UCL Technical Report 120
Mailgroup Note 19

Network Working Group                                         S.E. Kille
Request for Comments: 987                      University College London
                                                              June 1986

                  Mapping between X.400 and RFC 822


Status of This Memo

  This RFC suggests a proposed protocol for the ARPA-Internet
  community, and requests discussion and suggestions for improvements.
  Distribution of this memo is unlimited.

  This document describes a set of mappings which will enable
  interworking between systems operating the CCITT X.400 (1984) series
  of protocols [CCITT84a], and systems using the RFC 822 mail protocol
  [Crocker82a], or protocols derived from RFC 822.  The approach aims
  to maximise the services offered across the boundary, whilst not
  requiring unduly complex mappings.  The mappings should not require
  any changes to end systems.

  This specification should be used when this mapping is performed on
  the ARPA-Internet or in the UK Academic Community.  This
  specification may be modified in the light of implementation
  experience, but no substantial changes are expected.

























Kille                                                           [Page 1]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Chapter 1 -- Overview

  1.1.  X.400

     The X.400 series protocols have been defined by CCITT to provide
     an Interpersonal Messaging Service (IPMS), making use of a store
     and forward Message Transfer Service.  It is expected that this
     standard will be implemented very widely.  As well as the base
     standard (X.400), work is underway on various functional standards
     of profiles which specify how X.400 will be used in various
     communities.  Many of the major functional standards (e.g. from
     CEPT, CEN/CENELEC, and NBS) are likely to be similar.  Some of the
     decisions in this document are in the light of this work.  No
     reference is given, as these documents are not currently stable.

  1.2.  RFC 822

     RFC 822 evolved as a messaging standard on the DARPA (the US
     Defense Advanced Research Projects Agency) Internet.  It is
     currently used on the ARPA-Internet in conjunction with two other
     standards: RFC 821, also known as Simple Mail Transfer Protocol
     (SMTP) [Postel82a], and RFC 920 which is a specification for a
     domain name system and a distributed name service [Postel84a].
     RFC 822, or protocols derived from RFC 822 are used in a number of
     other networks.  In particular:

        UUCP Networks

           UUCP is the UNIX to UNIX CoPy protocol <0>, which is usually
           used over dialup telephone networks to provide a simple
           message transfer mechanism.  There are some extensions to
           RFC 822, particularly in the addressing.  They are likely to
           use domains which conform to RFC 920, but not the
           corresponding domain nameservers [Horton86a].

        CSNET

           Some portions of CSNET will follow the ARPA-Internet
           protocols. The dialup portion of CSNET uses the Phonenet
           protocols as a replacement for RFC 821.  This portion is
           likely to use domains which conform to RFC 920, but not the
           corresponding domain nameservers.

        BITNET

           Some parts of BITNET use RFC 822 related protocols, with
           EBCDIC encoding.


Kille                                                           [Page 2]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        JNT Mail Networks

           A number of X.25 networks, particularly those associated
           with the UK Academic Community, use the JNT (Joint Network
           Team) Mail Protocol, also known as Greybook [Kille84a].
           This is used with domains and name service specified by the
           JNT NRS (Name Registration Scheme) [Larmouth83a].

     The mappings specified here are appropriate for all of these
     networks.

  1.3.  The Need for Conversion

     There is a large community using RFC 822 based protocols for mail
     services, who will wish to communicate with X.400 systems.  This
     will be a requirement, even in cases where communities intend to
     make a transition to use of X.400, where conversion will be needed
     to ensure a smooth service transition.  It is expected that there
     will be more than one gateway <1>, and this specification will
     enable them to behave in a consistent manner.  These gateways are
     sometimes called mail relays.  Consistency between gateways is
     desirable to provide:

        1.   Consistent service to users.

        2.   The best service in cases where a message passes through
             multiple gateways.

  1.4.  General Approach

     There are a number of basic principles underlying the details of
     the specification.

        1.   The specification should be pragmatic.  There should not
             be a requirement for complex mappings for 'Academic'
             reasons.  Complex mappings should not be required to
             support trivial additional functionality.

        2.   Subject to 1), functionality across a gateway should be as
             high as possible.

        3.   It is always a bad idea to lose information as a result of
             any transformation.  Hence, it is a bad idea for a gateway
             to discard information in the objects it processes.  This
             includes requested services which cannot be fully mapped.

        4.   All mail gateways actually operate at exactly one level


Kille                                                           [Page 3]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


             above the layer on which they conceptually operate.  This
             implies that the gateway must not only be cognisant of the
             semantics of objects at the gateway level, but also be
             cognisant of higher level semantics.  If meaningful
             transformation of the objects that the gateway operates on
             is to occur, then the gateway needs to understand more
             than the objects themselves.

  1.5.  Gatewaying Model

     1.5.1.  X.400

        The CCITT X.400 series recommendations specify a number of
        services and protocols.  The services are specified in X.400.
        Two of these services are fundamental to this document:

           1.   The Message Transfer Service, which can be provided by
                either the P1 or P3 protocols, which are  specified in
                X.411 [CCITT84b]. This document talks in terms of P1,
                but the mappings are equally applicable to P3.

           2.   The Interpersonal Messaging Service (IPMS), which is
                provided by the P2 protocol specified in X.420
                [CCITT84c].

        This document considers only IPMS, and not of any other usage
        of the Message Transfer Service.  This is reasonable, as
        RFC 822, broadly speaking, provides a service corresponding to
        IPMS, and no services other than IPMS have been defined over
        the Message Transfer Service. As none of the RTS (Reliable
        Transfer Service) service elements is available to the IPMS
        user, this level and lower levels are of no concern in this
        gatewaying specification.  Note that in this memo "IP" means
        "InterPersonal" (not Internet Protocol).

        The Message Transfer Service defines an end-to-end service over
        a series of Message Transfer Agents (MTA).  It also defines a
        protocol, P1, which is used between a pair of MTAs.  This
        protocol is simply a file format (Message Protocol Data Unit,
        or MPDU), transferred between two MTAs using the RTS.  There
        are three types of MPDU:

           User MPDU

              This contains envelope information, and uninterpreted
              contents. The envelope includes an ID, an originator, a



Kille                                                           [Page 4]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


              list of recipients, and trace information.  It is used to
              carry data for higher level services.

           Probe

              This contains only envelope information.  It is used to
              determine whether a User UMPDU could be delivered to a
              given O/R (originator/recipient) name.

           Delivery Report

              This contains envelope information, and specified
              contents.  It is used to indicate delivery success or
              failure of a User or Probe MPDU over the Message Transfer
              Service.

        IPMS (P2) specifies two content types for the P1 User MPDU
        (User Agent Protocol Data Units or UAPDU):

           Interpersonal Message (IM-UAPDU)

              This has two components: a heading, and a body.  The body
              is structured as a sequence of body parts, which may be
              basic components (e.g.IA5 text, or G3 fax), or IP
              Messages.  The header contains end to end user
              information, such as subject, primary recipients (To:),
              and priority.  The validity of these fields is not
              guaranteed by the Message Transfer Service.  This
              provides the basic IPMS.

           Status Report (SR-UAPDU)

              This UAPDU has defined contents.  It is used to indicate
              that a message has been received by a User Agent.  It
              does not have to be implemented.

     1.5.2.  RFC 822

        RFC 822 is based on the assumption that there is an underlying
        service, which is here called the 822-P1 service.  The 822-P1
        service provides three basic functions:

           1.   Identification of a list of recipients.

           2.   Identification of an error return address.

           3.   Transfer of an RFC 822 message.


Kille                                                           [Page 5]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        It is possible to achieve 2) within the RFC 822 header.  Some
        822-P1 protocols, in particular SMTP, can provide additional
        functionality, but as these are neither mandatory in SMTP, nor
        available in other 822-P1 protocols, they are not considered
        here.  Details of aspects specific to a number of 822-P1
        protocols are given in appendices B to E.  An RFC 822 message
        consists of a header, and content which is uninterpreted ASCII
        text.  The header is divided into fields, which are the
        protocol elements.  Most of these fields are analogous to P2
        header elements, although some are analogous to P1 envelope
        elements.

     1.5.3.  The Gateway

        Given this functional description of the two protocols, the
        functional nature of a gateway can now be considered.  It would
        be elegant to consider the 822-P1 service mapping onto P1 and
        RFC 822 mapping onto P2, but reality just does not fit.
        Therefore one must consider that P1 or P1 + P2 on one side are
        mapped into RFC 822 + 822-P1 on the other in a slightly tangled
        manner.  The details of the tangle will be made clear in
        chapter 5.  The following basic mappings are thus proposed.
        When going from RFC 822 to X.400, an RFC 822 message and the
        associated 822-P1 information is always mapped into an IM-UAPDU
        and the associated P1 envelope.  Going from X.400 to RFC 822,
        an RFC 822 message and the associated 822-P1 information may be
        derived from:

           1.   A Delivery Report MPDU

           2.   An SR-UAPDU and the associated P1 envelope.

           3.   An IM-UAPDU and the associated P1 envelope.

        Probe MPDUs must be processed by the gateway - this is
        discussed in chapter 5.  Any other User MPDUs are not mapped by
        the gateway, and should be rejected at the gateway.












Kille                                                           [Page 6]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  1.6.  Document Structure

     This document has five chapters:

        1.   Overview - this document.

        2.   Service Elements - This describes the (end user) services
             mapped by a gateway.

        3.   Basic mappings - This describes some basic notation used
             in chapters 3-5, the mappings between character sets, and
             some fundamental protocol elements.

        4.   Addressing - This considers the mapping between X.400 O/R
             names and RFC 822 addresses, which is a fundamental
             gateway component.

        5.   Protocol Elements - This describes the details of all
             other mappings.

     There are also six appendices:

        A.   Quoted String Encodings.

        B.   Mappings Specific to JNT Mail.

        C.   Mappings Specific to Internet Mail.

        D.   Mappings Specific to Phonenet Mail.

        E.   Mappings Specific to UUCP Mail.

        F.   Format of Address Tables.

  1.7.  Acknowledgements

     This document is eclectic, and credit should be given:

        -    Study of the EAN X.400 system code which performs this
             function [Neufeld85a].  Some detailed clarification was
             made by the DFN report on EAN [Bonacker85a].

