Network Working Group                                          J. Postel
Request for Comments: 959                                    J. Reynolds
                                                                    ISI
Obsoletes RFC: 765 (IEN 149)                                October 1985

                     FILE TRANSFER PROTOCOL (FTP)


Status of this Memo

  This memo is the official specification of the File Transfer
  Protocol (FTP).  Distribution of this memo is unlimited.

  The following new optional commands are included in this edition of
  the specification:

     CDUP (Change to Parent Directory), SMNT (Structure Mount), STOU
     (Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD
     (Print Directory), and SYST (System).

  Note that this specification is compatible with the previous edition.

1.  INTRODUCTION

  The objectives of FTP are 1) to promote sharing of files (computer
  programs and/or data), 2) to encourage indirect or implicit (via
  programs) use of remote computers, 3) to shield a user from
  variations in file storage systems among hosts, and 4) to transfer
  data reliably and efficiently.  FTP, though usable directly by a user
  at a terminal, is designed mainly for use by programs.

  The attempt in this specification is to satisfy the diverse needs of
  users of maxi-hosts, mini-hosts, personal workstations, and TACs,
  with a simple, and easily implemented protocol design.

  This paper assumes knowledge of the Transmission Control Protocol
  (TCP) [2] and the Telnet Protocol [3].  These documents are contained
  in the ARPA-Internet protocol handbook [1].

2.  OVERVIEW

  In this section, the history, the terminology, and the FTP model are
  discussed.  The terms defined in this section are only those that
  have special significance in FTP.  Some of the terminology is very
  specific to the FTP model; some readers may wish to turn to the
  section on the FTP model while reviewing the terminology.







Postel & Reynolds                                               [Page 1]



RFC 959                                                     October 1985
File Transfer Protocol


  2.1.  HISTORY

     FTP has had a long evolution over the years.  Appendix III is a
     chronological compilation of Request for Comments documents
     relating to FTP.  These include the first proposed file transfer
     mechanisms in 1971 that were developed for implementation on hosts
     at M.I.T. (RFC 114), plus comments and discussion in RFC 141.

     RFC 172 provided a user-level oriented protocol for file transfer
     between host computers (including terminal IMPs).  A revision of
     this as RFC 265, restated FTP for additional review, while RFC 281
     suggested further changes.  The use of a "Set Data Type"
     transaction was proposed in RFC 294 in January 1982.

     RFC 354 obsoleted RFCs 264 and 265.  The File Transfer Protocol
     was now defined as a protocol for file transfer between HOSTs on
     the ARPANET, with the primary function of FTP defined as
     transfering files efficiently and reliably among hosts and
     allowing the convenient use of remote file storage capabilities.
     RFC 385 further commented on errors, emphasis points, and
     additions to the protocol, while RFC 414 provided a status report
     on the working server and user FTPs.  RFC 430, issued in 1973,
     (among other RFCs too numerous to mention) presented further
     comments on FTP.  Finally, an "official" FTP document was
     published as RFC 454.

     By July 1973, considerable changes from the last versions of FTP
     were made, but the general structure remained the same.  RFC 542
     was published as a new "official" specification to reflect these
     changes.  However, many implementations based on the older
     specification were not updated.

     In 1974, RFCs 607 and 614 continued comments on FTP.  RFC 624
     proposed further design changes and minor modifications.  In 1975,
     RFC 686 entitled, "Leaving Well Enough Alone", discussed the
     differences between all of the early and later versions of FTP.
     RFC 691 presented a minor revision of RFC 686, regarding the
     subject of print files.

     Motivated by the transition from the NCP to the TCP as the
     underlying protocol, a phoenix was born out of all of the above
     efforts in RFC 765 as the specification of FTP for use on TCP.

     This current edition of the FTP specification is intended to
     correct some minor documentation errors, to improve the
     explanation of some protocol features, and to add some new
     optional commands.


Postel & Reynolds                                               [Page 2]



RFC 959                                                     October 1985
File Transfer Protocol


     In particular, the following new optional commands are included in
     this edition of the specification:

        CDUP - Change to Parent Directory

        SMNT - Structure Mount

        STOU - Store Unique

        RMD - Remove Directory

        MKD - Make Directory

        PWD - Print Directory

        SYST - System

     This specification is compatible with the previous edition.  A
     program implemented in conformance to the previous specification
     should automatically be in conformance to this specification.

  2.2.  TERMINOLOGY

     ASCII

        The ASCII character set is as defined in the ARPA-Internet
        Protocol Handbook.  In FTP, ASCII characters are defined to be
        the lower half of an eight-bit code set (i.e., the most
        significant bit is zero).

     access controls

        Access controls define users' access privileges to the use of a
        system, and to the files in that system.  Access controls are
        necessary to prevent unauthorized or accidental use of files.
        It is the prerogative of a server-FTP process to invoke access
        controls.

     byte size

        There are two byte sizes of interest in FTP:  the logical byte
        size of the file, and the transfer byte size used for the
        transmission of the data.  The transfer byte size is always 8
        bits.  The transfer byte size is not necessarily the byte size
        in which data is to be stored in a system, nor the logical byte
        size for interpretation of the structure of the data.



Postel & Reynolds                                               [Page 3]



RFC 959                                                     October 1985
File Transfer Protocol


     control connection

        The communication path between the USER-PI and SERVER-PI for
        the exchange of commands and replies.  This connection follows
        the Telnet Protocol.

     data connection

        A full duplex connection over which data is transferred, in a
        specified mode and type. The data transferred may be a part of
        a file, an entire file or a number of files.  The path may be
        between a server-DTP and a user-DTP, or between two
        server-DTPs.

     data port

        The passive data transfer process "listens" on the data port
        for a connection from the active transfer process in order to
        open the data connection.

     DTP

        The data transfer process establishes and manages the data
        connection.  The DTP can be passive or active.

     End-of-Line

        The end-of-line sequence defines the separation of printing
        lines.  The sequence is Carriage Return, followed by Line Feed.

     EOF

        The end-of-file condition that defines the end of a file being
        transferred.

     EOR

        The end-of-record condition that defines the end of a record
        being transferred.

     error recovery

        A procedure that allows a user to recover from certain errors
        such as failure of either host system or transfer process.  In
        FTP, error recovery may involve restarting a file transfer at a
        given checkpoint.



Postel & Reynolds                                               [Page 4]



RFC 959                                                     October 1985
File Transfer Protocol


     FTP commands

        A set of commands that comprise the control information flowing
        from the user-FTP to the server-FTP process.

     file

        An ordered set of computer data (including programs), of
        arbitrary length, uniquely identified by a pathname.

     mode

        The mode in which data is to be transferred via the data
        connection.  The mode defines the data format during transfer
        including EOR and EOF.  The transfer modes defined in FTP are
        described in the Section on Transmission Modes.

     NVT

        The Network Virtual Terminal as defined in the Telnet Protocol.

     NVFS

        The Network Virtual File System.  A concept which defines a
        standard network file system with standard commands and
        pathname conventions.

     page

        A file may be structured as a set of independent parts called
        pages.  FTP supports the transmission of discontinuous files as
        independent indexed pages.

     pathname

        Pathname is defined to be the character string which must be
        input to a file system by a user in order to identify a file.
        Pathname normally contains device and/or directory names, and
        file name specification.  FTP does not yet specify a standard
        pathname convention.  Each user must follow the file naming
        conventions of the file systems involved in the transfer.

     PI

        The protocol interpreter.  The user and server sides of the
        protocol have distinct roles implemented in a user-PI and a
        server-PI.


Postel & Reynolds                                               [Page 5]



RFC 959                                                     October 1985
File Transfer Protocol


     record

        A sequential file may be structured as a number of contiguous
        parts called records.  Record structures are supported by FTP
        but a file need not have record structure.

     reply

        A reply is an acknowledgment (positive or negative) sent from
        server to user via the control connection in response to FTP
        commands.  The general form of a reply is a completion code
        (including error codes) followed by a text string.  The codes
        are for use by programs and the text is usually intended for
        human users.

     server-DTP

        The data transfer process, in its normal "active" state,
        establishes the data connection with the "listening" data port.
        It sets up parameters for transfer and storage, and transfers
        data on command from its PI.  The DTP can be placed in a
        "passive" state to listen for, rather than initiate a
        connection on the data port.

     server-FTP process

        A process or set of processes which perform the function of
        file transfer in cooperation with a user-FTP process and,
        possibly, another server.  The functions consist of a protocol
        interpreter (PI) and a data transfer process (DTP).

     server-PI

        The server protocol interpreter "listens" on Port L for a
        connection from a user-PI and establishes a control
        communication connection.  It receives standard FTP commands
        from the user-PI, sends replies, and governs the server-DTP.

     type

        The data representation type used for data transfer and
        storage.  Type implies certain transformations between the time
        of data storage and data transfer.  The representation types
        defined in FTP are described in the Section on Establishing
        Data Connections.




Postel & Reynolds                                               [Page 6]



RFC 959                                                     October 1985
File Transfer Protocol


     user

        A person or a process on behalf of a person wishing to obtain
        file transfer service.  The human user may interact directly
        with a server-FTP process, but use of a user-FTP process is
        preferred since the protocol design is weighted towards
        automata.

     user-DTP

        The data transfer process "listens" on the data port for a
        connection from a server-FTP process.  If two servers are
        transferring data between them, the user-DTP is inactive.

     user-FTP process

        A set of functions including a protocol interpreter, a data
        transfer process and a user interface which together perform
        the function of file transfer in cooperation with one or more
        server-FTP processes.  The user interface allows a local
        language to be used in the command-reply dialogue with the
        user.

     user-PI

        The user protocol interpreter initiates the control connection
        from its port U to the server-FTP process, initiates FTP
        commands, and governs the user-DTP if that process is part of
        the file transfer.




















Postel & Reynolds                                               [Page 7]



RFC 959                                                     October 1985
File Transfer Protocol


  2.3.  THE FTP MODEL

     With the above definitions in mind, the following model (shown in
     Figure 1) may be diagrammed for an FTP service.

                                           -------------
                                           |/---------\|
                                           ||   User  ||    --------
                                           ||Interface|<--->| User |
                                           |\----^----/|    --------
                 ----------                |     |     |
                 |/------\|  FTP Commands  |/----V----\|
                 ||Server|<---------------->|   User  ||
                 ||  PI  ||   FTP Replies  ||    PI   ||
                 |\--^---/|                |\----^----/|
                 |   |    |                |     |     |
     --------    |/--V---\|      Data      |/----V----\|    --------
     | File |<--->|Server|<---------------->|  User   |<--->| File |
     |System|    || DTP  ||   Connection   ||   DTP   ||    |System|
     --------    |\------/|                |\---------/|    --------
                 ----------                -------------

                 Server-FTP                   USER-FTP

     NOTES: 1. The data connection may be used in either direction.
            2. The data connection need not exist all of the time.

                     Figure 1  Model for FTP Use

     In the model described in Figure 1, the user-protocol interpreter
     initiates the control connection.  The control connection follows
     the Telnet protocol.  At the initiation of the user, standard FTP
     commands are generated by the user-PI and transmitted to the
     server process via the control connection.  (The user may
     establish a direct control connection to the server-FTP, from a
     TAC terminal for example, and generate standard FTP commands
     independently, bypassing the user-FTP process.) Standard replies
     are sent from the server-PI to the user-PI over the control
     connection in response to the commands.

     The FTP commands specify the parameters for the data connection
     (data port, transfer mode, representation type, and structure) and
     the nature of file system operation (store, retrieve, append,
     delete, etc.).  The user-DTP or its designate should "listen" on
     the specified data port, and the server initiate the data
     connection and data transfer in accordance with the specified
     parameters.  It should be noted that the data port need not be in


Postel & Reynolds                                               [Page 8]



RFC 959                                                     October 1985
File Transfer Protocol


     the same host that initiates the FTP commands via the control
     connection, but the user or the user-FTP process must ensure a
     "listen" on the specified data port.  It ought to also be noted
     that the data connection may be used for simultaneous sending and
     receiving.

     In another situation a user might wish to transfer files between
     two hosts, neither of which is a local host. The user sets up
     control connections to the two servers and then arranges for a
     data connection between them.  In this manner, control information
     is passed to the user-PI but data is transferred between the
     server data transfer processes.  Following is a model of this
     server-server interaction.


