaction, and concludes.

Plastics represent a group of polymers including natural, semisynthetic or synthetic materials that are malleable and can be modeled into solid objects (Chen and Yan, Reference Chen and Yan2020 ). Natural plastics such as horn, tortoiseshell, amber, rubber and shellac have been worked with since antiquity. However, the first synthetic plastic, Bakelite, is more recent and was invented by a Belgian chemist Leo Baekland in 1907 (Baekland, Reference Baekland1909 ; Science Museum, 2019 ). With the salient plastic virtues of low-cost, being lightweight, durable, odorless and versatile, among others, a large and rapid expansion of plastic manufacturing started in the 1950s (Chen and Yan, Reference Chen and Yan2020 ). In 1950, the annual production of plastic goods amounted to 2 million metric tons (MMT) globally and by 2018, it surpassed 450 MMT (Geyer et al., Reference Geyer, Jambeck and Law2017 ; Law and Narayan, Reference Law and Narayan2022 ). This global market growth is projected to be driven in the future largely by increasing plastic use in the construction, automotive and electrical and electronics industries (Grand View Research, 2022 ).

To calculate some of the costs of plastic pollution reduction strategies (Section “Global cost of actions towards zero plastic debris in ecosystems by 2040”), it is important to distinguish the compartments of aquatic ecosystems where plastic debris accumulates since they require distinct removal and cleanup technologies. Global plastic accumulation in the oceans since 1950 is estimated to be 18–385 MMT in 2020 ( Figure 3 ). Once it reaches the ocean, plastic debris may move to different parts of the marine environment. Data from the OECD ( 2022 , p. 126) suggest that 87.8% of plastics reaching the global ocean are floating close to the ocean shoreline, 9.8% sink to the seabed, and 2.4% are transported offshore by marine currents and continue floating on the ocean surface ( Figure 3 ). In rivers, the accumulation of floating plastics is estimated to be 18–45 MMT in 2020. For plastic debris sinking to riverbeds and lakebeds, accumulated amounts are estimated to be 46–114 MMT in 2020 ( Figure 3 ).

Global cost of actions toward zero plastic debris in ecosystems by 2040

Plastic pollution reduction strategies can be organized into three categories (Cordier and Uehara, Reference Cordier and Uehara2019; Lau et al., Reference Lau, Shiran, Bailey, Cook, Stuchtey, Koskella, Velis, Godfrey, Boucher, Murphy, Thompson, Jankowska, Castillo Castillo, Pilditch, Dixon, Koerselman, Kosior, Favoino, Gutberlet, Baulch, Atreya, Fischer, He, Petit, Sumaila, Neil, Bernhofen, Lawrence and Palardy2020): (i) upstream preventive strategies designed to avoid plastics being produced (implemented at pre-consumption stages, e.g., reducing production and demand of plastics); (ii) mid-stream preventive strategies aimed at preventing plastic waste from reaching the environment (implemented at post-consumption stages, e.g., waste collection and recycling) and (iii) downstream curative strategies designed to clean legacy pollution in ecosystems where plastic debris has already accumulated (implemented at post-consumption stages, e.g., ocean cleanup). The costs of several strategies belonging to these three categories are presented below. All costs hereinafter are expressed in US$ at prices for the year 2021 (unless otherwise stated), which explains why the cost data provided in this paper may slightly differ from those in their original publications. Costs estimated over a period of time of several years in this paper are all calculated summing annual costs year-by-year over the period and using a discount rate of 3.5%. Private costs are estimated in Sections “ Upstream solution: Stopping plastic production”–“ Downstream solution: Terrestrial and aquatic ecosystem cleanup”, and external costs and social costs in Section “Global cost of plastic pollution: The cost of inaction” (Table 1 summarizes them). “The idea underlying the notion of social cost is a very simple one. A man initiating an action does not necessarily bear all the costs (or reap all the benefits) himself. Those that he does bear are private costs; those he does not are external costs. The sum of the two constitutes the social cost” (de and Graaff, Reference de and Graaff2018). Private costs are paid by the firm or the consumer and are included in production and consumption decisions. External costs, on the other hand, are not reflected on firms’ income statements or in consumers’ decisions. However, external costs remain costs to society, regardless of who pays for them (Federal Reserve Bank of San Francisco, 2002). Consider a firm or a consumer polluting the marine environment with plastic waste. Because of the firm’s or consumer’s actions, people regularly eating sea food contaminated with plastics (micro- and nanoplastics) might suffer health effects, tourists may find beaches less attractive due to plastic waste, the beauty of littoral landscapes is damaged, marine animals die through plastic ingestion and entanglement and so forth. When external costs like these exist, they must be added to private costs to determine social costs and to ensure that a socially efficient rate of output is generated (i.e., outputs of plastic products and plastic waste).

[END]
---
[1] Url: https://www.cambridge.org/core/journals/cambridge-prisms-plastics/article/reducing-plastic-production-economic-loss-or-environmental-gain/99BEE1E1A6C185B79CD2735B02C59AC6

Published and (C) by Common Dreams
Content appears here under this condition or license: Creative Commons CC BY-NC-ND 3.0..

via Magical.Fish Gopher News Feeds:
gopher://magical.fish/1/feeds/news/commondreams/