        -    An unpublished ICL report, which considered a subset of
             the problem [ICL84a].

        -    A document by Marshall Rose [Rose85a].



Kille                                                           [Page 7]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        -    A document by Mark Horton [Horton85a].  The string
             encodings of chapter 3 were derived directly from this
             work, as is much of chapter 4.

        -    Discussion on a number of electronic mailing lists.

        -    Meetings in the UK and the US.










































Kille                                                           [Page 8]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Chapter 2 -- Service Elements

  RFC 822 and X.400 provide a number of services to the end user.  This
  document describes the extent to which each service can be supported
  across an X.400 <-> RFC 822 gateway.  The cases considered are single
  transfers across such a gateway, although the problems of multiple
  crossings are noted where appropriate.

  When a service element is described as supported, this means that
  when this service element is specified by a message originator for a
  recipient behind a gateway, that it is mapped by the gateway to
  provide the service implied by the element.  For example, if an
  RFC 822 originator specifies a Subject: field, this is considered to
  be supported, as an X.400 recipient will get a subject indication.
  Support implies:

     -    Semantic correspondence.

     -    No loss of information.

     -    Any actions required by the service element.

  For some services, the corresponding protocol elements map well, and
  so the service can be fully provided.  In other cases, the service
  cannot be provided, as there is a complete mismatch.  In the
  remaining cases, the service can be partially fulfilled.  The level
  of partial support is summarised.

     NOTE:  It should be clear that support of service elements on
     reception is not a gatewaying issue.  It is assumed that all
     outbound messages are fully conforming to the appropriate
     standards.

  2.1.  RFC 822

     RFC 822 does not explicitly define service elements, as distinct
     from protocol elements.  However, all of the RFC 822 header
     fields, with the exception of trace, can be regarded as
     corresponding to implicit RFC 822 service elements.  A mechanism
     of mapping used in several cases, is to place the text of the
     header into the body of the IP Message.  This can usually be
     regarded as partial support, as it allows the information to be
     conveyed to the end user even though there is no corresponding
     X.400 protocol element.  Support for the various service elements
     (headers) is now listed.




Kille                                                           [Page 9]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Date:

           Supported.

        From:

           Supported.  For messages where there is also a sender field,
           the mapping is to "Authorising Addresses", which has subtly
           different semantics to the general RFC 822 usage of From:.

        Sender:

           Supported.

        Reply-To:

           Supported.

        To:

           Supported.

        Cc:

           Supported.

        Bcc:

           Supported.

        Message-Id:

           Supported.

        In-Reply-To:

           Supported, for a single reference in msg-id form.  Other
           cases are passed in the message text.

        References:

           Supported.

        Keywords:

           Passed in the message text.



Kille                                                          [Page 10]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Subject:

           Supported.

        Comments:

           Passed in the message text.

        Encrypted:

           Passed in the message text.  This may not be very useful.

        Resent-*

           Passed in the message text.  In principle, these could be
           supported in a fuller manner, but this is not suggested.

        Other Fields

           In particular X-* fields, and "illegal" fields in common
           usage (e.g. "Fruit-of-the-day:") are passed in the message
           text.

  2.2.  X.400

     When mapping from X.400 to RFC 822, it is not proposed to map any
     elements into the body of an RFC 822 message.  Rather, new RFC 822
     headers are defined.  It is intended that these fields will be
     registered, and that co-operating RFC 822 systems may use them.
     Where these new fields are used, and no system action is implied,
     the service can be regarded as being almost supported.  Chapter 5
     describes how to map these new headers in both directions.  Other
     elements are provided, in part, by the gateway as they cannot be
     provided by RFC 822.  Some service elements are are marked N/A
     (not applicable).  These elements are only applicable to User
     Agent / Message Transfer Agent interaction and have no end-to-end
     implication. These elements do not need to be mapped by the
     gateway.

     2.2.1.  Message Transfer Service Elements

        Access Management

           N/A.





Kille                                                          [Page 11]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Content Type Indication

           Not mapped.  As it can only have one value (P2), there is
           little use in creating a new RFC 822 header field, unless it
           was to distinguish delivery reports.

        Converted Indication

           Supported by a new RFC 822 header.

        Delivery Time Stamp Indication

           N/A.

        Message Identification

           Supported, by use of a new RFC 822 header.  This new header
           is required, as X.400 has two message-ids whereas RFC 822
           has only one.

        Non-delivery Notification

           Not supported, although in general an RFC 822 system will
           return errors as IP messages.  In other elements, this
           pragmatic result is treated as effective support of this
           service element.

        Original Encoded Information Types Indication

           Supported as a new RFC 822 header.

        Registered Encoded Information Types

           N/A.

        Submission Time Stamp Indication

           Supported.

        Alternate Recipient Allowed

           Not supported.  Any value is ignored by the gateway.

        Deferred Delivery

           Support is optional.  The framework is provided so that
           messages may be held at the gateway.  However, a gateway


Kille                                                          [Page 12]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           following this specification does not have to do this.  This
           is in line with the emerging functional standards.

        Deferred Delivery Cancellation

           Supported.

        Delivery Notification

           Supported at gateway.  Thus, a notification is sent by the
           gateway to the originator  <2>.

        Disclosure of Other Recipients

           Supported by use of a new RFC 822 header.

        Grade of Delivery Selection

           Supported as a new RFC 822 header.  In general, this will
           only be for user information in the RFC 822 world.

        Multi-Destination Delivery

           Supported.

        Prevention of Non-delivery Notification

           Not Supported, as there is no control in the RFC 822 world
           (but see Non-delivery Notification).

        Return of Contents

           This is normally the case, although the user has no control
           (but see Non-delivery Notification).

        Conversion Prohibition

           Supported.  Note that in practice this support is restricted
           by the nature of the gateway.

        Explicit Conversion

           Supported, for appropriate values (See the IPMS Typed Body
           service element).





Kille                                                          [Page 13]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Implicit Conversion

           Supported, in the sense that there will be implicit
           conversion to IA5 in cases where this is practical.

        Probe

           Supported at the gateway (i.e. the gateway services the
           probe).

        Alternate Recipient Assignment

           N/A.

        Hold for Delivery

           N/A.

     2.2.2.  Interpersonal Message Service Elements

        IP-message Identification

           Supported.

        Typed Body

           Supported.  IA5 is fully supported.  ForwardedIPMessage is
           supported, with some loss of information.  A subset of TTX
           is supported (see section 5 for the specification of this
           subset), with some loss of information.  SFD may be
           supported, with some loss of information.  TTX and SFD are
           only supported when conversion is allowed.  Other types are
           not supported.

        Blind Copy Recipient Indication

           Supported.

        Non-receipt Notification

           Not supported.

        Receipt Notification

           Not supported.




Kille                                                          [Page 14]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Auto-forwarded Indication

           Supported as new RFC 822 header.

        Originator Indication

           Supported.

        Authorising User's Indication

           Supported, although the mapping (From:) is not quite the
           same.

        Primary and Copy Recipients Indication

           Supported.

        Expiry Date Indication

           Supported as new RFC 822 header.  In general, only human
           action can be expected.

        Cross Referencing Indication

           Supported.

        Importance Indication

           Supported as new RFC 822 header.

        Obsoleting Indication

           Supported as new RFC 822 header.

        Sensitivity Indication

           Supported as new RFC 822 header.

        Subject Indication

           Supported.

        Reply Request Indication

           Supported as comment next to address.




Kille                                                          [Page 15]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Forwarded IP-message Indication

           Supported, with some loss of information.

        Body Part Encryption Indication

           Not supported.

        Multi-part Body

           Supported, with some loss of information, in that the
           structuring cannot be formalised in RFC 822.





































Kille                                                          [Page 16]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Chapter 3 -- Basic Mappings

  3.1.  Notation

     The P1 and P2 protocols are encoded in a structured manner
     according to the X.409 specifications, whereas RFC 822 is text
     encoded.  To define a detailed mapping, it is necessary to refer
     to detailed protocol elements in each format.  This is described.

     3.1.4.  RFC 822

        Structured text is defined according to the Extended Backus
        Naur Form (EBNF) defined in section 2 of RFC 822 [Crocker82a].
        In the EBNF definitions used in this specification, the syntax
        rules given in Appendix D of RFC 822 are assumed.  When these
        EBNF tokens are referred to outside an EBNF definition, they
        are identified by the string "882." appended to the beginning
        of the string (e.g. 822.addr-spec).  Additional syntax rules,
        to be used throughout this specification are defined in this
        chapter.

        The EBNF is used in two ways.

           1.   To describe components of RFC 822 messages (or of
                822-P1 components).  In this case, the lexical analysis
                defined in section 3 of RFC 822 should be used.  When
                these new EBNF tokens are referred to outside an EBNF
                definition, they are identified by the string "EBNF."
                appended to the beginning of the string (e.g.
                EBNF.bilateral-info).

           2.   To describe the structure of IA5 or ASCII information
                not in an RFC 822 message.  In these cases, tokens will
                either be self delimiting, or be delimited by self
                delimiting tokens.  Comments and LWSP are not used as
                delimiters.

     3.1.5.  X.409

        An element is referred to with the following syntax, defined in
        EBNF:

           element        = protocol "." definition *( "." definition )
           protocol       = "P1" / "P2"
           definition     = identifier / context
           identifier     = ALPHA *< ALPHA or DIGIT or "-" >
           context        = "[" 1*DIGIT "]"


Kille                                                          [Page 17]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        For example, P2.Heading.subject defines the subject element of
        the P2 heading.  The same syntax is also used to refer to
        element values. For example,
        P1.EncodedInformationTypes.[0].g3Fax refers to a value of
        P1.EncodedInformationTypes.[0] .

  3.2.  ASCII and IA5

     A gateway will interpret all IA5 as ASCII.  Thus, they are treated
     identically for the rest of this document.

  3.3.  Universal Primitives

     There is a need to convert between ASCII text, and some of the
     Universal Primitive types defined in X.409 [CCITT84d].  For each
     case, an EBNF syntax definition is given, for use in all of this
     specification.  All EBNF syntax definitions of Universal
     Primitives are in lower case, whereas X.409 primitives are
     referred to with the first letter in upper case.  Except as noted,
     all mappings are symmetrical.