                   Control     ------------   Control
                   ---------->| User-FTP |<-----------
                   |          | User-PI  |           |
                   |          |   "C"    |           |
                   V          ------------           V
           --------------                        --------------
           | Server-FTP |   Data Connection      | Server-FTP |
           |    "A"     |<---------------------->|    "B"     |
           -------------- Port (A)      Port (B) --------------


                                Figure 2

     The protocol requires that the control connections be open while
     data transfer is in progress.  It is the responsibility of the
     user to request the closing of the control connections when
     finished using the FTP service, while it is the server who takes
     the action.  The server may abort data transfer if the control
     connections are closed without command.

     The Relationship between FTP and Telnet:

        The FTP uses the Telnet protocol on the control connection.
        This can be achieved in two ways: first, the user-PI or the
        server-PI may implement the rules of the Telnet Protocol
        directly in their own procedures; or, second, the user-PI or
        the server-PI may make use of the existing Telnet module in the
        system.

        Ease of implementaion, sharing code, and modular programming
        argue for the second approach.  Efficiency and independence



Postel & Reynolds                                               [Page 9]



RFC 959                                                     October 1985
File Transfer Protocol


        argue for the first approach.  In practice, FTP relies on very
        little of the Telnet Protocol, so the first approach does not
        necessarily involve a large amount of code.

3.  DATA TRANSFER FUNCTIONS

  Files are transferred only via the data connection.  The control
  connection is used for the transfer of commands, which describe the
  functions to be performed, and the replies to these commands (see the
  Section on FTP Replies).  Several commands are concerned with the
  transfer of data between hosts.  These data transfer commands include
  the MODE command which specify how the bits of the data are to be
  transmitted, and the STRUcture and TYPE commands, which are used to
  define the way in which the data are to be represented.  The
  transmission and representation are basically independent but the
  "Stream" transmission mode is dependent on the file structure
  attribute and if "Compressed" transmission mode is used, the nature
  of the filler byte depends on the representation type.

  3.1.  DATA REPRESENTATION AND STORAGE

     Data is transferred from a storage device in the sending host to a
     storage device in the receiving host.  Often it is necessary to
     perform certain transformations on the data because data storage
     representations in the two systems are different.  For example,
     NVT-ASCII has different data storage representations in different
     systems.  DEC TOPS-20s's generally store NVT-ASCII as five 7-bit
     ASCII characters, left-justified in a 36-bit word. IBM Mainframe's
     store NVT-ASCII as 8-bit EBCDIC codes.  Multics stores NVT-ASCII
     as four 9-bit characters in a 36-bit word.  It is desirable to
     convert characters into the standard NVT-ASCII representation when
     transmitting text between dissimilar systems.  The sending and
     receiving sites would have to perform the necessary
     transformations between the standard representation and their
     internal representations.

     A different problem in representation arises when transmitting
     binary data (not character codes) between host systems with
     different word lengths.  It is not always clear how the sender
     should send data, and the receiver store it.  For example, when
     transmitting 32-bit bytes from a 32-bit word-length system to a
     36-bit word-length system, it may be desirable (for reasons of
     efficiency and usefulness) to store the 32-bit bytes
     right-justified in a 36-bit word in the latter system.  In any
     case, the user should have the option of specifying data
     representation and transformation functions.  It should be noted



Postel & Reynolds                                              [Page 10]



RFC 959                                                     October 1985
File Transfer Protocol


     that FTP provides for very limited data type representations.
     Transformations desired beyond this limited capability should be
     performed by the user directly.

     3.1.1.  DATA TYPES

        Data representations are handled in FTP by a user specifying a
        representation type.  This type may implicitly (as in ASCII or
        EBCDIC) or explicitly (as in Local byte) define a byte size for
        interpretation which is referred to as the "logical byte size."
        Note that this has nothing to do with the byte size used for
        transmission over the data connection, called the "transfer
        byte size", and the two should not be confused.  For example,
        NVT-ASCII has a logical byte size of 8 bits.  If the type is
        Local byte, then the TYPE command has an obligatory second
        parameter specifying the logical byte size.  The transfer byte
        size is always 8 bits.

        3.1.1.1.  ASCII TYPE

           This is the default type and must be accepted by all FTP
           implementations.  It is intended primarily for the transfer
           of text files, except when both hosts would find the EBCDIC
           type more convenient.

           The sender converts the data from an internal character
           representation to the standard 8-bit NVT-ASCII
           representation (see the Telnet specification).  The receiver
           will convert the data from the standard form to his own
           internal form.

           In accordance with the NVT standard, the <CRLF> sequence
           should be used where necessary to denote the end of a line
           of text.  (See the discussion of file structure at the end
           of the Section on Data Representation and Storage.)

           Using the standard NVT-ASCII representation means that data
           must be interpreted as 8-bit bytes.

           The Format parameter for ASCII and EBCDIC types is discussed
           below.








Postel & Reynolds                                              [Page 11]



RFC 959                                                     October 1985
File Transfer Protocol


        3.1.1.2.  EBCDIC TYPE

           This type is intended for efficient transfer between hosts
           which use EBCDIC for their internal character
           representation.

           For transmission, the data are represented as 8-bit EBCDIC
           characters.  The character code is the only difference
           between the functional specifications of EBCDIC and ASCII
           types.

           End-of-line (as opposed to end-of-record--see the discussion
           of structure) will probably be rarely used with EBCDIC type
           for purposes of denoting structure, but where it is
           necessary the <NL> character should be used.

        3.1.1.3.  IMAGE TYPE

           The data are sent as contiguous bits which, for transfer,
           are packed into the 8-bit transfer bytes.  The receiving
           site must store the data as contiguous bits.  The structure
           of the storage system might necessitate the padding of the
           file (or of each record, for a record-structured file) to
           some convenient boundary (byte, word or block).  This
           padding, which must be all zeros, may occur only at the end
           of the file (or at the end of each record) and there must be
           a way of identifying the padding bits so that they may be
           stripped off if the file is retrieved.  The padding
           transformation should be well publicized to enable a user to
           process a file at the storage site.

           Image type is intended for the efficient storage and
           retrieval of files and for the transfer of binary data.  It
           is recommended that this type be accepted by all FTP
           implementations.

        3.1.1.4.  LOCAL TYPE

           The data is transferred in logical bytes of the size
           specified by the obligatory second parameter, Byte size.
           The value of Byte size must be a decimal integer; there is
           no default value.  The logical byte size is not necessarily
           the same as the transfer byte size.  If there is a
           difference in byte sizes, then the logical bytes should be
           packed contiguously, disregarding transfer byte boundaries
           and with any necessary padding at the end.



Postel & Reynolds                                              [Page 12]



RFC 959                                                     October 1985
File Transfer Protocol


           When the data reaches the receiving host, it will be
           transformed in a manner dependent on the logical byte size
           and the particular host.  This transformation must be
           invertible (i.e., an identical file can be retrieved if the
           same parameters are used) and should be well publicized by
           the FTP implementors.

           For example, a user sending 36-bit floating-point numbers to
           a host with a 32-bit word could send that data as Local byte
           with a logical byte size of 36.  The receiving host would
           then be expected to store the logical bytes so that they
           could be easily manipulated; in this example putting the
           36-bit logical bytes into 64-bit double words should
           suffice.

           In another example, a pair of hosts with a 36-bit word size
           may send data to one another in words by using TYPE L 36.
           The data would be sent in the 8-bit transmission bytes
           packed so that 9 transmission bytes carried two host words.

        3.1.1.5.  FORMAT CONTROL

           The types ASCII and EBCDIC also take a second (optional)
           parameter; this is to indicate what kind of vertical format
           control, if any, is associated with a file.  The following
           data representation types are defined in FTP:

           A character file may be transferred to a host for one of
           three purposes: for printing, for storage and later
           retrieval, or for processing.  If a file is sent for
           printing, the receiving host must know how the vertical
           format control is represented.  In the second case, it must
           be possible to store a file at a host and then retrieve it
           later in exactly the same form.  Finally, it should be
           possible to move a file from one host to another and process
           the file at the second host without undue trouble.  A single
           ASCII or EBCDIC format does not satisfy all these
           conditions.  Therefore, these types have a second parameter
           specifying one of the following three formats:

           3.1.1.5.1.  NON PRINT

              This is the default format to be used if the second
              (format) parameter is omitted.  Non-print format must be
              accepted by all FTP implementations.




Postel & Reynolds                                              [Page 13]



RFC 959                                                     October 1985
File Transfer Protocol


              The file need contain no vertical format information.  If
              it is passed to a printer process, this process may
              assume standard values for spacing and margins.

              Normally, this format will be used with files destined
              for processing or just storage.

           3.1.1.5.2.  TELNET FORMAT CONTROLS

              The file contains ASCII/EBCDIC vertical format controls
              (i.e., <CR>, <LF>, <NL>, <VT>, <FF>) which the printer
              process will interpret appropriately.  <CRLF>, in exactly
              this sequence, also denotes end-of-line.

           3.1.1.5.2.  CARRIAGE CONTROL (ASA)

              The file contains ASA (FORTRAN) vertical format control
              characters.  (See RFC 740 Appendix C; and Communications
              of the ACM, Vol. 7, No. 10, p. 606, October 1964.)  In a
              line or a record formatted according to the ASA Standard,
              the first character is not to be printed.  Instead, it
              should be used to determine the vertical movement of the
              paper which should take place before the rest of the
              record is printed.

              The ASA Standard specifies the following control
              characters:

                 Character     Vertical Spacing

                 blank         Move paper up one line
                 0             Move paper up two lines
                 1             Move paper to top of next page
                 +             No movement, i.e., overprint

              Clearly there must be some way for a printer process to
              distinguish the end of the structural entity.  If a file
              has record structure (see below) this is no problem;
              records will be explicitly marked during transfer and
              storage.  If the file has no record structure, the <CRLF>
              end-of-line sequence is used to separate printing lines,
              but these format effectors are overridden by the ASA
              controls.






Postel & Reynolds                                              [Page 14]



RFC 959                                                     October 1985
File Transfer Protocol


     3.1.2.  DATA STRUCTURES

        In addition to different representation types, FTP allows the
        structure of a file to be specified.  Three file structures are
        defined in FTP:

           file-structure,     where there is no internal structure and
                               the file is considered to be a
                               continuous sequence of data bytes,

           record-structure,   where the file is made up of sequential
                               records,

           and page-structure, where the file is made up of independent
                               indexed pages.

        File-structure is the default to be assumed if the STRUcture
        command has not been used but both file and record structures
        must be accepted for "text" files (i.e., files with TYPE ASCII
        or EBCDIC) by all FTP implementations.  The structure of a file
        will affect both the transfer mode of a file (see the Section
        on Transmission Modes) and the interpretation and storage of
        the file.

        The "natural" structure of a file will depend on which host
        stores the file.  A source-code file will usually be stored on
        an IBM Mainframe in fixed length records but on a DEC TOPS-20
        as a stream of characters partitioned into lines, for example
        by <CRLF>.  If the transfer of files between such disparate
        sites is to be useful, there must be some way for one site to
        recognize the other's assumptions about the file.

        With some sites being naturally file-oriented and others
        naturally record-oriented there may be problems if a file with
        one structure is sent to a host oriented to the other.  If a
        text file is sent with record-structure to a host which is file
        oriented, then that host should apply an internal
        transformation to the file based on the record structure.
        Obviously, this transformation should be useful, but it must
        also be invertible so that an identical file may be retrieved
        using record structure.

        In the case of a file being sent with file-structure to a
        record-oriented host, there exists the question of what
        criteria the host should use to divide the file into records
        which can be processed locally.  If this division is necessary,
        the FTP implementation should use the end-of-line sequence,


Postel & Reynolds                                              [Page 15]



RFC 959                                                     October 1985
File Transfer Protocol


        <CRLF> for ASCII, or <NL> for EBCDIC text files, as the
        delimiter.  If an FTP implementation adopts this technique, it
        must be prepared to reverse the transformation if the file is
        retrieved with file-structure.

        3.1.2.1.  FILE STRUCTURE

           File structure is the default to be assumed if the STRUcture
           command has not been used.

           In file-structure there is no internal structure and the
           file is considered to be a continuous sequence of data
           bytes.

        3.1.2.2.  RECORD STRUCTURE

           Record structures must be accepted for "text" files (i.e.,
           files with TYPE ASCII or EBCDIC) by all FTP implementations.

           In record-structure the file is made up of sequential
           records.

        3.1.2.3.  PAGE STRUCTURE

           To transmit files that are discontinuous, FTP defines a page
           structure.  Files of this type are sometimes known as
           "random access files" or even as "holey files".  In these
           files there is sometimes other information associated with
           the file as a whole (e.g., a file descriptor), or with a
           section of the file (e.g., page access controls), or both.
           In FTP, the sections of the file are called pages.