     3.3.1.  Boolean

        Boolean is encoded as:

           boolean = "TRUE" / "FALSE"

     3.3.2.  NumericString

        NumericString is encoded as:

           numericstring = *DIGIT

     3.3.3.  PrintableString

        PrintableString is a restricted IA5String defined as:

           printablestring  = *( ps-char / ps-delim )

           ps-char          = 1DIGIT /  1ALPHA / " " / "'" / "+" / ")"
                              / "," / "-" / "." / "/" / ":" / "=" / "?"

           ps-delim         = "("

        A structured subset of EBNF.printablestring is now defined.
        This can be used to encode ASCII in the PrintableString
        character set.


Kille                                                          [Page 18]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           ps-encoded       = *( ps-char / ps-encoded-char )

           ps-encoded-char  =   "(a)"               ; (@)
                              / "(p)"               ; (%)
                              / "(b)"               ; (!)
                              / "(q)"               ; (")
                              / "(u)"               ; (_)
                              / "(" 3DIGIT ")"

        The 822.3DIGIT in EBNF.ps-encoded-char must have range 0-127
        (Decimal), and is interpreted in decimal as the corresponding
        ASCII character. Special encodings are given for: at sign (@),
        percent (%), exclamation mark/bang (!), double quote ("), and
        underscore (_).  These characters are not included in
        PrintableString, but are common in RFC 822 addresses.  The
        abbreviations will ease specification of RFC 822 addresses from
        an X.400 system.

        An asymmetric mapping between PrintableString and ASCII can now
        be defined <3>.  To encode ASCII as PrintableString, the
        EBNF.ps-encoded syntax is used, with all EBNF.ps-char AND
        EBNF.ps-delim mapped directly <4>.  All other 822.CHAR are
        encoded as EBNF.ps-encoded-char. There are two cases of
        encoding PrintableString as ASCII.  If the PrintableString can
        be parsed as EBNF.ps-encoded, then the previous mapping should
        be reversed.  If not, it should be interpreted as
        EBNF.printablestring.

        Some examples are now given.  Note the arrows which indicate
        asymmetrical mappings:

           PrintableString           ASCII

           'a demo.'         <->   'a demo.'
           foo(a)bar         <->   foo@bar

           (q)(u)(p)(q)      <->   "_%"
           (a)               <->   @
           (a)               <-    (a)
           (040)a(041)       ->    (a)
           (040)(a)          ->    (@
           ((a)              <-    (@

        The algorithm is designed so that it is simple to use in all
        common cases, so that it is general, and so that it is
        straightforward to code.  It is not attempting to minimise the
        number of pathological cases.


Kille                                                          [Page 19]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     3.3.4.  T.61String

        T.61 strings are, in general, only used for conveying human
        interpreted information.  Thus, the aim of a mapping should be
        to render the characters appropriately in the remote character
        set, rather than to maximise reversibility.  The mappings
        defined in the CEN/CENELEC X.400 functional standard should be
        used [CEN/CENELEC/85a].  These are based on the mappings of
        X.408 (sections 4.2.2 and 5.2.2).

     3.3.5.  UTCTime

        Both UTCTime and the RFC 822 822.date-time syntax contain: Year
        (lowest two digits), Month, Day of Month, hour, minute, second
        (optional), and Timezone.  822.date-time also contains an
        optional day of the week, but this is redundant.  Therefore a
        symmetrical mapping can be made between these constructs <5>.
        The UTCTime format which specifies the timezone offset should
        be used, in line with CEN/CENELEC recommendations.






























Kille                                                          [Page 20]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Chapter 4 -- Addressing

  Addressing is probably the trickiest problem of an X.400 <-> RFC 822
  gateway.  Therefore it is given a separate chapter.  This chapter, as
  a side effect, also defines a standard textual representation of
  X.400 addresses.

  Initially we consider an address in the (human) mail user sense of
  "what is typed at the mailsystem to reference a human".  A basic
  RFC 822 address is defined by the EBNF EBNF.822-address:

     822-address     = [ route ] addr-spec

  In an 822-P1 protocol, the originator and each recipient should be
  considered to be defined by such a construct.  In an RFC 822 header,
  the EBNF.822-address is encapsulated in the 822.address syntax rule,
  and there may also be associated comments.  None of this extra
  information has any semantics, other than to the end user.

  The basic X.400 address is defined by P1.ORName.  In P1 all recipient
  P1.ORnames are encapsulated within P1.RecipientInfo, and in P2 all
  P2.ORNames <6> are encapsulated within P2.ORDescriptor.

  It can be seen that RFC 822 822.address must be mapped with
  P2.ORDescriptor, and that RFC 822 EBNF.822-address must be mapped
  with P1.ORName (originator) and P1.RecipientInfo (recipients).

  This chapter is structured as follows:

     4.1  Introduction.

     4.2  A textual representation of P1.ORName.  This is needed for
          the later mappings, and as a side effect provides a standard
          representation for O/R names.

     4.3  Mapping between EBNF.822-address and P1.ORName

     4.4  The Full P1 / 822-P1 Mapping

     4.5  The Full P2 / RFC 822 Mapping

     4.6  Mapping Message-IDs.







Kille                                                          [Page 21]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  4.1.  A textual representation of P1.ORName.

     P1.ORName is structured as a set of attribute value pairs.  It is
     clearly necessary to be able to encode this in ASCII for
     gatewaying purposes.  A general encoding is given here, which may
     be used as a basis for a user interface, as well as for the
     defined gateway mapping.

     4.1.1.  Basic Representation

        A series of BNF definitions of each possible attribute value
        pair is given, which is given a 1:1 mapping with the X.400
        encoding.  The rest of the mapping then talks in terms of these
        BNF components, with the mapping to X.400 encoding being
        trivial.

        attributevalue = c / admd / prmd / x121 / t-id / o / ou
                        / ua-id / pn.g / pn.i / pn.s / pn.gq / dd.value

        c        = printablestring       ; P1.CountryName
        admd     = printablestring       ; P1.AdministrationDomainName
        prmd     = printablestring       ; P1.PrivateDomainName
        x121     = numericstring         ; P1.X121Address
        t-id     = numericstring         ; P1.TerminalID
        o        = printablestring       ; P1.OrganisationName
        ou       = printablestring       ; P1.OrganisationalUnit
        ua-id    = numericstring         ; P1.UniqueUAIdentifier
        pn.s     = printablestring       ; P1.PersonalName.surName
        pn.g     = printablestring       ; P1.PersonalName.givenName
        pn.i     = printablestring       ; P1.PersonalName.initials
        pn.gq    = printablestring       ; P1.PersonalName.generation
                                           Qualifier
        dd.value = printablestring       ; P1.DomainDefined
                                           Attribute.value

        In cases where an attribute can be encoded as either a
        PrintableString or NumericString (Country, ADMD, PRMD) it is
        assumed that the NumericString encoding will be adopted if
        possible.  This prevents the encoding of PrintableString where
        the characters are all numbers. This restriction seems
        preferable to the added complexity of a general solution.
        Similarly, we can define a set of attribute types.







Kille                                                          [Page 22]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        dd.type = printablestring      ; P1.DomainDefinedAttribute.type

        standard-type =
                  "C"           ; P1.CountryName
                / "ADMD"        ; P1.AdministrationDomainName
                / "PRMD"        ; P1.PrivateDomainName
                / "X121"        ; P1.X121Address
                / "T-ID"        ; P1.TerminalID
                / "O"           ; P1.OrganisationName
                / "OU"          ; P1.OrganisationalUnit
                / "UA-ID"       ; P1.UniqueUAIdentifier
                / "S"           ; P1.PersonalName.surName
                / "G"           ; P1.PersonalName.givenName
                / "I"           ; P1.PersonalName.initials
                / "GQ"          ; P1.PersonalName.generationQualifier

        standard-dd-type =
                  "RFC-822"     ; dd.type = "RFC-822"
                / "JNT-Mail"    ; dd.type = "JNT-Mail"
                / "UUCP"        ; dd.type = "UUCP"

     4.1.2.  Encoding of Personal Name

        Handling of Personal Name based purely on the
        EBNF.standard-type syntax defined above is likely to be clumsy.
        It seems desirable to utilise the "human" conventions for
        encoding these components.  A syntax is proposed here.  It is
        designed to cope with the common cases of O/R Name
        specification where:

           1.   There is no generational qualifier

           2.   Initials contain only letters <7>.

           3.   Given Name does not contain full stop ("."), and is at
                least two characters long.

           4.   If Surname contains full stop, then it may not be in
                the first two characters, and either initials or given
                name is present.









Kille                                                          [Page 23]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        The following EBNF is defined:

           encoded-pn      = [ given "." ] *( initial "." ) surname

           given           = 2*<ps-char not including ".">

           initial         = ALPHA

           surname         = printablestring

        Subject to the above restriction, this is a reversible mapping.

        For example:

           GivenName       = "Marshall"
           Surname         = "Rose"

           Maps with  "Marshall.Rose"

           Initials        = "MT"
           Surname         = "Rose"

           Maps with  "M.T.Rose"

           GivenName       = "Marshall"
           Initials        = "MT"
           Surname         = "Rose"

           Maps with  "Marshall.M.T.Rose"

        Note that CCITT guidelines suggest that Initials is used to
        encode ALL initials.  Therefore, the proposed encoding is
        "natural" when either GivenName or Initials, but not both, are
        present.  The case where both are present can be encoded, but
        this appears to be contrived!

     4.1.3.  Two encodings of P1.ORName

        Given this structure, we can specify a BNF representation of an
        O/R Name.









Kille                                                          [Page 24]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           std-orname      = 1*( "/" attribute "=" value ) "/"
           attribute       = standard-type
                           / "PN"
                           / standard-dd-type
                           / registered-dd-type
                           / "DD." std-printablestring
           value           = std-printablestring
           registered-dd-type
                           = std-printablestring
           std-printablestring =
                           = *( std-char / std-pair )
           std-char        = <ps-delim, and any ps-char except "/"
                             and "=">
           std-pair        = "$" ( ps-delim / ps-char )

        If the type is PN, the value is interpreted according to
        EBNF.encoded-pn, and the components of P1.PersonalName derived
        accordingly.  If the value is registered-dd-type, if the value
        is registered at the SRI NIC as an accepted Domain Defined
        Attribute type, then the value should be interpreted
        accordingly.  This restriction maximises the syntax checking
        which can be done at a gateway.