           To provide for various page sizes and associated
           information, each page is sent with a page header.  The page
           header has the following defined fields:

              Header Length

                 The number of logical bytes in the page header
                 including this byte.  The minimum header length is 4.

              Page Index

                 The logical page number of this section of the file.
                 This is not the transmission sequence number of this
                 page, but the index used to identify this page of the
                 file.


Postel & Reynolds                                              [Page 16]



RFC 959                                                     October 1985
File Transfer Protocol


              Data Length

                 The number of logical bytes in the page data.  The
                 minimum data length is 0.

              Page Type

                 The type of page this is.  The following page types
                 are defined:

                    0 = Last Page

                       This is used to indicate the end of a paged
                       structured transmission.  The header length must
                       be 4, and the data length must be 0.

                    1 = Simple Page

                       This is the normal type for simple paged files
                       with no page level associated control
                       information.  The header length must be 4.

                    2 = Descriptor Page

                       This type is used to transmit the descriptive
                       information for the file as a whole.

                    3 = Access Controlled Page

                       This type includes an additional header field
                       for paged files with page level access control
                       information.  The header length must be 5.

              Optional Fields

                 Further header fields may be used to supply per page
                 control information, for example, per page access
                 control.

           All fields are one logical byte in length.  The logical byte
           size is specified by the TYPE command.  See Appendix I for
           further details and a specific case at the page structure.

     A note of caution about parameters:  a file must be stored and
     retrieved with the same parameters if the retrieved version is to




Postel & Reynolds                                              [Page 17]



RFC 959                                                     October 1985
File Transfer Protocol


     be identical to the version originally transmitted.  Conversely,
     FTP implementations must return a file identical to the original
     if the parameters used to store and retrieve a file are the same.

  3.2.  ESTABLISHING DATA CONNECTIONS

     The mechanics of transferring data consists of setting up the data
     connection to the appropriate ports and choosing the parameters
     for transfer.  Both the user and the server-DTPs have a default
     data port.  The user-process default data port is the same as the
     control connection port (i.e., U).  The server-process default
     data port is the port adjacent to the control connection port
     (i.e., L-1).

     The transfer byte size is 8-bit bytes.  This byte size is relevant
     only for the actual transfer of the data; it has no bearing on
     representation of the data within a host's file system.

     The passive data transfer process (this may be a user-DTP or a
     second server-DTP) shall "listen" on the data port prior to
     sending a transfer request command.  The FTP request command
     determines the direction of the data transfer.  The server, upon
     receiving the transfer request, will initiate the data connection
     to the port.  When the connection is established, the data
     transfer begins between DTP's, and the server-PI sends a
     confirming reply to the user-PI.

     Every FTP implementation must support the use of the default data
     ports, and only the USER-PI can initiate a change to non-default
     ports.

     It is possible for the user to specify an alternate data port by
     use of the PORT command.  The user may want a file dumped on a TAC
     line printer or retrieved from a third party host.  In the latter
     case, the user-PI sets up control connections with both
     server-PI's.  One server is then told (by an FTP command) to
     "listen" for a connection which the other will initiate.  The
     user-PI sends one server-PI a PORT command indicating the data
     port of the other.  Finally, both are sent the appropriate
     transfer commands.  The exact sequence of commands and replies
     sent between the user-controller and the servers is defined in the
     Section on FTP Replies.

     In general, it is the server's responsibility to maintain the data
     connection--to initiate it and to close it.  The exception to this




Postel & Reynolds                                              [Page 18]



RFC 959                                                     October 1985
File Transfer Protocol


     is when the user-DTP is sending the data in a transfer mode that
     requires the connection to be closed to indicate EOF.  The server
     MUST close the data connection under the following conditions:

        1. The server has completed sending data in a transfer mode
           that requires a close to indicate EOF.

        2. The server receives an ABORT command from the user.

        3. The port specification is changed by a command from the
           user.

        4. The control connection is closed legally or otherwise.

        5. An irrecoverable error condition occurs.

     Otherwise the close is a server option, the exercise of which the
     server must indicate to the user-process by either a 250 or 226
     reply only.

  3.3.  DATA CONNECTION MANAGEMENT

     Default Data Connection Ports:  All FTP implementations must
     support use of the default data connection ports, and only the
     User-PI may initiate the use of non-default ports.

     Negotiating Non-Default Data Ports:   The User-PI may specify a
     non-default user side data port with the PORT command.  The
     User-PI may request the server side to identify a non-default
     server side data port with the PASV command.  Since a connection
     is defined by the pair of addresses, either of these actions is
     enough to get a different data connection, still it is permitted
     to do both commands to use new ports on both ends of the data
     connection.

     Reuse of the Data Connection:  When using the stream mode of data
     transfer the end of the file must be indicated by closing the
     connection.  This causes a problem if multiple files are to be
     transfered in the session, due to need for TCP to hold the
     connection record for a time out period to guarantee the reliable
     communication.  Thus the connection can not be reopened at once.

        There are two solutions to this problem.  The first is to
        negotiate a non-default port.  The second is to use another
        transfer mode.

        A comment on transfer modes.  The stream transfer mode is


Postel & Reynolds                                              [Page 19]



RFC 959                                                     October 1985
File Transfer Protocol


        inherently unreliable, since one can not determine if the
        connection closed prematurely or not.  The other transfer modes
        (Block, Compressed) do not close the connection to indicate the
        end of file.  They have enough FTP encoding that the data
        connection can be parsed to determine the end of the file.
        Thus using these modes one can leave the data connection open
        for multiple file transfers.

  3.4.  TRANSMISSION MODES

     The next consideration in transferring data is choosing the
     appropriate transmission mode.  There are three modes: one which
     formats the data and allows for restart procedures; one which also
     compresses the data for efficient transfer; and one which passes
     the data with little or no processing.  In this last case the mode
     interacts with the structure attribute to determine the type of
     processing.  In the compressed mode, the representation type
     determines the filler byte.

     All data transfers must be completed with an end-of-file (EOF)
     which may be explicitly stated or implied by the closing of the
     data connection.  For files with record structure, all the
     end-of-record markers (EOR) are explicit, including the final one.
     For files transmitted in page structure a "last-page" page type is
     used.

     NOTE:  In the rest of this section, byte means "transfer byte"
     except where explicitly stated otherwise.

     For the purpose of standardized transfer, the sending host will
     translate its internal end of line or end of record denotation
     into the representation prescribed by the transfer mode and file
     structure, and the receiving host will perform the inverse
     translation to its internal denotation.  An IBM Mainframe record
     count field may not be recognized at another host, so the
     end-of-record information may be transferred as a two byte control
     code in Stream mode or as a flagged bit in a Block or Compressed
     mode descriptor.  End-of-line in an ASCII or EBCDIC file with no
     record structure should be indicated by <CRLF> or <NL>,
     respectively.  Since these transformations imply extra work for
     some systems, identical systems transferring non-record structured
     text files might wish to use a binary representation and stream
     mode for the transfer.






Postel & Reynolds                                              [Page 20]



RFC 959                                                     October 1985
File Transfer Protocol


     The following transmission modes are defined in FTP:

     3.4.1.  STREAM MODE

        The data is transmitted as a stream of bytes.  There is no
        restriction on the representation type used; record structures
        are allowed.

        In a record structured file EOR and EOF will each be indicated
        by a two-byte control code.  The first byte of the control code
        will be all ones, the escape character.  The second byte will
        have the low order bit on and zeros elsewhere for EOR and the
        second low order bit on for EOF; that is, the byte will have
        value 1 for EOR and value 2 for EOF.  EOR and EOF may be
        indicated together on the last byte transmitted by turning both
        low order bits on (i.e., the value 3).  If a byte of all ones
        was intended to be sent as data, it should be repeated in the
        second byte of the control code.

        If the structure is a file structure, the EOF is indicated by
        the sending host closing the data connection and all bytes are
        data bytes.

     3.4.2.  BLOCK MODE

        The file is transmitted as a series of data blocks preceded by
        one or more header bytes.  The header bytes contain a count
        field, and descriptor code.  The count field indicates the
        total length of the data block in bytes, thus marking the
        beginning of the next data block (there are no filler bits).
        The descriptor code defines:  last block in the file (EOF) last
        block in the record (EOR), restart marker (see the Section on
        Error Recovery and Restart) or suspect data (i.e., the data
        being transferred is suspected of errors and is not reliable).
        This last code is NOT intended for error control within FTP.
        It is motivated by the desire of sites exchanging certain types
        of data (e.g., seismic or weather data) to send and receive all
        the data despite local errors (such as "magnetic tape read
        errors"), but to indicate in the transmission that certain
        portions are suspect).  Record structures are allowed in this
        mode, and any representation type may be used.

        The header consists of the three bytes.  Of the 24 bits of
        header information, the 16 low order bits shall represent byte
        count, and the 8 high order bits shall represent descriptor
        codes as shown below.



Postel & Reynolds                                              [Page 21]



RFC 959                                                     October 1985
File Transfer Protocol


        Block Header

           +----------------+----------------+----------------+
           | Descriptor     |    Byte Count                   |
           |         8 bits |                      16 bits    |
           +----------------+----------------+----------------+


        The descriptor codes are indicated by bit flags in the
        descriptor byte.  Four codes have been assigned, where each
        code number is the decimal value of the corresponding bit in
        the byte.

           Code     Meaning

            128     End of data block is EOR
             64     End of data block is EOF
             32     Suspected errors in data block
             16     Data block is a restart marker

        With this encoding, more than one descriptor coded condition
        may exist for a particular block.  As many bits as necessary
        may be flagged.

        The restart marker is embedded in the data stream as an
        integral number of 8-bit bytes representing printable
        characters in the language being used over the control
        connection (e.g., default--NVT-ASCII).  <SP> (Space, in the
        appropriate language) must not be used WITHIN a restart marker.

        For example, to transmit a six-character marker, the following
        would be sent:

           +--------+--------+--------+
           |Descrptr|  Byte count     |
           |code= 16|             = 6 |
           +--------+--------+--------+

           +--------+--------+--------+
           | Marker | Marker | Marker |
           | 8 bits | 8 bits | 8 bits |
           +--------+--------+--------+

           +--------+--------+--------+
           | Marker | Marker | Marker |
           | 8 bits | 8 bits | 8 bits |
           +--------+--------+--------+


Postel & Reynolds                                              [Page 22]



RFC 959                                                     October 1985
File Transfer Protocol


     3.4.3.  COMPRESSED MODE

        There are three kinds of information to be sent:  regular data,
        sent in a byte string; compressed data, consisting of
        replications or filler; and control information, sent in a
        two-byte escape sequence.  If n>0 bytes (up to 127) of regular
        data are sent, these n bytes are preceded by a byte with the
        left-most bit set to 0 and the right-most 7 bits containing the
        number n.

        Byte string:

            1       7                8                     8
           +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
           |0|       n     | |    d(1)       | ... |      d(n)     |
           +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
                                         ^             ^
                                         |---n bytes---|
                                             of data

           String of n data bytes d(1),..., d(n)
           Count n must be positive.

        To compress a string of n replications of the data byte d, the
        following 2 bytes are sent:

        Replicated Byte:

             2       6               8
           +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
           |1 0|     n     | |       d       |
           +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

        A string of n filler bytes can be compressed into a single
        byte, where the filler byte varies with the representation
        type.  If the type is ASCII or EBCDIC the filler byte is <SP>
        (Space, ASCII code 32, EBCDIC code 64).  If the type is Image
        or Local byte the filler is a zero byte.

        Filler String:

             2       6
           +-+-+-+-+-+-+-+-+
           |1 1|     n     |
           +-+-+-+-+-+-+-+-+

        The escape sequence is a double byte, the first of which is the


Postel & Reynolds                                              [Page 23]



RFC 959                                                     October 1985
File Transfer Protocol


        escape byte (all zeros) and the second of which contains
        descriptor codes as defined in Block mode.  The descriptor
        codes have the same meaning as in Block mode and apply to the
        succeeding string of bytes.

        Compressed mode is useful for obtaining increased bandwidth on
        very large network transmissions at a little extra CPU cost.
        It can be most effectively used to reduce the size of printer
        files such as those generated by RJE hosts.

  3.5.  ERROR RECOVERY AND RESTART

     There is no provision for detecting bits lost or scrambled in data
     transfer; this level of error control is handled by the TCP.
     However, a restart procedure is provided to protect users from
     gross system failures (including failures of a host, an
     FTP-process, or the underlying network).

     The restart procedure is defined only for the block and compressed
     modes of data transfer.  It requires the sender of data to insert
     a special marker code in the data stream with some marker
     information.  The marker information has meaning only to the
     sender, but must consist of printable characters in the default or
     negotiated language of the control connection (ASCII or EBCDIC).
     The marker could represent a bit-count, a record-count, or any
     other information by which a system may identify a data
     checkpoint.  The receiver of data, if it implements the restart
     procedure, would then mark the corresponding position of this
     marker in the receiving system, and return this information to the
     user.

     In the event of a system failure, the user can restart the data
     transfer by identifying the marker point with the FTP restart
     procedure.  The following example illustrates the use of the
     restart procedure.

     The sender of the data inserts an appropriate marker block in the
     data stream at a convenient point.  The receiving host marks the
     corresponding data point in its file system and conveys the last
     known sender and receiver marker information to the user, either
     directly or over the control connection in a 110 reply (depending
     on who is the sender).  In the event of a system failure, the user
     or controller process restarts the server at the last server
     marker by sending a restart command with server's marker code as
     its argument.  The restart command is transmitted over the control




Postel & Reynolds                                              [Page 24]



RFC 959                                                     October 1985
File Transfer Protocol


     connection and is immediately followed by the command (such as
     RETR, STOR or LIST) which was being executed when the system
     failure occurred.

4.  FILE TRANSFER FUNCTIONS

  The communication channel from the user-PI to the server-PI is
  established as a TCP connection from the user to the standard server
  port.  The user protocol interpreter is responsible for sending FTP
  commands and interpreting the replies received; the server-PI
  interprets commands, sends replies and directs its DTP to set up the
  data connection and transfer the data.  If the second party to the
  data transfer (the passive transfer process) is the user-DTP, then it
  is governed through the internal protocol of the user-FTP host; if it
  is a second server-DTP, then it is governed by its PI on command from
  the user-PI.  The FTP replies are discussed in the next section.  In
  the description of a few of the commands in this section, it is
  helpful to be explicit about the possible replies.

  4.1.  FTP COMMANDS

     4.1.1.  ACCESS CONTROL COMMANDS

        The following commands specify access control identifiers
        (command codes are shown in parentheses).

        USER NAME (USER)

           The argument field is a Telnet string identifying the user.
           The user identification is that which is required by the
           server for access to its file system.  This command will
           normally be the first command transmitted by the user after
           the control connections are made (some servers may require
           this).  Additional identification information in the form of
           a password and/or an account command may also be required by
           some servers.  Servers may allow a new USER command to be
           entered at any point in order to change the access control
           and/or accounting information.  This has the effect of
           flushing any user, password, and account information already
           supplied and beginning the login sequence again.  All
           transfer parameters are unchanged and any file transfer in
           progress is completed under the old access control
           parameters.






Postel & Reynolds                                              [Page 25]



RFC 959                                                     October 1985
File Transfer Protocol


        PASSWORD (PASS)

           The argument field is a Telnet string specifying the user's
           password.  This command must be immediately preceded by the
           user name command, and, for some sites, completes the user's
           identification for access control.  Since password
           information is quite sensitive, it is desirable in general
           to "mask" it or suppress typeout.  It appears that the
           server has no foolproof way to achieve this.  It is
           therefore the responsibility of the user-FTP process to hide
           the sensitive password information.

        ACCOUNT (ACCT)

           The argument field is a Telnet string identifying the user's
           account.  The command is not necessarily related to the USER
           command, as some sites may require an account for login and
           others only for specific access, such as storing files.  In
           the latter case the command may arrive at any time.

           There are reply codes to differentiate these cases for the
           automation: when account information is required for login,
           the response to a successful PASSword command is reply code
           332.  On the other hand, if account information is NOT
           required for login, the reply to a successful PASSword
           command is 230; and if the account information is needed for
           a command issued later in the dialogue, the server should
           return a 332 or 532 reply depending on whether it stores
           (pending receipt of the ACCounT command) or discards the
           command, respectively.

        CHANGE WORKING DIRECTORY (CWD)

           This command allows the user to work with a different
           directory or dataset for file storage or retrieval without
           altering his login or accounting information.  Transfer
           parameters are similarly unchanged.  The argument is a
           pathname specifying a directory or other system dependent
           file group designator.

        CHANGE TO PARENT DIRECTORY (CDUP)

           This command is a special case of CWD, and is included to
           simplify the implementation of programs for transferring
           directory trees between operating systems having different




Postel & Reynolds                                              [Page 26]



RFC 959                                                     October 1985
File Transfer Protocol


           syntaxes for naming the parent directory.  The reply codes
           shall be identical to the reply codes of CWD.  See
           Appendix II for further details.

        STRUCTURE MOUNT (SMNT)

           This command allows the user to mount a different file
           system data structure without altering his login or
           accounting information.  Transfer parameters are similarly
           unchanged.  The argument is a pathname specifying a
           directory or other system dependent file group designator.

        REINITIALIZE (REIN)

           This command terminates a USER, flushing all I/O and account
           information, except to allow any transfer in progress to be
           completed.  All parameters are reset to the default settings
           and the control connection is left open.  This is identical
           to the state in which a user finds himself immediately after
           the control connection is opened.  A USER command may be
           expected to follow.

        LOGOUT (QUIT)

           This command terminates a USER and if file transfer is not
           in progress, the server closes the control connection.  If
           file transfer is in progress, the connection will remain
           open for result response and the server will then close it.
           If the user-process is transferring files for several USERs
           but does not wish to close and then reopen connections for
           each, then the REIN command should be used instead of QUIT.

           An unexpected close on the control connection will cause the
           server to take the effective action of an abort (ABOR) and a
           logout (QUIT).

     4.1.2.  TRANSFER PARAMETER COMMANDS

        All data transfer parameters have default values, and the
        commands specifying data transfer parameters are required only
        if the default parameter values are to be changed.  The default
        value is the last specified value, or if no value has been
        specified, the standard default value is as stated here.  This
        implies that the server must "remember" the applicable default
        values.  The commands may be in any order except that they must
        precede the FTP service request.  The following commands
        specify data transfer parameters:


Postel & Reynolds                                              [Page 27]



RFC 959                                                     October 1985
File Transfer Protocol


        DATA PORT (PORT)

           The argument is a HOST-PORT specification for the data port
           to be used in data connection.  There are defaults for both
           the user and server data ports, and under normal
           circumstances this command and its reply are not needed.  If
           this command is used, the argument is the concatenation of a
           32-bit internet host address and a 16-bit TCP port address.
           This address information is broken into 8-bit fields and the
           value of each field is transmitted as a decimal number (in
           character string representation).  The fields are separated
           by commas.  A port command would be:

              PORT h1,h2,h3,h4,p1,p2

           where h1 is the high order 8 bits of the internet host
           address.

        PASSIVE (PASV)

           This command requests the server-DTP to "listen" on a data
           port (which is not its default data port) and to wait for a
           connection rather than initiate one upon receipt of a
           transfer command.  The response to this command includes the
           host and port address this server is listening on.

        REPRESENTATION TYPE (TYPE)

           The argument specifies the representation type as described
           in the Section on Data Representation and Storage.  Several
           types take a second parameter.  The first parameter is
           denoted by a single Telnet character, as is the second
           Format parameter for ASCII and EBCDIC; the second parameter
           for local byte is a decimal integer to indicate Bytesize.
           The parameters are separated by a <SP> (Space, ASCII code
           32).

           The following codes are assigned for type:

                        \    /
              A - ASCII |    | N - Non-print
                        |-><-| T - Telnet format effectors
              E - EBCDIC|    | C - Carriage Control (ASA)
                        /    \
              I - Image

              L <byte size> - Local byte Byte size


Postel & Reynolds                                              [Page 28]



RFC 959                                                     October 1985
File Transfer Protocol


           The default representation type is ASCII Non-print.  If the
           Format parameter is changed, and later just the first
           argument is changed, Format then returns to the Non-print
           default.

        FILE STRUCTURE (STRU)

           The argument is a single Telnet character code specifying
           file structure described in the Section on Data
           Representation and Storage.

           The following codes are assigned for structure:

              F - File (no record structure)
              R - Record structure
              P - Page structure

           The default structure is File.

        TRANSFER MODE (MODE)

           The argument is a single Telnet character code specifying
           the data transfer modes described in the Section on
           Transmission Modes.

           The following codes are assigned for transfer modes:

              S - Stream
              B - Block
              C - Compressed

           The default transfer mode is Stream.

     4.1.3.  FTP SERVICE COMMANDS

        The FTP service commands define the file transfer or the file
        system function requested by the user.  The argument of an FTP
        service command will normally be a pathname.  The syntax of
        pathnames must conform to server site conventions (with
        standard defaults applicable), and the language conventions of
        the control connection.  The suggested default handling is to
        use the last specified device, directory or file name, or the
        standard default defined for local users.  The commands may be
        in any order except that a "rename from" command must be
        followed by a "rename to" command and the restart command must
        be followed by the interrupted service command (e.g., STOR or
        RETR).  The data, when transferred in response to FTP service


Postel & Reynolds                                              [Page 29]



RFC 959                                                     October 1985
File Transfer Protocol


        commands, shall always be sent over the data connection, except
        for certain informative replies.  The following commands
        specify FTP service requests:

        RETRIEVE (RETR)

           This command causes the server-DTP to transfer a copy of the
           file, specified in the pathname, to the server- or user-DTP
           at the other end of the data connection.  The status and
           contents of the file at the server site shall be unaffected.

        STORE (STOR)

           This command causes the server-DTP to accept the data
           transferred via the data connection and to store the data as
           a file at the server site.  If the file specified in the
           pathname exists at the server site, then its contents shall
           be replaced by the data being transferred.  A new file is
           created at the server site if the file specified in the
           pathname does not already exist.

        STORE UNIQUE (STOU)

           This command behaves like STOR except that the resultant
           file is to be created in the current directory under a name
           unique to that directory.  The 250 Transfer Started response
           must include the name generated.

        APPEND (with create) (APPE)

           This command causes the server-DTP to accept the data
           transferred via the data connection and to store the data in
           a file at the server site.  If the file specified in the
           pathname exists at the server site, then the data shall be
           appended to that file; otherwise the file specified in the
           pathname shall be created at the server site.

        ALLOCATE (ALLO)

           This command may be required by some servers to reserve
           sufficient storage to accommodate the new file to be
           transferred.  The argument shall be a decimal integer
           representing the number of bytes (using the logical byte
           size) of storage to be reserved for the file.  For files
           sent with record or page structure a maximum record or page
           size (in logical bytes) might also be necessary; this is
           indicated by a decimal integer in a second argument field of


Postel & Reynolds                                              [Page 30]



RFC 959                                                     October 1985
File Transfer Protocol


           the command.  This second argument is optional, but when
           present should be separated from the first by the three
           Telnet characters <SP> R <SP>.  This command shall be
           followed by a STORe or APPEnd command.  The ALLO command
           should be treated as a NOOP (no operation) by those servers
           which do not require that the maximum size of the file be
           declared beforehand, and those servers interested in only
           the maximum record or page size should accept a dummy value
           in the first argument and ignore it.

        RESTART (REST)

           The argument field represents the server marker at which
           file transfer is to be restarted.  This command does not
           cause file transfer but skips over the file to the specified
           data checkpoint.  This command shall be immediately followed
           by the appropriate FTP service command which shall cause
           file transfer to resume.

        RENAME FROM (RNFR)

           This command specifies the old pathname of the file which is
           to be renamed.  This command must be immediately followed by
           a "rename to" command specifying the new file pathname.

        RENAME TO (RNTO)

           This command specifies the new pathname of the file
           specified in the immediately preceding "rename from"
           command.  Together the two commands cause a file to be
           renamed.

        ABORT (ABOR)

           This command tells the server to abort the previous FTP
           service command and any associated transfer of data.  The
           abort command may require "special action", as discussed in
           the Section on FTP Commands, to force recognition by the
           server.  No action is to be taken if the previous command
           has been completed (including data transfer).  The control
           connection is not to be closed by the server, but the data
           connection must be closed.

           There are two cases for the server upon receipt of this
           command: (1) the FTP service command was already completed,
           or (2) the FTP service command is still in progress.



Postel & Reynolds                                              [Page 31]



RFC 959                                                     October 1985
File Transfer Protocol


              In the first case, the server closes the data connection
              (if it is open) and responds with a 226 reply, indicating
              that the abort command was successfully processed.

              In the second case, the server aborts the FTP service in
              progress and closes the data connection, returning a 426
              reply to indicate that the service request terminated
              abnormally.  The server then sends a 226 reply,
              indicating that the abort command was successfully
              processed.