        Another syntax is now defined.  This is intended to be
        compatible with the syntax used for 822.domains.  This syntax
        is not intended to be handled by users.

           dmn-orname      = dmn-part *( "." dmn-part )
           dmn-part        = attribute "$" value
           attribute       = standard-type
                           / "~" dmn-printablestring
           value           = dmn-printablestring
           dmn-printablestring =
                           = *( dmn-char / dmn-pair )
           dmn-char        = <ps-delim, and any ps-char except ".">
           dmn-pair        = "\."

        For example: C$US.ADMD$ATT.~ROLE$Big\.Chief











Kille                                                          [Page 25]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  4.2.  Mapping between EBNF.822-address and P1.ORName

     Ideally, the mapping specified would be entirely symmetrical and
     global, to enable addresses to be referred to transparently in the
     remote system, with the choice of gateway being left to the
     Message Transfer Service.  There are two fundamental reasons why
     this is not possible:

        1.   The syntaxes are sufficiently different to make this
             awkward.

        2.   In the general case, there would not be the necessary
             administrative co-operation between the X.400 and RFC 822
             worlds, which would be needed for this to work.

     Therefore, an asymmetrical mapping is defined.

     4.2.1.  X.400 encoded in RFC 822

        The std-orname syntax is  used to encode O/R Name information
        in the 822.local-part of EBNF.822-address.  Further  O/R Name
        information may be associated with the 822.domain component.
        This cannot be used in the general case, basically due to
        character set problems, and lack of order in X.400 O/R Names.
        The only way to encode the full PrintableString character set
        in a domain is by use of the 822.domain-ref syntax.  This is
        likely to cause problems on many systems.  The effective
        character set of domains is in practice reduced from the
        RFC 822 set, by restrictions imposed by domain conventions and
        policy.

        A generic 822.address consists of a 822.local-part and a
        sequence of 822.domains (e.g.
        <@domain1,@domain2:user@domain3>).  All except the 822.domain
        associated with the 822.local-part (domain3 in this case)
        should be considered to specify routing within the RFC 822
        world, and will not be interpreted by the gateway (although
        they may have identified the gateway from within the RFC 822
        world).  The 822.domain associated with the 822.local-part may
        also identify the gateway from within the RFC 822 world.  This
        final 822.domain may be used to determine some number of O/R
        Name attributes.  The following O/R Name attributes are
        considered as a hierarchy, and may be specified by the domain.
        They are (in order of hierarchy):

           Country, ADMD, PRMD, Organisation, Organisational Unit



Kille                                                          [Page 26]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        There may be multiple Organisational Units.

        Associations may be defined between domain specifications, and
        some set of attributes.  This association proceeds
        hierarchically: i.e. if a domain implies ADMD, it also implies
        country.  If one of the hierarchical components is omitted from
        an X.400 structure, this information can be associated with the
        corresponding domain (e.g. a domain can be mapped onto a
        Country/ADMD/Organisation tuple). Subdomains under this are
        associated according to the O/R Name hierarchy.  For example:

           => "AC.UK" might be associated with
                                         C="234", ADMD="BT", PRMD="DES"

           then domain "R-D.Salford.AC.UK" maps with
                  C="234", ADMD="BT", PRMD="DES", O="Salford", OU="R-D"

        There are two basic reasons why a domain/attribute mapping
        might be maintained, as opposed to using simply subdomains:

           1.   As a shorthand to avoid redundant X.400 information.
                In particular, there will often be only one ADMD per
                country, and so it does not need to be given
                explicitly.

           2.   To deal with cases where attribute values do not fit
                the syntax:

              domain-syntax   = ALPHA [ *alphanumhyphen alphanum ]
              alphanum        = <ALPHA or DIGIT>
              alphanumhyphen  = <ALPHA or DIGIT or HYPHEN>

        Although RFC 822 allows for a more general syntax, this
        restriced syntax is chosen as it is the one chosen by the
        various domain service administrations.

        This provides a general aliasing mechanism.

        This set of mappings need only be known by the gateways
        relaying between the RFC 822 world, and the O/R Name namespace
        associated with the mapping in question.  However, it is
        desirable (for the optimal mapping of third party addresses)
        for all gateways to know these mappings.  A format for the
        exchange of this information is defined in Appendix F.

        From the standpoint of the RFC 822 Message Transfer System, the
        domain specification is simply used to route the message in the


Kille                                                          [Page 27]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        standard manner.  The standard domain mechanisms are used to
        identify gateways, and are used to select appropriate gateways
        for the corresponding O/R Name namespace.  In most cases, this
        will be done by registering the higher levels, and assuming
        that the gateway can handle the lower levels.

        As a further mechanism to simplify the encoding of common
        cases, where the only attributes to be encoded on the LHS are
        Personal Name attributes which comply with the restrictions of
        4.2.2, the 822.local-part may be encoded as EBNF.encoded-pn.

        An example encoding is:

           /PN=J.Linnimouth/GQ=5/@Marketing.Xerox.COM

           encodes the P1.ORName consisting of

              P1.CountryName                  = "US"
              P1.AdministrationDomainName     = "ATT"
              P1.OrganisationName             = "Xerox"
              P1.OrganisationalUnit           = "Marketing"
              P1.PersonalName.surName         = "Linnimouth"
              P1.PersonalName.initials        = "J"
              P1.PersonalName.GenerationQualifier = "5"

           If the GenerationQualifier was not present, the encoding
           [email protected] could be used.

        Note that in this example, the first three attributes are
        determined by the domain Xerox.COM.  The OrganisationalUnit is
        determined systematically.

        There has been an implicit assumption that an RFC 822 domain is
        either X.400 or RFC 822.  This is pragmatic, but undesirable,
        as the namespace should be structured on a logical basis which
        does not necessarily correspond to the choice of Message
        Transfer protocols. The restriction can be lifted, provided
        that the nameservice deals with multiple message transfer
        protocols.  This can happen in a straightforward manner for the
        UK NRS, as explained in [Kille86a].  It could also be achieved
        with the DARPA Domain Nameserver scheme by use of the WKS
        mechanism.







Kille                                                          [Page 28]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     4.2.2.  RFC 822 Encoded in X.400

        In some cases, the encoding defined above may be reversed, to
        give a "natural" encoding of genuine RFC 822 addresses.  This
        depends largely on the allocation of appropriate management
        domains.

        The general case is mapped by use of domain defined attributes.
        Three are defined, according to the full environment used to
        interpret the RFC 822 information.

           1.   Domain defined type "RFC-822".  This string is to be
                interpreted in the context of RFC 822, and RFC 920
                [Crocker82a,Postel84a].

           2.   Domain defined type "JNT-Mail".  This string is to be
                interpreted in the context of the JNT Mail protocol,
                and the NRS [Kille84a,Larmouth83a].

           3.   Domain defined type "UUCP".  This is interpreted
                according to the constraints of the UUCP world
                [Horton86a].

        These three are values currently known to be of use.  Further
        recognised values may be defined.  These will be maintained in
        a list at the SRI Network Information Center.

        Other O/R Name attributes will be used to identify a context in
        which the O/R Name will be interpreted.  This might be a
        Management Domain, or some part of a Management Domain which
        identifies a gateway MTA.  For example:

           1)

           C               = "GB"
           ADMD            = "BT"
           PRMD            = "AC"
           "JNT-Mail"      = "Jimmy(a)UK.CO.BT-RESEARCH-LABS"

           2)

           C               = "US"
           ADMD            = "Telemail"
           PRMD            = "San Fransisco"
           O               = "U Cal"
           OU              = "Berkeley"
           "RFC-822"       = "postel(a)usc-isib.arpa"


Kille                                                          [Page 29]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Note in each case the PrintableString encoding of "@" as "(a)".
        In the first example, the "JNT-Mail" domain defined attribute
        is interpreted everywhere within the (Administrative or
        Private) Management Domain.  In the second example, further
        attributes are needed within the Management Domain to identify
        a gateway.  Thus, this scheme can be used with varying levels
        of Management Domain co-operation.

     4.2.3.  RFC 822 -> X.400

        There are two basic cases:

           1.   X.400 addresses encoded in RFC 822.  This will also
                include RFC 822 addresses which are given reversible
                encodings.

           2.   "Genuine" RFC 822 addresses.

        The mapping should proceed as follows, by first assuming case
        1).

        STAGE 1.

           1.   If the 822-address is not of the form:

              local-part "@" domain

              go to stage 2.

           2.   Attempt to parse domain as:

              *( domain-syntax "." ) known-domain

              Where known-domain is the longest possible match in a
              list of gatewayed domains.  If this fails, and the domain
              does not explicitly identify the local gateway, go to
              stage 2.  If it succeeds, allocate the attributes
              associated with EBNF.known-domain, and systematically
              allocate the attributes implied by each
              EBNF.domain-syntax component.

           3.   Map 822.local-part to ASCII, according to the
                definition of Appendix A.  This step should be applied:

              A.  If the source network cannot support
                  822.quoted-string (as discussed in Appendix A).



Kille                                                          [Page 30]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


              B.  If the address is an 822-P1 recipient.

                 This mapping is always applied in case B, as it
                 increases the functionality of the gateway, and does
                 not imply any loss of generality.  Mapping case B
                 allows sites which cannot generate 822.quoted-string
                 to address recipients the gateway, without the gateway
                 having to know this explicitly.  There is no loss of
                 functionality, as the quoting character of Appendix A
                 (#) is not in PrintableString.  This seems desirable.
                 It should not be applied in to other addresses, as a
                 third party RFC#822 address containing the sequence
                 EBNF.atom-encoded (as defined in Appendix A) would be
                 transformed asymmetrically.

           4.   Map the result of 3) to EBNF.ps-encoded according to
                section 3.

           5.   Parse the result of 4) according to the EBNF
                EBNF.std-orname.  If this parse fails, parse the result
                of 4) according to the EBNF EBNF.encoded-pn.  If this
                also fails, go to stage 2.  Otherwise, the result is a
                set of type/value pairs.

           6.   Associate the EBNF.attribute-value syntax (determined
                from the identified type) with each value, and check
                that it conforms.  If not, go to stage 2.

           7.   Ensure that the set of attributes conforms both to the
                X.411 P1.ORName specification and to the restrictions
                on this set given in X.400.  If not go to stage 2.

           8.   Build the O/R Name from this information.

        STAGE 2.

        This will only be reached if the RFC 822 EBNF.822-address is
        not a valid X.400 encoding.  If the address is an 822-P1
        recipient address, it must be rejected, as there is a need to
        interpret such an address in X.400.  For the 822-P1 return
        address, and any addresses in the RFC 822 header, they should
        now be encoded as RFC 822 addresses in an X.400 O/R Name:

           1.   Convert the EBNF.822-address to PrintableString, as
                specified in chapter 3.

           2.   The domain defined attribute ("RFC-822", "JNT-Mail" or


Kille                                                          [Page 31]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


                "UUCP") appropriate to the gateway should be selected,
                and its value set.

           3.   Build the rest of the O/R Name in the local Management
                Domain agreed manner, so that the O/R Name will receive
                a correct global interpretation.

     4.2.4.  X.400 -> RFC 822

        There are two basic cases:

           1.   RFC 822 addresses encoded in X.400.

           2.   "Genuine" X.400 addresses.  This may include
                symmetrically encoded RFC 822 addresses.

        When a P1 Recipient O/R Name is interpreted, gatewaying will be
        selected if there a single special domain defined attribute
        present ("RFC-822", "JNT-Mail" or "UUCP").  In this case, use
        mapping A.  For other O/R Names which

           1.   Contain the special attribute.

              AND

           2.   Identify the local gateway with the other attributes.

        Use mapping A.  In other cases, use mapping B.

        Mapping A

           1.   Map the domain defined attribute value to ASCII, as
                defined in chapter 3.

           2.   Where appropriate (P1 recipients), interpret the string
                according to the semantics implied by the domain
                defined attribute.

        Mapping B.

        This will be used for X.400 addresses which do not use the
        explicit RFC 822 encoding.

           1.   Noting the hierarchy specified in 4.3.1, determine the
                maximum set of attributes which have an associated
                domain specification. If no match is found, allocate



Kille                                                          [Page 32]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


                the domain as the domain specification of the local
                gateway, and go to step 4.

           2.   Following the 4.3.1 hierarchy, if each successive
                component exists, and conforms to the syntax
                EBNF.domain-syntax (as defined in 4.3.1), allocate the
                next subdomain.

           3.   If the remaining components are personal-name
                components, conforming to the restrictions of 4.2.2,
                then EBNF.encoded-pn should be derived to form
                822.local-part.  In other cases the remaining
                components should simply be encoded as a 822.local-part
                using the EBNF.std-orname syntax.  Where registered
                domain defined types exist, the DD. syntax should not
                be used.

           4.   If this step is reached for an 822-P1 recipient, then
                the address is invalid.  For other addresses, if the
                derived 822.local-part can only be encoded by use of
                822.quoted-string, the gateway may optionally use the
                ASCII to 822.local-part mapping defined in Appendix A,
                dependent on the mail protocols of the networks being
                relayed to.  Use of this encoding is discouraged.

  4.3.  Repeated Mappings

     The mappings defined are symmetrical across a single gateway,
     except in certain pathological cases (see chapter 3).  However, it
     is always possible to specify any valid address across a gateway.
     This symmetry is particularly useful in cases of (mail exploder
     type) distribution list expansion.  For example, an X.400 user
     sends to a list on an RFC 822 system which he belongs to.  The
     received message will have the originator and any 3rd party X.400
     O/R names in correct format (rather than doubly encoded).  In
     cases (X.400 or RFC 822) where there is common agreement on
     gateway identification, then this will apply to multiple gateways.

     However, the syntax may be used to source route.

     For example:  X.400 -> RFC 822  -> X.400

        C               = "UK"
        ADMD            = "BT"
        PRMD            = "AC"
        "JNT-Mail"      = "/PN=Duval/DD.Title=Manager/(a)FR.PTT.Inria"



Kille                                                          [Page 33]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        This will be sent to an arbitrary UK Academic Community gateway
        by X.400.  Then by JNT Mail to another gateway determined by
        the domain FR.PTT.Inria.  This will then derive the X.400 O/R
        Name:

           C               = "FR"
           ADMD            = "PTT"
           PRMD            = "Inria"
           PN.S            = "Duval"
           "Title"         = "Manager"

     Similarly:  RFC 822 -> X.400 -> RFC 822

        "/C=UK/ADMD=BT/PRMD=AC/RFC-822=jj(a)seismo.css.gov/"
                                                    @monet.berkeley.edu

        /C=UK/ADMD=BT/PRMD=AC/RFC-822=jj#l#a#r#seismo.css.gov/
                                                    @monet.berkeley.edu

        The second case uses the Appendix A encoding to avoid
        822.quoted-text. This will be sent to monet.berkeley.edu by
        RFC 822, then to the AC PRMD by X.400, and then to
        [email protected] by RFC 822.

  4.4.  The full P1 / 822-P1 mapping

     There are two basic mappings at the P1 level:

        1.   822-P1 return address <-> P1.UMPDUEnvelope.originator

        2.   822-P1 recipient <-> P1.RecipientInfo

     822-P1 recipients and return addresses are encoded as
     EBNF.822-address.  As P1.UMPDUEnvelope.originator is encoded as
     P1.ORName, mapping 1) has already been specified.
     P1.RecipientInfo contains a P1.ORName and additional information.
     The handling of this additional information is now specified.

     4.4.1.  RFC 822 -> X.400

        The following default settings should be made for each
        component of P1.RecipientInfo.

           P1.ExtensionIdentifier

              This can be set systematically by the X.400 system.



Kille                                                          [Page 34]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           P1.RecipientInfo.perRecipientFlag

              Responsibility Flag should be set.  Report Request should
              be set according to content return policy, as discussed
              in section 5.3. User Report Request should be set to
              Basic.

           P1.ExplicitConversion

              This optional component should be omitted.

     4.4.2.  X.400 -> RFC 822

        The mapping only takes place in cases where
        P1.RecipientInfo.perRecipientFlag Responsibility Flag is set.
        The following treatment should be given to the other
        P1.RecipientInfo components.

           P1.ExtensionIdentifier

              Not used.

           P1.RecipientInfo.perRecipientFlag

              If ReportRequest is Confirmed or Audit-and-Confirmed then
              a delivery report indicating success should be sent by
              the gateway. This report should use each
              P1.ReportedRecipientInfo.SupplementaryInformation to
              indicate the identity of the gateway, and the nature of
              the report (i.e. only as far as the gateway).  Failures
              will be handled by returning RFC 822 messages, and so
              User Report Request set to No report is ignored.

           P1.ExplicitConversion

              If present, the O/R name should be rejected, unless the
              requested conversion can be achieved.  None of the
              currently recognised values of this parameter are
              appropriate to a gateway using this specification.










Kille                                                          [Page 35]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  4.5.  The full P2 / RFC 822 mapping

     All RFC 822 addresses are assumed to use the 822.mailbox syntax.
     This should include all 822.comments associated with the lexical
     tokens of the 822.mailbox.  All P2.ORNames are encoded within the
     syntax P2.ORDescriptor, or P2.Recipient (or within Message IDs).
     An asymmetrical mapping is defined between these components.

     4.5.1.  RFC 822 -> X.400

        The following sequence is followed.

           1.   Take the address, and extract an EBNF.822-address.
                This can be derived trivially from either the
                822.addr-spec or 822.route-addr syntax.  This is mapped
                to P2.ORName as described above.

           2.   A string should be built consisting of (if present):

              -    The 822.phrase component if it is a 822.phrase
                   822.route-addr construct.

              -    Any 822.comments, in order, retaining the
                   parentheses.

                 This string should then be encoded into T.61 (as
                 described in chapter 3).  If the string is not null,
                 it should be assigned to P2.ORDescriptor.freeformName.

           3.   P2.ORDescriptor.telephoneNumber should be omitted.

           4.   In cases of converting to P2.Recipient,
                P2.Recipient.replyRequest and
                P2.Recipient.reportRequest should be omitted.

        If the 822.group construct is present, each included
        822.mailbox should be encoded as above.  The 822.group should
        be mapped to T.61, and a P2.ORDesciptor with only a
        freeformName component built from it.

     4.5.2.  X.400 -> RFC 822

        In the basic case, where P2.ORName is present, proceed as
        follows.

           1.   Encode P2.ORName as EBNF.822-address.



Kille                                                          [Page 36]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           2a.  If P2.ORDescriptor.freeformName is present, convert it
                to ASCII (chapter 3), and use use this as the
                822.phrase component of 822.mailbox using the
                822.phrase 822.route-addr construct.

           2b.  If P2.ORDescriptor.freeformName is absent, if
                EBNF.822-address is parsed as 822.addr-spec use this as
                the encoding of 822.mailbox. If EBNF.822-address is
                parsed as 822.route 822.addr-spec, then a 822.phrase
                taken from 822.local-part should be added.

           3.   If P2.ORDescriptor.telephoneNumber is present, this
                should be placed in a trailing 822.comment.

           4.   If P2.Recipient.reportRequest has the
                receiptNotification bit set, then an 822.comment
                "(Receipt Notification Requested)" should be appended
                to the address.  The effort of correlating P1 and P2
                information is too great to justify the gateway sending
                Receipt Notifications.

           5.   If P2.Recipient.replyRequest is present, an 822.comment
                "(Reply requested)" or "(Reply not requested)" should
                be appended to the address, dependent on its value.

        If P2.ORName is absent, P2.ORDescriptor.freeformName should be
        converted to ASCII, and used with the RFC 822 822.group syntax:

           freeformname ":" ";"

        Steps 3-5 should then be followed.

  4.6.  Message IDs

     There is a need to map both ways between 822.msg-id and
     P2.IPMessageID.  A mapping is defined which is symmetrical for
     non-pathological cases.  The mapping allows for the fact that
     P2.IPMessageID.PrintableString is mandatory for the Cen/Cenelec
     profile.  This allows for good things to happen when messages pass
     multiple times across the X.400/RFC 822 boundary.  A mapping
     between 822.msg-id and P1.MPDUIdentifier is defined.  This allows
     for X.400 error messages to reference an RFC 822 ID, which is
     preferable to a gateway generated ID.