        DELETE (DELE)

           This command causes the file specified in the pathname to be
           deleted at the server site.  If an extra level of protection
           is desired (such as the query, "Do you really wish to
           delete?"), it should be provided by the user-FTP process.

        REMOVE DIRECTORY (RMD)

           This command causes the directory specified in the pathname
           to be removed as a directory (if the pathname is absolute)
           or as a subdirectory of the current working directory (if
           the pathname is relative).  See Appendix II.

        MAKE DIRECTORY (MKD)

           This command causes the directory specified in the pathname
           to be created as a directory (if the pathname is absolute)
           or as a subdirectory of the current working directory (if
           the pathname is relative).  See Appendix II.

        PRINT WORKING DIRECTORY (PWD)

           This command causes the name of the current working
           directory to be returned in the reply.  See Appendix II.

        LIST (LIST)

           This command causes a list to be sent from the server to the
           passive DTP.  If the pathname specifies a directory or other
           group of files, the server should transfer a list of files
           in the specified directory.  If the pathname specifies a
           file then the server should send current information on the
           file.  A null argument implies the user's current working or
           default directory.  The data transfer is over the data
           connection in type ASCII or type EBCDIC.  (The user must


Postel & Reynolds                                              [Page 32]



RFC 959                                                     October 1985
File Transfer Protocol


           ensure that the TYPE is appropriately ASCII or EBCDIC).
           Since the information on a file may vary widely from system
           to system, this information may be hard to use automatically
           in a program, but may be quite useful to a human user.

        NAME LIST (NLST)

           This command causes a directory listing to be sent from
           server to user site.  The pathname should specify a
           directory or other system-specific file group descriptor; a
           null argument implies the current directory.  The server
           will return a stream of names of files and no other
           information.  The data will be transferred in ASCII or
           EBCDIC type over the data connection as valid pathname
           strings separated by <CRLF> or <NL>.  (Again the user must
           ensure that the TYPE is correct.)  This command is intended
           to return information that can be used by a program to
           further process the files automatically.  For example, in
           the implementation of a "multiple get" function.

        SITE PARAMETERS (SITE)

           This command is used by the server to provide services
           specific to his system that are essential to file transfer
           but not sufficiently universal to be included as commands in
           the protocol.  The nature of these services and the
           specification of their syntax can be stated in a reply to
           the HELP SITE command.

        SYSTEM (SYST)

           This command is used to find out the type of operating
           system at the server.  The reply shall have as its first
           word one of the system names listed in the current version
           of the Assigned Numbers document [4].

        STATUS (STAT)

           This command shall cause a status response to be sent over
           the control connection in the form of a reply.  The command
           may be sent during a file transfer (along with the Telnet IP
           and Synch signals--see the Section on FTP Commands) in which
           case the server will respond with the status of the
           operation in progress, or it may be sent between file
           transfers.  In the latter case, the command may have an
           argument field.  If the argument is a pathname, the command
           is analogous to the "list" command except that data shall be


Postel & Reynolds                                              [Page 33]



RFC 959                                                     October 1985
File Transfer Protocol


           transferred over the control connection.  If a partial
           pathname is given, the server may respond with a list of
           file names or attributes associated with that specification.
           If no argument is given, the server should return general
           status information about the server FTP process.  This
           should include current values of all transfer parameters and
           the status of connections.

        HELP (HELP)

           This command shall cause the server to send helpful
           information regarding its implementation status over the
           control connection to the user.  The command may take an
           argument (e.g., any command name) and return more specific
           information as a response.  The reply is type 211 or 214.
           It is suggested that HELP be allowed before entering a USER
           command. The server may use this reply to specify
           site-dependent parameters, e.g., in response to HELP SITE.

        NOOP (NOOP)

           This command does not affect any parameters or previously
           entered commands. It specifies no action other than that the
           server send an OK reply.

  The File Transfer Protocol follows the specifications of the Telnet
  protocol for all communications over the control connection.  Since
  the language used for Telnet communication may be a negotiated
  option, all references in the next two sections will be to the
  "Telnet language" and the corresponding "Telnet end-of-line code".
  Currently, one may take these to mean NVT-ASCII and <CRLF>.  No other
  specifications of the Telnet protocol will be cited.

  FTP commands are "Telnet strings" terminated by the "Telnet end of
  line code".  The command codes themselves are alphabetic characters
  terminated by the character <SP> (Space) if parameters follow and
  Telnet-EOL otherwise.  The command codes and the semantics of
  commands are described in this section; the detailed syntax of
  commands is specified in the Section on Commands, the reply sequences
  are discussed in the Section on Sequencing of Commands and Replies,
  and scenarios illustrating the use of commands are provided in the
  Section on Typical FTP Scenarios.

  FTP commands may be partitioned as those specifying access-control
  identifiers, data transfer parameters, or FTP service requests.
  Certain commands (such as ABOR, STAT, QUIT) may be sent over the
  control connection while a data transfer is in progress.  Some


Postel & Reynolds                                              [Page 34]



RFC 959                                                     October 1985
File Transfer Protocol


  servers may not be able to monitor the control and data connections
  simultaneously, in which case some special action will be necessary
  to get the server's attention.  The following ordered format is
  tentatively recommended:

     1. User system inserts the Telnet "Interrupt Process" (IP) signal
     in the Telnet stream.

     2. User system sends the Telnet "Synch" signal.

     3. User system inserts the command (e.g., ABOR) in the Telnet
     stream.

     4. Server PI, after receiving "IP", scans the Telnet stream for
     EXACTLY ONE FTP command.

  (For other servers this may not be necessary but the actions listed
  above should have no unusual effect.)

  4.2.  FTP REPLIES

     Replies to File Transfer Protocol commands are devised to ensure
     the synchronization of requests and actions in the process of file
     transfer, and to guarantee that the user process always knows the
     state of the Server.  Every command must generate at least one
     reply, although there may be more than one; in the latter case,
     the multiple replies must be easily distinguished.  In addition,
     some commands occur in sequential groups, such as USER, PASS and
     ACCT, or RNFR and RNTO.  The replies show the existence of an
     intermediate state if all preceding commands have been successful.
     A failure at any point in the sequence necessitates the repetition
     of the entire sequence from the beginning.

        The details of the command-reply sequence are made explicit in
        a set of state diagrams below.

     An FTP reply consists of a three digit number (transmitted as
     three alphanumeric characters) followed by some text.  The number
     is intended for use by automata to determine what state to enter
     next; the text is intended for the human user.  It is intended
     that the three digits contain enough encoded information that the
     user-process (the User-PI) will not need to examine the text and
     may either discard it or pass it on to the user, as appropriate.
     In particular, the text may be server-dependent, so there are
     likely to be varying texts for each reply code.

     A reply is defined to contain the 3-digit code, followed by Space


Postel & Reynolds                                              [Page 35]



RFC 959                                                     October 1985
File Transfer Protocol


     <SP>, followed by one line of text (where some maximum line length
     has been specified), and terminated by the Telnet end-of-line
     code.  There will be cases however, where the text is longer than
     a single line.  In these cases the complete text must be bracketed
     so the User-process knows when it may stop reading the reply (i.e.
     stop processing input on the control connection) and go do other
     things.  This requires a special format on the first line to
     indicate that more than one line is coming, and another on the
     last line to designate it as the last.  At least one of these must
     contain the appropriate reply code to indicate the state of the
     transaction.  To satisfy all factions, it was decided that both
     the first and last line codes should be the same.

        Thus the format for multi-line replies is that the first line
        will begin with the exact required reply code, followed
        immediately by a Hyphen, "-" (also known as Minus), followed by
        text.  The last line will begin with the same code, followed
        immediately by Space <SP>, optionally some text, and the Telnet
        end-of-line code.

           For example:
                               123-First line
                               Second line
                                 234 A line beginning with numbers
                               123 The last line

        The user-process then simply needs to search for the second
        occurrence of the same reply code, followed by <SP> (Space), at
        the beginning of a line, and ignore all intermediary lines.  If
        an intermediary line begins with a 3-digit number, the Server
        must pad the front  to avoid confusion.

           This scheme allows standard system routines to be used for
           reply information (such as for the STAT reply), with
           "artificial" first and last lines tacked on.  In rare cases
           where these routines are able to generate three digits and a
           Space at the beginning of any line, the beginning of each
           text line should be offset by some neutral text, like Space.

        This scheme assumes that multi-line replies may not be nested.

     The three digits of the reply each have a special significance.
     This is intended to allow a range of very simple to very
     sophisticated responses by the user-process.  The first digit
     denotes whether the response is good, bad or incomplete.
     (Referring to the state diagram), an unsophisticated user-process
     will be able to determine its next action (proceed as planned,


Postel & Reynolds                                              [Page 36]



RFC 959                                                     October 1985
File Transfer Protocol


     redo, retrench, etc.) by simply examining this first digit.  A
     user-process that wants to know approximately what kind of error
     occurred (e.g. file system error, command syntax error) may
     examine the second digit, reserving the third digit for the finest
     gradation of information (e.g., RNTO command without a preceding
     RNFR).

        There are five values for the first digit of the reply code:

           1yz   Positive Preliminary reply

              The requested action is being initiated; expect another
              reply before proceeding with a new command.  (The
              user-process sending another command before the
              completion reply would be in violation of protocol; but
              server-FTP processes should queue any commands that
              arrive while a preceding command is in progress.)  This
              type of reply can be used to indicate that the command
              was accepted and the user-process may now pay attention
              to the data connections, for implementations where
              simultaneous monitoring is difficult.  The server-FTP
              process may send at most, one 1yz reply per command.

           2yz   Positive Completion reply

              The requested action has been successfully completed.  A
              new request may be initiated.

           3yz   Positive Intermediate reply

              The command has been accepted, but the requested action
              is being held in abeyance, pending receipt of further
              information.  The user should send another command
              specifying this information.  This reply is used in
              command sequence groups.

           4yz   Transient Negative Completion reply

              The command was not accepted and the requested action did
              not take place, but the error condition is temporary and
              the action may be requested again.  The user should
              return to the beginning of the command sequence, if any.
              It is difficult to assign a meaning to "transient",
              particularly when two distinct sites (Server- and
              User-processes) have to agree on the interpretation.
              Each reply in the 4yz category might have a slightly
              different time value, but the intent is that the


Postel & Reynolds                                              [Page 37]



RFC 959                                                     October 1985
File Transfer Protocol


              user-process is encouraged to try again.  A rule of thumb
              in determining if a reply fits into the 4yz or the 5yz
              (Permanent Negative) category is that replies are 4yz if
              the commands can be repeated without any change in
              command form or in properties of the User or Server
              (e.g., the command is spelled the same with the same
              arguments used; the user does not change his file access
              or user name; the server does not put up a new
              implementation.)

           5yz   Permanent Negative Completion reply

              The command was not accepted and the requested action did
              not take place.  The User-process is discouraged from
              repeating the exact request (in the same sequence).  Even
              some "permanent" error conditions can be corrected, so
              the human user may want to direct his User-process to
              reinitiate the command sequence by direct action at some
              point in the future (e.g., after the spelling has been
              changed, or the user has altered his directory status.)

        The following function groupings are encoded in the second
        digit:

           x0z   Syntax - These replies refer to syntax errors,
                 syntactically correct commands that don't fit any
                 functional category, unimplemented or superfluous
                 commands.

           x1z   Information -  These are replies to requests for
                 information, such as status or help.

           x2z   Connections - Replies referring to the control and
                 data connections.

           x3z   Authentication and accounting - Replies for the login
                 process and accounting procedures.

           x4z   Unspecified as yet.

           x5z   File system - These replies indicate the status of the
                 Server file system vis-a-vis the requested transfer or
                 other file system action.

        The third digit gives a finer gradation of meaning in each of
        the function categories, specified by the second digit.  The
        list of replies below will illustrate this.  Note that the text


Postel & Reynolds                                              [Page 38]



RFC 959                                                     October 1985
File Transfer Protocol


        associated with each reply is recommended, rather than
        mandatory, and may even change according to the command with
        which it is associated.  The reply codes, on the other hand,
        must strictly follow the specifications in the last section;
        that is, Server implementations should not invent new codes for
        situations that are only slightly different from the ones
        described here, but rather should adapt codes already defined.