Kille                                                          [Page 37]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     4.6.1.  P2.IPMessageID -> 822.msg-id

        P2.IPMessageID.ORName is used to generate an 822.addr-spec, as
        defined above.  P2.IPMessageID.PrintableString is mapped to
        ASCII, as defined in chapter 3.  This string (if it is present
        and if the value is not "RFC-822") is appended to the front of
        the 822.local-part of the 822.msg-id, with "*" as a separator.
        If no ORName is present, an 822.msg-id of the form
        "PrintableString*@gateway-domain" is generated.

     4.6.2.  822.msg-id -> P2.IPMessageID

        822.local-part is parsed as:

           [ printablestring "*" ] real-local-part

        If EBNF.printablestring is found, it is mapped to
        PrintableString, and used as P2.IPMessageID.PrintableString.
        Otherwise
        P2.IPMessageID.PrintableString is set to "RFC-822".  This
        arbitrary value allows for conformance to Cen/Cenelec.  If
        EBNF.real-local-part is not present, no P2.IPMessageID.ORName
        is generated.  Otherwise,  822.local-part is replaced with
        EBNF.real-local-part, and 822.addr-spec is mapped to
        P2.IPMessageID.ORName as defined above.

     4.6.3.  822.msg-id -> P1.MPDUIdentifier

        P1.CountryName is assigned to "", P1.AdministrationDomainName
        to 822.domain (from 822.msg-id) and P1.MPDUIdentifier.IA5String
        to 822.local-part (from 822.msg-id).

     4.6.4.  P1.MPDUIdentifier -> 822.msg-id

        822.local-part is set to P1.MPDUIdentifier.IA5String, with any
        CRLF mapped to SPACE.  If P1.CountryName is "", 822.domain is
        set to P1.AdministrationDomainName; Otherwise to
        P1.AdministrationDomainName ".." P1.CountryName.  If there are
        any specials,  the domain literal encoding should be used.










Kille                                                          [Page 38]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Chapter 5 -- Protocol Elements

  This chapter gives detailed mappings for the functions outlined in
  chapters 1 and 2.  It makes extensive use of the notations and
  mappings defined in chapters 3 and 4.  This chapter is structured as
  follows:

     5.1. Basic RFC 822 -> X.400 mappings

     5.2. A definition of some new RFC 822 elements, and their mapping
          to X.400.

     5.3  Some special handling associated with Return of Contents.

     5.4. X.400 -> RFC 822

  5.1.  RFC 822 -> X.400

     First, the basic functions of an 822-P1 protocol should be mapped
     as follows:

        822-P1 Originator

           Mapped to P1.UMPDUEnvelope.originator (see chapter 4).

        822-P1 Recipient

           Mapped to P1.RecipientInfo (see chapter 4).

     The RFC 822 headers are used to generate both a P1.UMPDUEnvelope
     and a P2.Heading.  The IP Message will have either one or two
     P2.BodyParts which will be type P2.IA5Text with no
     P2.IA5Text.repertoire component. The last P2.BodyPart will contain
     the RFC 822 message body.  If there are any RFC 822 headers which
     indicate mapping into the P2.BodyPart, then two P2.BodyParts are
     generated.  If a revised version of P2 allowed for extensible
     header specification, this would be seen as a preferable mapping.
     The first body part will start with the line:

        RFC-822-Headers:

     The rest of this body part will contain all of the headers not
     otherwise mapped (both 822.field-name and 822.field-body).  The
     order of any such headers should be preserved.  Similarly,
     ordering within P2.Heading and P1.UMPDUEnvelope should reflect
     ordering within the RFC 822 header.  No P1 or P2 optional fields
     are generated unless specified.


Kille                                                          [Page 39]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     A pro-forma X.400 message is now specified.  Some of these
     defaults may be changed by the values in the RFC 822 message being
     mapped.  The mandatory P1 and P2 components have the following
     defaults.

        P1.MPDUIdentifier

           The default should be unique value generated by the gateway.

        P1.OriginatorORName

           Always generated from 822-P1.

        P1.ContentType

           P1.ContentType.p2

        P1.RecipientInfo

           These will always be supplied from 822-P1.

        P1.Trace

           The last P1.TraceInformation component is generated such
           that: P1.TraceInformation.GlobalDomainIdentifier is set to
           the local vaglue.  P1.DomainSuppliedInfo.action is set to
           relayed. P1.DomainSuppliedInfo.arrival is set to the current
           time. P1.DomainSuppliedInfo.previous may be set if there is
           anything sensible to set it to.

        P2.IPMessageID

           The default should be a unique value generated by the
           gateway.

     The following optional parameters should be set:

        P1.PerMessageFlag

           The P1.PerMessageFlag.contentReturnRequest bit should be set
           according to the discussion in section 5.3.  The
           P1.PerMessageFlag.alternateRecipientAllowed bit should be
           set, as it seems desirable to maximise opportunity for
           (reliable) delivery.





Kille                                                          [Page 40]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     The RFC 822 headings should be mapped as follows:

        Received:

           Fudged onto P1.TraceInformation (try not to grimace too
           much). P1.DomainSuppliedInfo.action is set to relayed.
           P1.DomainSuppliedInfo.arrival is set to the date-time
           component P1.TraceInformation.GlobalDomainIdentifier has
           P1.CountryName as a null string, and
           P1..AdministrationDomainName as the domain of the receiving
           host (if present - null string if not).
           P1.DomainSuppliedInfo.previous has P1.CountryName as a null
           string, and P1.AdministrationDomainName has the domain of
           the sending host with all other information enclosed in
           round parentheses.  The encoding of ASCII to PrintableString
           (chapter 3) should be used if needed.  For example:

              Received: from 44e.cs.ucl.ac.uk by vax2.Cs.Ucl.AC.UK
                             with SMTP  id a002110; 18 Dec 85 10:40 GMT

                 maps to -

                 P1.GlobalDomainIdentifier
                    CountryName                  = ""
                    AdministrationDomainName     = "vax2.Cs.Ucl.AC.UK"
                 P1.DomainSuppliedInfo
                    arrival                      = 18 Dec 85 10:40 GMT
                    action                       = relayed
                    previous
                       CountryName               = ""
                       AdministrationDomainName  =
                              "44e.cs.ucl.ac.uk (with SMTP id a002110)"

        Date:

           This is used to set the first component of
           P1.TraceInformation. The mandatory components are set as
           follows:

              P1.GlobalDomainIdentifier
                 CountryName                  = ""
                 AdministrationDomainName     = ""
              P1.DomainSuppliedInfo
                 arrival                      = time derived from Date:
                 action                       = relayed

           No optional fields are used in the trace.


Kille                                                          [Page 41]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Message-Id:

           Mapped to P2.IPMessageID.  If the RFC 822 message does not
           contain a P1-Message-ID: field, the Message-Id: field is
           also mapped to P1.MPDUIdentifier.  For these, and all other
           fields containing msg-id the mappings of chapter 4 are used
           for each msg-id.

        From:

           If Sender: is present, this is mapped to
           P2.AuthorisingUsers.  If not, it is mapped to P2.Originator.
           For this, and other components containing addresses, the
           mappings of chapter 4 are used for each address.

        Sender:

           Mapped to P2.Originator.

        Reply-To:

           Mapped to P2.Heading.replyToUsers.

        To:

           Mapped to P2.Heading.primaryRecipients

        Cc:

           Mapped to P2.Heading.copyRecipients.

        Bcc:

           Mapped to P2.Heading.blindCopyRecipients.

        In-Reply-To:

           Mapped to P2.Heading.inReplyTo for the first (if any)
           822.msg-id component.  If the field contains an 822.phrase
           component, or there are multiple 822.msg-id components, the
           ENTIRE field is passed in the P2.BodyPart.

        References:

           Mapped to P2.Heading.crossReferences.




Kille                                                          [Page 42]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        Keywords:

           Passed in the P2.BodyPart.

        Subject:

           Mapped to P2.Heading.subject.  The field-body uses the
           mapping referenced in chapter 3 from ASCII to T.61.

        Comments:

           Passed in the P2.BodyPart.

        Encrypted:

           Passed in the P2.BodyPart.

        Resent-*

           Passed in the P2..BodyPart <8>.

        Other Fields

           In particular X-* fields, and "illegal" fields in common
           usage (e.g. "Fruit-of-the-day:") are passed in the
           P2.BodyPart.  The same treatment should be applied to
           RFC 822 fields where the content of the field does not
           conform to RFC 822 (e.g. a Date: field with unparsable
           syntax).

  5.2.  Extended RFC 822 Elements -> X.400

     First an EBNF definition of a number of extended fields is given,
     and then a mapping to X.400 is defined.  In most cases, the
     RFC 822 syntax is defined to make this mapping very
     straightforward, and so no detailed explanation of the mapping is
     needed.

        extended-field  = "P1-Message-ID" ":" p1-msg-id
                        / "X400-Trace" ":" x400-trace
                        / "Original-Encoded-Information-Types"
                           ":"encoded-info
                        / "P1-Content-Type" ":" p1-content-type
                        / "UA-Content-ID" ":" printablestring
                        / "Priority" ":" priority
                        / "P1-Recipient" : 1 mailbox
                        / "Deferred-Delivery" ":" date-time


Kille                                                          [Page 43]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


                        / "Bilateral-Info" ":" bilateral-info
                        / "Obsoletes" ":" 1 msg-id
                        / "Expiry-Date" ":" date-time
                        / "Reply-By" ":" date-time
                        / "Importance" ":" importance
                        / "Sensitivity" ":" sensitivity
                        / "Autoforwarded" ":" boolean

        p1-msg-id       = global-id ";" *text

        p1-content-type = "P2" / atom

        x400-trace      = global-id ";"
                        "arrival" date-time
                        [ "deferred" date-time ]
                        [ "action" action ]
                        [ "converted" "(" encoded-info ")" ]
                        [ "previous" global-id ]

        action          = "Relayed" / "Rerouted" / escape

        global-id       = c "*" admd [ "*" prmd ]

        encoded-info    = 1 encoded-type

        encoded-type    = "Undefined"           ; undefined (0)
                        / "Telex"               ; tLX (1)
                        / "IA5-Text"            ; iA5Text (2)
                        / "G3-Fax"              ; g3Fax (3)
                        / "TIF0"                ; tIF0 (4)
                        / "Teletex"             ; tTX (5)
                        / "Videotex"            ; videotex (6)
                        / "Voice"               ; voice (7)
                        / "SFD"                 ; sFD (8)
                        / "TIF1"                ; tIF1 (9)
                        / escape

        priority        = "normal" / "non-urgent" / "urgent" / escape

        bilateral-info  = c "*" admd "*" *text

        importance      = "low" / "normal" / "high" / escape

        sensitivity     = "Personal" / "Private"
                        / "Company-Confidential" / escape

        escape          = 1*DIGIT


Kille                                                          [Page 44]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     With the exception of "Bilateral-Info:" and "X400-Trace:", there
     must be no more than one of each of these fields in an RFC 822
     header.  Any field beginning with the String "Autoforwarded-" is
     valid if the field would be syntactically valid with this string
     removed.

     The mappings to X.400 are as follows:

        P1-Message-ID:

           Mapped to P1.UMPDUEnvelope.MPDUIdentifier.  This take
           precedence over any value derived from Message-ID:.

        X400-Trace:

           Mapped to the next component of
           P1.UMPDUEnvelope.Traceinformation.  Care should be taken to
           preserve order.  If one or more of these mappings is made,
           then a trace component should NOT be generated from the
           Date: field which should be redundant.  This is because the
           message has previously come from X.400, and the Date:
           information will be redundant.  Note that all trace
           information (Received: and "X400-Trace:") in the RFC 822
           message will be in strict order, with the most recent at the
           top.  This order should be preserved in the mapping.

        Original-Encoded-Information-Types:

           This is used to set P1.UMPDUEnvelope.original.
           P1.EncodedInformationTypes.[0] has bits set according to
           each of the encoded-info components in this field.  Any
           escape values should not be encoded.

        P1-Content-Type:

           If the value is anything other than "P2", the mapping should
           not be performed (unless the new value has some semantics to
           the gateway).

        UA-Content-ID:

           Mapped to P1.UMPDUEnvelope.UAContentID.

        Priority:

           Mapped to P1.UMPDUEnvelope.Priority.  An escape value should
           be encoded as P1.Priority.normal.


Kille                                                          [Page 45]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        P1-Recipient:

           If this field is set, the
           P1.PerMessageFlag.discloseRecipients bit should be set.  Any
           of the addresses here which do not correspond to 822-P1
           recipients should be added to the P1 recipient list, with
           the responsibility bit turned off.

        Deferred-Delivery:

           Mapped to P1.UMPDUEnvelope.deferredDelivery.  Note that the
           value of this field should always be in the past, as this
           field should only be present in messages which have come
           originally from X.400.  Thus there should be no implied
           action.  See also the comments on the reverse mapping.

        Bilateral-Info:

           No attempt is made to reconvert this information back to
           X.400.

        Obsoletes:

           Mapped to P2.Heading.obsoletes.

        Expiry-Date:

           Mapped to P2.Heading.expiryDate.

        Reply-By:

           Mapped to P2.Heading.replyBy.

        Importance:

           Mapped to P2.Heading.importance.  An escape value should be
           encoded as P2.Heading.importance.normal.

        Sensitivity:

           Mapped to P2.Heading.sensitivity.  An escape value should be
           encoded as P2.Heading.sensitivity.normal.

        Autoforwarded:

           If this field is present and the value is "TRUE", there will
           be zero or more field names beginning "Autoforwarded-".


Kille                                                          [Page 46]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           These should be taken, and the string "Autoforwarded-"
           stripped.  These fields, in conjunction with the 822-P1
           information should be used to build an IP Message.  Any
           implied actions should be taken. P2.Heading.autoforwarded is
           set in this message.  The other RFC 822 fields are used to
           build another IP Message, which is used as the single body
           part of the first message.  This mechanism does not nest.

  5.3.  Return of Contents

     It is not clear how widely supported X.400 return of contents
     service will be.  However, profiling work suggests that most
     systems will not support this service.  As this service is
     expected in the RFC 822 world, two approaches are specified (it is
     not so necessary in the X.400 world, as delivery reports are
     distinguished from messages).  The choice will depend on the
     service level of the X.400 community being serviced by the
     gateway.

     In environments where return of contents is widely supported, the
     P1.PerMessageFlag content return request bit will be set, and the
     Report Request bit in P1.PerRecipientFlag will be set to
     Confirmed, for every message passing from RFC 822 -> X.400.  The
     content return service can then be passed back to the end
     (RFC 822) user in a straightforward manner.

     In environments where return of contents is not widely supported,
     a gateway must make special provisions to handle return of
     contents.  For every message passing from RFC 822 -> X.400, the
     P1.PerMessageFlag content return request bit will be set, and the
     Report Request bit in P1.PerRecipientFlag will be set to
     Confirmed.  When the delivery report comes back, the gateway can
     note that the message has been delivered to the recipient(s) in
     question.  If a non-delivery report is received, a meaningful
     report (containing some or all of the original message) can be
     sent to the 822-P1 originator.  If no report is received for a
     recipient, a (timeout) failure notice should be sent to the 822-P1
     originator.  The gateway may retransmit the X.400 message if it
     wishes.  Delivery confirmations should only be sent back to the
     822-P1 originator if the P1.PerRecipientFlag User Report Request
     bit is set to Confirmed.








Kille                                                          [Page 47]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  5.4.  X.400 -> RFC 822

     5.4.1.  General

        This section describes how to build a pro-forma message, and
        then explains how these defaults may be overridden.  It should
        be noted that RFC 822 folding of headers should be used in an
        appropriate manner.

     5.4.2.  Service MPDU

        5.4.2.1.  Probe

           Any P1.ProbeMPDU should be serviced by the gateway, as there
           is no equivalent RFC 822 functionality.  The value of the
           reply is dependent on whether the gateway could service a
           User MPDU with the values specified in the probe.  The reply
           should make use of P1.SupplementaryInformation to indicate
           that the probe was serviced by the gateway.

        5.4.2.2.  Delivery Report

           The 822-P1 components are constructed as follows:

              822-P1 Originator

                 This is set to an 822.addr-spec pointing to an
                 administrator at the gateway.

              822-P1 Recipient

                 The single recipient is constructed from
                 P1.DeliveryReportEnvelope.originator, using the
                 mappings of chapter 4.

           The mandatory RFC 822 headers for an RFC 822 pro-forma are
           constructed as follows:

              Date:

                 From the P1.DomainSuppliedInfo.arrival component of
                 the first P1.TraceInformation component.

              From:

                 This is set to the same as the 822-P1 originator.  An



Kille                                                          [Page 48]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


                 appropriate phrase component may be added (e.g. giving
                 the name of the gateway).

              To:

                 The same as the 822-P1 recipient.

           A Subject: field should be added, which contains some
           appropriate words (e.g. "Delivery Report").

           The other two P1.DeliveryReportEnvelope parameters should be
           mapped as follows:

              P1.DeliveryReportEnvelope.report

                 This should be mapped to a P1-Message-Id: field.

              P1.DeliveryReportEnvelope.TraceInformation

                 Each component should be mapped to an "X400-Trace:"
                 field.  RFC 822 and X.400 ordering should be
                 maintained (see 5.3).

           The P1.DeliveryReportContent parameters should be mapped to
           a series of new RFC 822 headers.  These new headers are
           intended for processing in the RFC 822 world.  No attempt
           will be made to reverse the mappings.

              drc-field    = "Delivery-Report-Content-Original"
                          ":" msg-id
                / "Delivery-Report-Content-Intermediate-Trace"
                          ":" x400-trace
                / "Delivery-Report-Content-UA-Content-ID"
                          ":" printablestring
                / "Delivery-Report-Content-Billing-Information"
                          ":" *text
                / "Delivery-Report-Content-Reported-Recipient-Info"
                          ":" drc-info

              drc-info     = mailbox ";"
                           last-trace ";"
                           "ext" 1*DIGIT
                           "flags" 2DIGIT
                           [ "intended" mailbox ] ";"
                           [ "info" printablestring ]




Kille                                                          [Page 49]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


              last-trace   = drc-report ";"
                           date-time ";"
                           [ "converted" "(" encoded-info ")"

              drc-report   = "SUCCESS" drc-success
                           / "FAILURE" drc-failure

              drc-success  = date-time ";" 1*DIGIT

              drc-failure  = *text [ ";" *text ] ";"

           There may be multiple
           "Delivery-Report-Content-Intermediate-Trace:" and
           "Delivery-Report-Content-Reported-Recipient-Info:" fields.
           The msg-id for "Delivery-Report-Content-Original" is derived
           according to the mapping of chapter 4.  EBNF.drc-failure may
           use numeric values or textual explanation.  The latter is
           preferred.  All P1.DeliveryReportContent parameters are
           mapped to the corresponding component.  The order of
           "Delivery-Report-Content-Intermediate-Trace:" should have
           the most recently stamped one first.

           The body of the RFC 822 message should be a human readable
           description of the critical parts of the
           P1.DeliveryReportContent.  In particular, the failed
           recipients, and failure reason should be given.  Some or all
           of the original message should be included in the delivery
           report. The original message will be available at the
           gateway, as discussed in section 5.3.

     5.4.3.  User MPDU

        These elements are the basis for both Status Report and IP
        Message.

        The 822-P1 components are constructed as follows:

           822-P1 Originator

              This is derived from P1.UMPDUEnvelope.originator.

           822-P1 Recipient

              Each recipient is constructed from the P1.RecipientInfo,
              as described in chapter 4.  This describes actions as
              well as format mappings.



Kille                                                          [Page 50]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        The mandatory RFC 822 field pro-forma is derived as follows.
        In most cases where the P1.UMPDUContent is an IP Message, these
        defaults will be overridden:

           Date:

              From the P1.DomainSuppliedInfo.arrival component of the
              first P1.TraceInformation component.

           From:

              From the P1.UMPDUEnvelope.originator, as defined in
              chapter 4.

           To:

              This default is only required if the generated RFC 822
              message has no destination specification.  If
              P1.PerMessageFlag.discloseRecipients is set then it
              should contain the ORName in each P1.RecipientInfo
              component.  If it is not set, the it should be set to
              "To: No Recipients Specified : ;".