           A command such as TYPE or ALLO whose successful execution
           does not offer the user-process any new information will
           cause a 200 reply to be returned.  If the command is not
           implemented by a particular Server-FTP process because it
           has no relevance to that computer system, for example ALLO
           at a TOPS20 site, a Positive Completion reply is still
           desired so that the simple User-process knows it can proceed
           with its course of action.  A 202 reply is used in this case
           with, for example, the reply text:  "No storage allocation
           necessary."  If, on the other hand, the command requests a
           non-site-specific action and is unimplemented, the response
           is 502.  A refinement of that is the 504 reply for a command
           that is implemented, but that requests an unimplemented
           parameter.

     4.2.1  Reply Codes by Function Groups

        200 Command okay.
        500 Syntax error, command unrecognized.
            This may include errors such as command line too long.
        501 Syntax error in parameters or arguments.
        202 Command not implemented, superfluous at this site.
        502 Command not implemented.
        503 Bad sequence of commands.
        504 Command not implemented for that parameter.
















Postel & Reynolds                                              [Page 39]



RFC 959                                                     October 1985
File Transfer Protocol


        110 Restart marker reply.
            In this case, the text is exact and not left to the
            particular implementation; it must read:
                 MARK yyyy = mmmm
            Where yyyy is User-process data stream marker, and mmmm
            server's equivalent marker (note the spaces between markers
            and "=").
        211 System status, or system help reply.
        212 Directory status.
        213 File status.
        214 Help message.
            On how to use the server or the meaning of a particular
            non-standard command.  This reply is useful only to the
            human user.
        215 NAME system type.
            Where NAME is an official system name from the list in the
            Assigned Numbers document.

        120 Service ready in nnn minutes.
        220 Service ready for new user.
        221 Service closing control connection.
            Logged out if appropriate.
        421 Service not available, closing control connection.
            This may be a reply to any command if the service knows it
            must shut down.
        125 Data connection already open; transfer starting.
        225 Data connection open; no transfer in progress.
        425 Can't open data connection.
        226 Closing data connection.
            Requested file action successful (for example, file
            transfer or file abort).
        426 Connection closed; transfer aborted.
        227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

        230 User logged in, proceed.
        530 Not logged in.
        331 User name okay, need password.
        332 Need account for login.
        532 Need account for storing files.










Postel & Reynolds                                              [Page 40]



RFC 959                                                     October 1985
File Transfer Protocol


        150 File status okay; about to open data connection.
        250 Requested file action okay, completed.
        257 "PATHNAME" created.
        350 Requested file action pending further information.
        450 Requested file action not taken.
            File unavailable (e.g., file busy).
        550 Requested action not taken.
            File unavailable (e.g., file not found, no access).
        451 Requested action aborted. Local error in processing.
        551 Requested action aborted. Page type unknown.
        452 Requested action not taken.
            Insufficient storage space in system.
        552 Requested file action aborted.
            Exceeded storage allocation (for current directory or
            dataset).
        553 Requested action not taken.
            File name not allowed.


     4.2.2 Numeric  Order List of Reply Codes

        110 Restart marker reply.
            In this case, the text is exact and not left to the
            particular implementation; it must read:
                 MARK yyyy = mmmm
            Where yyyy is User-process data stream marker, and mmmm
            server's equivalent marker (note the spaces between markers
            and "=").
        120 Service ready in nnn minutes.
        125 Data connection already open; transfer starting.
        150 File status okay; about to open data connection.


















Postel & Reynolds                                              [Page 41]



RFC 959                                                     October 1985
File Transfer Protocol


        200 Command okay.
        202 Command not implemented, superfluous at this site.
        211 System status, or system help reply.
        212 Directory status.
        213 File status.
        214 Help message.
            On how to use the server or the meaning of a particular
            non-standard command.  This reply is useful only to the
            human user.
        215 NAME system type.
            Where NAME is an official system name from the list in the
            Assigned Numbers document.
        220 Service ready for new user.
        221 Service closing control connection.
            Logged out if appropriate.
        225 Data connection open; no transfer in progress.
        226 Closing data connection.
            Requested file action successful (for example, file
            transfer or file abort).
        227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
        230 User logged in, proceed.
        250 Requested file action okay, completed.
        257 "PATHNAME" created.

        331 User name okay, need password.
        332 Need account for login.
        350 Requested file action pending further information.

        421 Service not available, closing control connection.
            This may be a reply to any command if the service knows it
            must shut down.
        425 Can't open data connection.
        426 Connection closed; transfer aborted.
        450 Requested file action not taken.
            File unavailable (e.g., file busy).
        451 Requested action aborted: local error in processing.
        452 Requested action not taken.
            Insufficient storage space in system.











Postel & Reynolds                                              [Page 42]



RFC 959                                                     October 1985
File Transfer Protocol


        500 Syntax error, command unrecognized.
            This may include errors such as command line too long.
        501 Syntax error in parameters or arguments.
        502 Command not implemented.
        503 Bad sequence of commands.
        504 Command not implemented for that parameter.
        530 Not logged in.
        532 Need account for storing files.
        550 Requested action not taken.
            File unavailable (e.g., file not found, no access).
        551 Requested action aborted: page type unknown.
        552 Requested file action aborted.
            Exceeded storage allocation (for current directory or
            dataset).
        553 Requested action not taken.
            File name not allowed.


5.  DECLARATIVE SPECIFICATIONS

  5.1.  MINIMUM IMPLEMENTATION

     In order to make FTP workable without needless error messages, the
     following minimum implementation is required for all servers:

        TYPE - ASCII Non-print
        MODE - Stream
        STRUCTURE - File, Record
        COMMANDS - USER, QUIT, PORT,
                   TYPE, MODE, STRU,
                     for the default values
                   RETR, STOR,
                   NOOP.

     The default values for transfer parameters are:

        TYPE - ASCII Non-print
        MODE - Stream
        STRU - File

     All hosts must accept the above as the standard defaults.








Postel & Reynolds                                              [Page 43]



RFC 959                                                     October 1985
File Transfer Protocol


  5.2.  CONNECTIONS

     The server protocol interpreter shall "listen" on Port L.  The
     user or user protocol interpreter shall initiate the full-duplex
     control connection.  Server- and user- processes should follow the
     conventions of the Telnet protocol as specified in the
     ARPA-Internet Protocol Handbook [1].  Servers are under no
     obligation to provide for editing of command lines and may require
     that it be done in the user host.  The control connection shall be
     closed by the server at the user's request after all transfers and
     replies are completed.

     The user-DTP must "listen" on the specified data port; this may be
     the default user port (U) or a port specified in the PORT command.
     The server shall initiate the data connection from his own default
     data port (L-1) using the specified user data port.  The direction
     of the transfer and the port used will be determined by the FTP
     service command.

     Note that all FTP implementation must support data transfer using
     the default port, and that only the USER-PI may initiate the use
     of non-default ports.

     When data is to be transferred between two servers, A and B (refer
     to Figure 2), the user-PI, C, sets up control connections with
     both server-PI's.  One of the servers, say A, is then sent a PASV
     command telling him to "listen" on his data port rather than
     initiate a connection when he receives a transfer service command.
     When the user-PI receives an acknowledgment to the PASV command,
     which includes the identity of the host and port being listened
     on, the user-PI then sends A's port, a, to B in a PORT command; a
     reply is returned.  The user-PI may then send the corresponding
     service commands to A and B.  Server B initiates the connection
     and the transfer proceeds.  The command-reply sequence is listed
     below where the messages are vertically synchronous but
     horizontally asynchronous:













Postel & Reynolds                                              [Page 44]



RFC 959                                                     October 1985
File Transfer Protocol


        User-PI - Server A                User-PI - Server B
        ------------------                ------------------

        C->A : Connect                    C->B : Connect
        C->A : PASV
        A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2
                                          C->B : PORT A1,A2,A3,A4,a1,a2
                                          B->C : 200 Okay
        C->A : STOR                       C->B : RETR
                   B->A : Connect to HOST-A, PORT-a

                               Figure 3

     The data connection shall be closed by the server under the
     conditions described in the Section on Establishing Data
     Connections.  If the data connection is to be closed following a
     data transfer where closing the connection is not required to
     indicate the end-of-file, the server must do so immediately.
     Waiting until after a new transfer command is not permitted
     because the user-process will have already tested the data
     connection to see if it needs to do a "listen"; (remember that the
     user must "listen" on a closed data port BEFORE sending the
     transfer request).  To prevent a race condition here, the server
     sends a reply (226) after closing the data connection (or if the
     connection is left open, a "file transfer completed" reply (250)
     and the user-PI should wait for one of these replies before
     issuing a new transfer command).

     Any time either the user or server see that the connection is
     being closed by the other side, it should promptly read any
     remaining data queued on the connection and issue the close on its
     own side.

  5.3.  COMMANDS

     The commands are Telnet character strings transmitted over the
     control connections as described in the Section on FTP Commands.
     The command functions and semantics are described in the Section
     on Access Control Commands, Transfer Parameter Commands, FTP
     Service Commands, and Miscellaneous Commands.  The command syntax
     is specified here.

     The commands begin with a command code followed by an argument
     field.  The command codes are four or fewer alphabetic characters.
     Upper and lower case alphabetic characters are to be treated
     identically.  Thus, any of the following may represent the
     retrieve command:


Postel & Reynolds                                              [Page 45]



RFC 959                                                     October 1985
File Transfer Protocol


                 RETR    Retr    retr    ReTr    rETr

     This also applies to any symbols representing parameter values,
     such as A or a for ASCII TYPE.  The command codes and the argument
     fields are separated by one or more spaces.

     The argument field consists of a variable length character string
     ending with the character sequence <CRLF> (Carriage Return, Line
     Feed) for NVT-ASCII representation; for other negotiated languages
     a different end of line character might be used.  It should be
     noted that the server is to take no action until the end of line
     code is received.

     The syntax is specified below in NVT-ASCII.  All characters in the
     argument field are ASCII characters including any ASCII
     represented decimal integers.  Square brackets denote an optional
     argument field.  If the option is not taken, the appropriate
     default is implied.































Postel & Reynolds                                              [Page 46]



RFC 959                                                     October 1985
File Transfer Protocol


     5.3.1.  FTP COMMANDS

        The following are the FTP commands:

           USER <SP> <username> <CRLF>
           PASS <SP> <password> <CRLF>
           ACCT <SP> <account-information> <CRLF>
           CWD  <SP> <pathname> <CRLF>
           CDUP <CRLF>
           SMNT <SP> <pathname> <CRLF>
           QUIT <CRLF>
           REIN <CRLF>
           PORT <SP> <host-port> <CRLF>
           PASV <CRLF>
           TYPE <SP> <type-code> <CRLF>
           STRU <SP> <structure-code> <CRLF>
           MODE <SP> <mode-code> <CRLF>
           RETR <SP> <pathname> <CRLF>
           STOR <SP> <pathname> <CRLF>
           STOU <CRLF>
           APPE <SP> <pathname> <CRLF>
           ALLO <SP> <decimal-integer>
               [<SP> R <SP> <decimal-integer>] <CRLF>
           REST <SP> <marker> <CRLF>
           RNFR <SP> <pathname> <CRLF>
           RNTO <SP> <pathname> <CRLF>
           ABOR <CRLF>
           DELE <SP> <pathname> <CRLF>
           RMD  <SP> <pathname> <CRLF>
           MKD  <SP> <pathname> <CRLF>
           PWD  <CRLF>
           LIST [<SP> <pathname>] <CRLF>
           NLST [<SP> <pathname>] <CRLF>
           SITE <SP> <string> <CRLF>
           SYST <CRLF>
           STAT [<SP> <pathname>] <CRLF>
           HELP [<SP> <string>] <CRLF>
           NOOP <CRLF>











Postel & Reynolds                                              [Page 47]



RFC 959                                                     October 1985
File Transfer Protocol


     5.3.2.  FTP COMMAND ARGUMENTS

        The syntax of the above argument fields (using BNF notation
        where applicable) is:

           <username> ::= <string>
           <password> ::= <string>
           <account-information> ::= <string>
           <string> ::= <char> | <char><string>
           <char> ::= any of the 128 ASCII characters except <CR> and
           <LF>
           <marker> ::= <pr-string>
           <pr-string> ::= <pr-char> | <pr-char><pr-string>
           <pr-char> ::= printable characters, any
                         ASCII code 33 through 126
           <byte-size> ::= <number>
           <host-port> ::= <host-number>,<port-number>
           <host-number> ::= <number>,<number>,<number>,<number>
           <port-number> ::= <number>,<number>
           <number> ::= any decimal integer 1 through 255
           <form-code> ::= N | T | C
           <type-code> ::= A [<sp> <form-code>]
                         | E [<sp> <form-code>]
                         | I
                         | L <sp> <byte-size>
           <structure-code> ::= F | R | P
           <mode-code> ::= S | B | C
           <pathname> ::= <string>
           <decimal-integer> ::= any decimal integer




















Postel & Reynolds                                              [Page 48]



RFC 959                                                     October 1985
File Transfer Protocol


  5.4.  SEQUENCING OF COMMANDS AND REPLIES

     The communication between the user and server is intended to be an
     alternating dialogue.  As such, the user issues an FTP command and
     the server responds with a prompt primary reply.  The user should
     wait for this initial primary success or failure response before
     sending further commands.

     Certain commands require a second reply for which the user should
     also wait.  These replies may, for example, report on the progress
     or completion of file transfer or the closing of the data
     connection.  They are secondary replies to file transfer commands.

     One important group of informational replies is the connection
     greetings.  Under normal circumstances, a server will send a 220
     reply, "awaiting input", when the connection is completed.  The
     user should wait for this greeting message before sending any
     commands.  If the server is unable to accept input right away, a
     120 "expected delay" reply should be sent immediately and a 220
     reply when ready.  The user will then know not to hang up if there
     is a delay.

     Spontaneous Replies

        Sometimes "the system" spontaneously has a message to be sent
        to a user (usually all users).  For example, "System going down
        in 15 minutes".  There is no provision in FTP for such
        spontaneous information to be sent from the server to the user.
        It is recommended that such information be queued in the
        server-PI and delivered to the user-PI in the next reply
        (possibly making it a multi-line reply).

     The table below lists alternative success and failure replies for
     each command.  These must be strictly adhered to; a server may
     substitute text in the replies, but the meaning and action implied
     by the code numbers and by the specific command reply sequence
     cannot be altered.

     Command-Reply Sequences

        In this section, the command-reply sequence is presented.  Each
        command is listed with its possible replies; command groups are
        listed together.  Preliminary replies are listed first (with
        their succeeding replies indented and under them), then
        positive and negative completion, and finally intermediary




Postel & Reynolds                                              [Page 49]



RFC 959                                                     October 1985
File Transfer Protocol


        replies with the remaining commands from the sequence
        following.  This listing forms the basis for the state
        diagrams, which will be presented separately.

           Connection Establishment
              120
                 220
              220
              421
           Login
              USER
                 230
                 530
                 500, 501, 421
                 331, 332
              PASS
                 230
                 202
                 530
                 500, 501, 503, 421
                 332
              ACCT
                 230
                 202
                 530
                 500, 501, 503, 421
              CWD
                 250
                 500, 501, 502, 421, 530, 550
              CDUP
                 200
                 500, 501, 502, 421, 530, 550
              SMNT
                 202, 250
                 500, 501, 502, 421, 530, 550
           Logout
              REIN
                 120
                    220
                 220
                 421
                 500, 502
              QUIT
                 221
                 500




Postel & Reynolds                                              [Page 50]



RFC 959                                                     October 1985
File Transfer Protocol


           Transfer parameters
              PORT
                 200
                 500, 501, 421, 530
              PASV
                 227
                 500, 501, 502, 421, 530
              MODE
                 200
                 500, 501, 504, 421, 530
              TYPE
                 200
                 500, 501, 504, 421, 530
              STRU
                 200
                 500, 501, 504, 421, 530
           File action commands
              ALLO
                 200
                 202
                 500, 501, 504, 421, 530
              REST
                 500, 501, 502, 421, 530
                 350
              STOR
                 125, 150
                    (110)
                    226, 250
                    425, 426, 451, 551, 552
                 532, 450, 452, 553
                 500, 501, 421, 530
              STOU
                 125, 150
                    (110)
                    226, 250
                    425, 426, 451, 551, 552
                 532, 450, 452, 553
                 500, 501, 421, 530
              RETR
                 125, 150
                    (110)
                    226, 250
                    425, 426, 451
                 450, 550
                 500, 501, 421, 530




Postel & Reynolds                                              [Page 51]



RFC 959                                                     October 1985
File Transfer Protocol


              LIST
                 125, 150
                    226, 250
                    425, 426, 451
                 450
                 500, 501, 502, 421, 530
              NLST
                 125, 150
                    226, 250
                    425, 426, 451
                 450
                 500, 501, 502, 421, 530
              APPE
                 125, 150
                    (110)
                    226, 250
                    425, 426, 451, 551, 552
                 532, 450, 550, 452, 553
                 500, 501, 502, 421, 530
              RNFR
                 450, 550
                 500, 501, 502, 421, 530
                 350
              RNTO
                 250
                 532, 553
                 500, 501, 502, 503, 421, 530
              DELE
                 250
                 450, 550
                 500, 501, 502, 421, 530
              RMD
                 250
                 500, 501, 502, 421, 530, 550
              MKD
                 257
                 500, 501, 502, 421, 530, 550
              PWD
                 257
                 500, 501, 502, 421, 550
              ABOR
                 225, 226
                 500, 501, 502, 421






Postel & Reynolds                                              [Page 52]



RFC 959                                                     October 1985
File Transfer Protocol


           Informational commands
              SYST
                 215
                 500, 501, 502, 421
              STAT
                 211, 212, 213
                 450
                 500, 501, 502, 421, 530
              HELP
                 211, 214
                 500, 501, 502, 421
           Miscellaneous commands
              SITE
                 200
                 202
                 500, 501, 530
              NOOP
                 200
                 500 421






























Postel & Reynolds                                              [Page 53]



RFC 959                                                     October 1985
File Transfer Protocol


6.  STATE DIAGRAMS

  Here we present state diagrams for a very simple minded FTP
  implementation.  Only the first digit of the reply codes is used.
  There is one state diagram for each group of FTP commands or command
  sequences.

  The command groupings were determined by constructing a model for
  each command then collecting together the commands with structurally
  identical models.

  For each command or command sequence there are three possible
  outcomes: success (S), failure (F), and error (E).  In the state
  diagrams below we use the symbol B for "begin", and the symbol W for
  "wait for reply".

  We first present the diagram that represents the largest group of FTP
  commands:


                              1,3    +---+
                         ----------->| E |
                        |            +---+
                        |
     +---+    cmd    +---+    2      +---+
     | B |---------->| W |---------->| S |
     +---+           +---+           +---+
                        |
                        |     4,5    +---+
                         ----------->| F |
                                     +---+


     This diagram models the commands:

        ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV,
        QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE.












Postel & Reynolds                                              [Page 54]



RFC 959                                                     October 1985
File Transfer Protocol


  The other large group of commands is represented by a very similar
  diagram:


                              3      +---+
                         ----------->| E |
                        |            +---+
                        |
     +---+    cmd    +---+    2      +---+
     | B |---------->| W |---------->| S |
     +---+       --->+---+           +---+
                |     | |
                |     | |     4,5    +---+
                |  1  |  ----------->| F |
                 -----               +---+


     This diagram models the commands:

        APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

  Note that this second model could also be used to represent the first
  group of commands, the only difference being that in the first group
  the 100 series replies are unexpected and therefore treated as error,
  while the second group expects (some may require) 100 series replies.
  Remember that at most, one 100 series reply is allowed per command.

  The remaining diagrams model command sequences, perhaps the simplest
  of these is the rename sequence:


     +---+   RNFR    +---+    1,2    +---+
     | B |---------->| W |---------->| E |
     +---+           +---+        -->+---+
                      | |        |
               3      | | 4,5    |
        --------------  ------   |
       |                      |  |   +---+
       |               ------------->| S |
       |              |   1,3 |  |   +---+
       |             2|  --------
       |              | |     |
       V              | |     |
     +---+   RNTO    +---+ 4,5 ----->+---+
     |   |---------->| W |---------->| F |
     +---+           +---+           +---+



Postel & Reynolds                                              [Page 55]



RFC 959                                                     October 1985
File Transfer Protocol


  The next diagram is a simple model of the Restart command:


     +---+   REST    +---+    1,2    +---+
     | B |---------->| W |---------->| E |
     +---+           +---+        -->+---+
                      | |        |
               3      | | 4,5    |
        --------------  ------   |
       |                      |  |   +---+
       |               ------------->| S |
       |              |   3   |  |   +---+
       |             2|  --------
       |              | |     |
       V              | |     |
     +---+   cmd     +---+ 4,5 ----->+---+
     |   |---------->| W |---------->| F |
     +---+        -->+---+           +---+
                 |      |
                 |  1   |
                  ------


        Where "cmd" is APPE, STOR, or RETR.

  We note that the above three models are similar.  The Restart differs
  from the Rename two only in the treatment of 100 series replies at
  the second stage, while the second group expects (some may require)
  100 series replies.  Remember that at most, one 100 series reply is
  allowed per command.



















Postel & Reynolds                                              [Page 56]



RFC 959                                                     October 1985
File Transfer Protocol


  The most complicated diagram is for the Login sequence:


                           1
     +---+   USER    +---+------------->+---+
     | B |---------->| W | 2       ---->| E |
     +---+           +---+------  |  -->+---+
                      | |       | | |
                    3 | | 4,5   | | |
        --------------   -----  | | |
       |                      | | | |
       |                      | | | |
       |                 ---------  |
       |               1|     | |   |
       V                |     | |   |
     +---+   PASS    +---+ 2  |  ------>+---+
     |   |---------->| W |------------->| S |
     +---+           +---+   ---------->+---+
                      | |   | |     |
                    3 | |4,5| |     |
        --------------   --------   |
       |                    | |  |  |
       |                    | |  |  |
       |                 -----------
       |             1,3|   | |  |
       V                |  2| |  |
     +---+   ACCT    +---+--  |   ----->+---+
     |   |---------->| W | 4,5 -------->| F |
     +---+           +---+------------->+---+




















Postel & Reynolds                                              [Page 57]



RFC 959                                                     October 1985
File Transfer Protocol


  Finally, we present a generalized diagram that could be used to model
  the command and reply interchange:


              ------------------------------------
             |                                    |
     Begin   |                                    |
       |     V                                    |
       |   +---+  cmd   +---+ 2         +---+     |
        -->|   |------->|   |---------->|   |     |
           |   |        | W |           | S |-----|
        -->|   |     -->|   |-----      |   |     |
       |   +---+    |   +---+ 4,5 |     +---+     |
       |     |      |    | |      |               |
       |     |      |   1| |3     |     +---+     |
       |     |      |    | |      |     |   |     |
       |     |       ----  |       ---->| F |-----
       |     |             |            |   |
       |     |             |            +---+
        -------------------
             |
             |
             V
            End

























Postel & Reynolds                                              [Page 58]



RFC 959                                                     October 1985
File Transfer Protocol


7.  TYPICAL FTP SCENARIO

  User at host U wanting to transfer files to/from host S:

  In general, the user will communicate to the server via a mediating
  user-FTP process.  The following may be a typical scenario.  The
  user-FTP prompts are shown in parentheses, '---->' represents
  commands from host U to host S, and '<----' represents replies from
  host S to host U.

     LOCAL COMMANDS BY USER              ACTION INVOLVED

     ftp (host) multics<CR>         Connect to host S, port L,
                                    establishing control connections.
                                    <---- 220 Service ready <CRLF>.
     username Doe <CR>              USER Doe<CRLF>---->
                                    <---- 331 User name ok,
                                              need password<CRLF>.
     password mumble <CR>           PASS mumble<CRLF>---->
                                    <---- 230 User logged in<CRLF>.
     retrieve (local type) ASCII<CR>
     (local pathname) test 1 <CR>   User-FTP opens local file in ASCII.
     (for. pathname) test.pl1<CR>   RETR test.pl1<CRLF> ---->
                                    <---- 150 File status okay;
                                          about to open data
                                          connection<CRLF>.
                                    Server makes data connection
                                    to port U.

                                    <---- 226 Closing data connection,
                                        file transfer successful<CRLF>.
     type Image<CR>                 TYPE I<CRLF> ---->
                                    <---- 200 Command OK<CRLF>
     store (local type) image<CR>
     (local pathname) file dump<CR> User-FTP opens local file in Image.
     (for.pathname) >udd>cn>fd<CR>  STOR >udd>cn>fd<CRLF> ---->
                                    <---- 550 Access denied<CRLF>
     terminate                      QUIT <CRLF> ---->
                                    Server closes all
                                    connections.

8.  CONNECTION ESTABLISHMENT

  The FTP control connection is established via TCP between the user
  process port U and the server process port L.  This protocol is
  assigned the service port 21 (25 octal), that is L=21.



Postel & Reynolds                                              [Page 59]



RFC 959                                                     October 1985
File Transfer Protocol


APPENDIX I -  PAGE STRUCTURE

  The need for FTP to support page structure derives principally from
  the  need to support efficient transmission of files between TOPS-20
  systems, particularly the files used by NLS.

  The file system of TOPS-20 is based on the concept of pages.  The
  operating system is most efficient at manipulating files as pages.
  The operating system provides an interface to the file system so that
  many applications view files as sequential streams of characters.
  However, a few applications use the underlying page structures
  directly, and some of these create holey files.

  A TOPS-20 disk file consists of four things: a pathname, a page
  table, a (possibly empty) set of pages, and a set of attributes.

  The pathname is specified in the RETR or STOR command.  It includes
  the directory name, file name, file name extension, and generation
  number.

  The page table contains up to 2**18 entries.  Each entry may be
  EMPTY, or may point to a page.  If it is not empty, there are also
  some page-specific access bits; not all pages of a file need have the
  same access protection.

     A page is a contiguous set of 512 words of 36 bits each.

  The attributes of the file, in the File Descriptor Block (FDB),
  contain such things as creation time, write time, read time, writer's
  byte-size, end-of-file pointer, count of reads and writes, backup
  system tape numbers, etc.

  Note that there is NO requirement that entries in the page table be
  contiguous.  There may be empty page table slots between occupied
  ones.  Also, the end of file pointer is simply a number.  There is no
  requirement that it in fact point at the "last" datum in the file.
  Ordinary sequential I/O calls in TOPS-20 will cause the end of file
  pointer to be left after the last datum written, but other operations
  may cause it not to be so, if a particular programming system so
  requires.

  In fact, in both of these special cases, "holey" files and
  end-of-file pointers NOT at the end of the file, occur with NLS data
  files.





Postel & Reynolds                                              [Page 60]



RFC 959                                                     October 1985
File Transfer Protocol


  The TOPS-20 paged files can be sent with the FTP transfer parameters:
  TYPE L 36, STRU P, and MODE S (in fact, any mode could be used).

  Each page of information has a header.  Each header field, which is a
  logical byte, is a TOPS-20 word, since the TYPE is L 36.

  The header fields are:

     Word 0: Header Length.

        The header length is 5.

     Word 1: Page Index.

        If the data is a disk file page, this is the number of that
        page in the file's page map.  Empty pages (holes) in the file
        are simply not sent.  Note that a hole is NOT the same as a
        page of zeros.

     Word 2: Data Length.

        The number of data words in this page, following the header.
        Thus, the total length of the transmission unit is the Header
        Length plus the Data Length.

     Word 3: Page Type.

        A code for what type of chunk this is.  A data page is type 3,
        the FDB page is type 2.

     Word 4: Page Access Control.

        The access bits associated with the page in the file's page
        map.  (This full word quantity is put into AC2 of an SPACS by
        the program reading from net to disk.)

  After the header are Data Length data words.  Data Length is
  currently either 512 for a data page or 31 for an FDB.  Trailing
  zeros in a disk file page may be discarded, making Data Length less
  than 512 in that case.









Postel & Reynolds                                              [Page 61]



RFC 959                                                     October 1985
File Transfer Protocol


APPENDIX II -  DIRECTORY COMMANDS

  Since UNIX has a tree-like directory structure in which directories
  are as easy to manipulate as ordinary files, it is useful to expand
  the FTP servers on these machines to include commands which deal with
  the creation of directories.  Since there are other hosts on the
  ARPA-Internet which have tree-like directories (including TOPS-20 and
  Multics), these commands are as general as possible.

     Four directory commands have been added to FTP:

        MKD pathname

           Make a directory with the name "pathname".

        RMD pathname

           Remove the directory with the name "pathname".

        PWD

           Print the current working directory name.

        CDUP

           Change to the parent of the current working directory.

  The  "pathname"  argument should be created (removed) as a
  subdirectory of the current working directory, unless the "pathname"
  string contains sufficient information to specify otherwise to the
  server, e.g., "pathname" is an absolute pathname (in UNIX and
  Multics), or pathname is something like "<abso.lute.path>" to
  TOPS-20.

  REPLY CODES

     The CDUP command is a special case of CWD, and is included to
     simplify the implementation of programs for transferring directory
     trees between operating systems having different syntaxes for
     naming the parent directory.  The reply codes for CDUP be
     identical to the reply codes of CWD.

     The reply codes for RMD be identical to the reply codes for its
     file analogue, DELE.

     The reply codes for MKD, however, are a bit more complicated.  A
     freshly created directory will probably be the object of a future


Postel & Reynolds                                              [Page 62]



RFC 959                                                     October 1985
File Transfer Protocol


     CWD command.  Unfortunately, the argument to MKD may not always be
     a suitable argument for CWD.  This is the case, for example, when
     a TOPS-20 subdirectory is created by giving just the subdirectory
     name.  That is, with a TOPS-20 server FTP, the command sequence

        MKD MYDIR
        CWD MYDIR

     will fail.  The new directory may only be referred to by its
     "absolute" name; e.g., if the MKD command above were issued while
     connected to the directory <DFRANKLIN>, the new subdirectory
     could only be referred to by the name <DFRANKLIN.MYDIR>.

     Even on UNIX and Multics, however, the argument given to MKD may
     not be suitable.  If it is a "relative" pathname (i.e., a pathname
     which is interpreted relative to the current directory), the user
     would need to be in the same current directory in order to reach
     the subdirectory.  Depending on the application, this may be
     inconvenient.  It is not very robust in any case.

     To solve these problems, upon successful completion of an MKD
     command, the server should return a line of the form:

        257<space>"<directory-name>"<space><commentary>

     That is, the server will tell the user what string to use when
     referring to the created  directory.  The directory name can
     contain any character; embedded double-quotes should be escaped by
     double-quotes (the "quote-doubling" convention).

     For example, a user connects to the directory /usr/dm, and creates
     a subdirectory, named pathname:

        CWD /usr/dm
        200 directory changed to /usr/dm
        MKD pathname
        257 "/usr/dm/pathname" directory created

     An example with an embedded double quote:

        MKD foo"bar
        257 "/usr/dm/foo""bar" directory created
        CWD /usr/dm/foo"bar
        200 directory changed to /usr/dm/foo"bar





Postel & Reynolds                                              [Page 63]



RFC 959                                                     October 1985
File Transfer Protocol


     The prior existence of a subdirectory with the same name is an
     error, and the server must return an "access denied" error reply
     in that case.

        CWD /usr/dm
        200 directory changed to /usr/dm
        MKD pathname
        521-"/usr/dm/pathname" directory already exists;
        521 taking no action.

     The failure replies for MKD are analogous to its file  creating
     cousin, STOR.  Also, an "access denied" return is given if a file
     name with the same name as the subdirectory will conflict with the
     creation of the subdirectory (this is a problem on UNIX, but
     shouldn't be one on TOPS-20).

     Essentially because the PWD command returns the same type of
     information as the successful MKD command, the successful PWD
     command uses the 257 reply code as well.

  SUBTLETIES

     Because these commands will be most useful in transferring
     subtrees from one machine to another, carefully observe that the
     argument to MKD is to be interpreted as a sub-directory of  the
     current working directory, unless it contains enough information
     for the destination host to tell otherwise.  A hypothetical
     example of its use in the TOPS-20 world:

        CWD <some.where>
        200 Working directory changed
        MKD overrainbow
        257 "<some.where.overrainbow>" directory created
        CWD overrainbow
        431 No such directory
        CWD <some.where.overrainbow>
        200 Working directory changed

        CWD <some.where>
        200 Working directory changed to <some.where>
        MKD <unambiguous>
        257 "<unambiguous>" directory created
        CWD <unambiguous>

     Note that the first example results in a subdirectory of the
     connected directory.  In contrast, the argument in the second
     example contains enough information for TOPS-20 to tell that  the


Postel & Reynolds                                              [Page 64]



RFC 959                                                     October 1985
File Transfer Protocol


     <unambiguous> directory is a top-level directory.  Note also that
     in the first example the user "violated" the protocol by
     attempting to access the freshly created directory with a name
     other than the one returned by TOPS-20.  Problems could have
     resulted in this case had there been an <overrainbow> directory;
     this is an ambiguity inherent in some TOPS-20 implementations.
     Similar considerations apply to the RMD command.  The point is
     this: except where to do so would violate a host's conventions for
     denoting relative versus absolute pathnames, the host should treat
     the operands of the MKD and RMD commands as subdirectories.  The
     257 reply to the MKD command must always contain the absolute
     pathname of the created directory.





































Postel & Reynolds                                              [Page 65]



RFC 959                                                     October 1985
File Transfer Protocol


APPENDIX III - RFCs on FTP

  Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823),
  MIT-Project MAC, 16 April 1971.

  Harslem, Eric, and John Heafner, "Comments on RFC 114 (A File
  Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971.

  Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172
  (NIC 6794), MIT-Project MAC, 23 June 1971.

  Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663),
  UCLA/CCN, 29 September 1971.

  Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265
  (NIC 7813), MIT-Project MAC, 17 November 1971.

  McKenzie, Alex, "A Suggested Addition to File Transfer Protocol",
  RFC 281 (NIC 8163), BBN, 8 December 1971.

  Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File
  Transfer Protocol", RFC 294 (NIC 8304), MIT-Project MAC,
  25 January 1972.

  Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596),
  MIT-Project MAC, 8 July 1972.

  Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)",
  RFC 385 (NIC 11357), MIT-Project MAC, 18 August 1972.

  Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah,
  27 November 1972.

  Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further
  Comments", RFC 414 (NIC 12406), MIT-Project MAC, 20 November 1972.

  Braden, Bob, "Comments on File Transfer Protocol", RFC 430
  (NIC 13299), UCLA/CCN, 7 February 1973.

  Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction",
  RFC 438 (NIC 13770), BBN, 15 January 1973.

  Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299), UCLA/CCN,
  27 February 1973.

  McKenzie, Alex, "File Transfer Protocol", RFC 454 (NIC 14333), BBN,
  16 February 1973.


Postel & Reynolds                                              [Page 66]



RFC 959                                                     October 1985
File Transfer Protocol


  Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458
  (NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973.

  Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN,
  12 July 1973.

  Krilanovich, Mark, and George Gregg, "Comments on the File Transfer
  Protocol", RFC 607 (NIC 21255), UCSB, 7 January 1974.

  Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the
  File Transfer Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974.

  Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White,
  "Comments on the File Transfer Protocol", RFC 624 (NIC 22054), UCSB,
  Ames Research Center, SRI-ARC, 28 February 1974.

  Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463
  (NIC 14573), MIT-DMCG, 21 February 1973.

  Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN,
  8 March 1973.

  Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919),
  MIT-DMCG, 6 March 1973.

  Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II",
  RFC 478 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973.

  White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948),
  SRI-ARC, 8 March 1973.

  White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949),
  SRI-ARC, 8 March 1973.

  Padlipsky, Mike, "An FTP Command-Naming Problem", RFC 506
  (NIC 16157), MIT-Multics, 26 June 1973.

  Day, John, "Memo to FTP Group (Proposal for File Access Protocol)",
  RFC 520 (NIC 16819), Illinois, 25 June 1973.

  Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532
  (NIC 17451), UCSD-CC, 22 June 1973.

  Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN,
  15 November 1973.




Postel & Reynolds                                              [Page 67]



RFC 959                                                     October 1985
File Transfer Protocol


  McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation -
  Schedule Change", RFC 593 (NIC 20615), BBN and MITRE,
  29 November 1973.

  Sussman, Julie, "FTP Error Code Usage for More Reliable Mail
  Service", RFC 630 (NIC 30237), BBN, 10 April 1974.

  Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843),
  UCLA/NMC, 5 June 1974.

  Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481),
  SU-AI, 10 May 1975.

  Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI,
  28 May 1975.

  Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975.

  Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL,
  31 October 1977.

  Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758),
  SRI-KL, 30 December 1977.

  Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT,
  10 December 1978.

  Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI,
  June 1980.

  Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP
  Commands", RFC 776, BBN, December 1980.

  Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE,
  July 1985.














Postel & Reynolds                                              [Page 68]



RFC 959                                                     October 1985
File Transfer Protocol


REFERENCES

  [1]  Feinler, Elizabeth, "Internet Protocol Transition Workbook",
       Network Information Center, SRI International, March 1982.

  [2]  Postel, Jon, "Transmission Control Protocol - DARPA Internet
       Program Protocol Specification", RFC 793, DARPA, September 1981.

  [3]  Postel, Jon, and Joyce Reynolds, "Telnet Protocol
       Specification", RFC 854, ISI, May 1983.

  [4]  Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943,
       ISI, April 1985.




































Postel & Reynolds                                              [Page 69]