        The mappings, and any actions for each P1.UserMPDU element is
        now considered.

           P1.MPDUIdentifier

              Mapped to the extended RFC 822 field "P1-Message-ID:".
              Note that the sequence CRLF is mapped to SPACE, which
              makes the mapping irreversible for such cases.

           P1.UMPDUEnvelope.original

              Mapped to the extended RFC 822 field
              "Original-Encoded-Information-Types:".  If it contains
              only P2.IA5Text, the RFC 822 field may be omitted.

           P1.ContentType

              As this can currently only have one value, it is not
              mapped, on the basis that it is redundant.  If the field
              contains any value other than P2, then the UMPDU should
              be rejected.





Kille                                                          [Page 51]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           P1.UAContentID

              Mapped to the extended RFC 822 field "UA-Content-Id:".

           P1.Priority

              Mapped to the extended RFC 822 field "Priority:".

           P1.PerMesageFlag

              This has a number of components:

                 - discloseRecipients

                    If this bit is set, a "P1-Recipient:" field should
                    be generated, and contain each of the P1
                    recipients.

                 - conversionProhibited

                    If this bit is set, the message should be rejected
                    if it contains P2.BodyPart which is not P2.IA5Text
                    or P2.ForwardedIPMessage.

                 - alternateRecipientAllowed

                    The value of this bit is ignored.

                 - contentReturnRequest

                    The value of this bit is ignored.

           P1.UMPDUEnvelope.deferredDelivery

              This should be mapped to the extended RFC 822 field
              "Deferred-Delivery:".  X.400 profiles, and in particular
              the CEN/CENELEC profile [CEN/CENELEC/85a], specify that
              this element must be supported at the first MTA.  Thus,
              it is expected that the value of this element will always
              be in the past.  If it is not, the function may
              optionally be implemented by the gateway: that is, the
              gateway should hold the message until the time specified
              in the protocol element.  Thus the extended RFC 822 field
              is just for information.





Kille                                                          [Page 52]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           P1.PerDomainBilateralInformation

              Each component should be encoded in the extended RFC 822
              field "Bilateral-Info:".  P1.BilateralInfo should be
              mapped into ASCII in a manner appropriate to its
              contents.  This submapping is not reversible.

           P1.TraceInformation

              This should be mapped to "X400-Trace:", as for the
              delivery report.

     5.4.4.  Status Report

        The entire status report is mapped into the body of the RFC 822
        message, in the same manner as for a Delivery Report.  An
        appropriate "Subject:" field should be generated.  As status
        reports cannot be requested from the RFC 822 world, the mapping
        is not likely to be used a great deal.

     5.4.5.  IP Message

        The P1.UMPDUEnvelope pro-forma specification ensures all the
        822-P1 information, and a minimal (legal) RFC 822 message.  The
        mappings and actions for the P2.Heading components are now
        described.  Basically, these are interpreted as actions and/or
        mappings into RFC 822 fields. The following mappings are
        specified:

           P2.IPMessageID

              This is mapped to the field "Message-ID:", according to
              section 4.

           P2.Heading.originator

              If P2.Heading.authorisingUsers is present this is mapped
              to Sender:, if not to From:.

           P2.Heading.authorisingUsers

              Mapped to From:.

           P2.Heading.primaryRecipients

              Mapped to To:.



Kille                                                          [Page 53]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           P2.Heading.copyRecipients

              Mapped to Cc:.

           P2.Heading.blindCopyRecipients

              Mapped to Bcc:.

           P2.Heading.inReplyTo

              Mapped to In-Reply-To:.

           P2.Heading.obsoletes

              Mapped to the extended RFC 822 field "Obsoletes:"

           P2.Heading.crossReferences

              Mapped to References:.

           P2.Heading.subject

              Mapped to subject.  The contents are converted to ASCII
              (as defined in chapter 3).  Any CRLF are not mapped, but
              are used as points at which the subject field must be
              folded.  line.

           P2.Heading.expiryDate

              Mapped to the extended RFC 822 field "Expiry-Date:".

           P2.Heading.replyBy

              Mapped to the extended RFC 822 field "Reply-By:".

           P2.Heading.replyToUsers

              Mapped to Reply-To:.

           P2.Heading.importance

              Mapped to the extended RFC 822 field "Importance:".

           P2.Heading.sensitivity

              Mapped to the extended RFC 822 field "Sensitivity:".



Kille                                                          [Page 54]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           P2.Heading.autoforwarded

              If it is set to FALSE, it is simply mapped to the
              extended RFC 822 field "Autoforwarded:".  If this is set
              to TRUE, the P2.Body does not consist of a single
              P2.ForwardedIPMessage, then there is an X.400 error, and
              the message should be bounced.  Otherwise the following
              steps are taken.

                 1.  The mappings for all of the message, except the
                     body part are completed.

                 2.  Prepend each RFC 822 fieldname with the string
                     "Autoforwarded-". Mapped to the extended RFC 822
                     field "Autoforwarded:".

                 3.  Add the field "Autoforwarded:" with value TRUE.

                 4.  Convert the syntax of the P2.ForwardedIPMessage to
                     generate the remaining RFC 822 fields.

        The P2.Body is mapped into the RFC 822 message body.  Each
        P2.BodyPart is converted to ASCII.  If the P2.Body contains a
        P2.BodyPart not listed here, the entire message should be
        rejected.  If there are exactly two P2.IA5Text body parts, and
        the first line of the first is "RFC-822-Headers:", then the
        rest of this first body part should be treated as additional
        header information for the RFC 822 message.  If there is an
        "In-Reply-To:" field, this should be used to replace any
        generated In-Reply-To: field.

        In other cases of multiple P2.BodyPart, the mapping defined by
        Rose and Stefferud in [Rose85b], should be used to separate the
        P2.BodyParts in the single RFC 822 message body.

        Individual body parts are mapped as follows:

           P2.IA5Text

              The mapping is trivial.

           P2.TTX

              If any P1.Teletex.NonBasicParams are set, the message
              should be rejected.  Otherwise, it should be converted to
              ASCII according to chapter 3.



Kille                                                          [Page 55]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


           P2.SFD

              An SFD should be converted to ASCII as if it was being
              rendered on an 79 column ASCII only VDU.  It seems likely
              that many gateways will not support this conversion.  In
              these cases, the message should be rejected.

           P2.ForwardedIPMessage

              The P2.ForwardedIPMessage.delivery and
              P2.ForwardedIPMessage.DeliveryInformation are
              discarded <9>.  The IM-UAPDU should have its syntax
              mapped (recursively) according to this gatewaying
              specification.  Clearly, it makes no sense to apply any
              of the actions defined here.


































Kille                                                          [Page 56]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Appendix A -- Quoted String Encodings

  This Appendix describes a quoting mechanism which may be used to
  allow general interworking between RFC 822, and variants of RFC 822
  which do not support 822.quoted-string.  This is important, as the
  basic X.400 <-> RFC 822 mapping makes use of 822.quoted-string.

  1.  ASCII <-> 822.atom

     The following EBNF is specified.

        atom-encoded    = *( a-char / a-encoded-char )
        a-char          = <any CHAR except specials, SPACE,
                                CTL, "_", and "#">
        a-encoded-char  = "_"                   ; (space)
                        / "#u#"                 ; (_)
                        / "#l#"                 ; <(>
                        / "#r#"                 ; <)>
                        / "#m#"                 ; (,)
                        / "#c#"                 ; (:)
                        / "#b#"                 ; (\)
                        / "#h#"                 ; (#)
                        / "#e#"                 ; ($=)
                        / "#s#"                 ; ($/)
                        / "#" 3DIGIT "#"

     NOTE: There are two encodings of double characters.  This is so
     that systems using this encoding, do not also need to know about
     the "$" quoting mechanism defined in chapter 4.

     The 822.3DIGIT in EBNF.a-encoded-char must have range 0-127
     (Decimal), and is interpreted in decimal as the corresponding
     ASCII character.  The choice of special abbreviations (as opposed
     to octal encoding) provided is based on the manner in which this
     mapping is most frequently used: encoding PrintableString
     components of O/R names as atom.  Therefore, there are special
     encodings for each of the PrintableString characters not in
     EBNF.a-char, except ".".  Space is given a single character
     encoding, due to its (expected) frequency of use, and backslash as
     the RFC 822 single quote character.

     To encode (ASCII -> atom): all EBNF.a-char are used directly and
     all other CHAR are encoded as EBNF.a-encoded-char.  To decode
     (822.atom -> ASCII): if 822.atom can be parsed as
     EBNF.encoded-atom reverse the previous mapping.  If it cannot be
     so parsed, map the characters directly.



Kille                                                          [Page 57]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  2.  822.local-part <-> ASCII

     A related transformation is for 822.local-part (or other element
     defined as '822.word ("." 822.word)') where not 822.quoted-text is
     used.  To encode (ASCII -> 822.local-part), all EBNF.a-char and
     "." are used directly and all other 822.CHAR are encoded as
     EBNF.a-encoded-char.  To decode (822.local-part -> ASCII), first
     attempt to parse 822.local-part as '822.atom *("." 822.atom)'.  If
     this fails, or if each 822.atom cannot be parsed as
     EBNF.atom-encoded then map each character directly.  Otherwise map
     each "." directly, and each atom as in the previous section.

     There are places where it is needed to convert between
     PrintableString or IA5Text (X.400), and 822.word (RFC 822).  word
     may be encoded as 822.atom (which has a restricted character set)
     or as 822.quoted-string, which can handle all ASCII characters.
     If 822.quoted-string is used, clearly the mappings for
     PrintableString defined in Chapter 3 provide a straightforward
     mapping.  However, some RFC 822 based networks cannot handle the
     822.quoted-string format in all cases.  This Appendix is for use
     in these cases.  The major requirement for this mapping is the
     UNIX world, but it may well be needed in other places.

     These mappings are somewhat artificial, and their usage is
     discouraged, except in cases where there is no alternative.
























Kille                                                          [Page 58]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Appendix B -- Mappings Specific to JNT Mail

  This Appendix is specific to the JNT Mail Protocol.  It describes
  specific changes in the context of this protocol.  Addressing is not
  discussed here, as it is covered in Appendix A.

  1.  Introduction

     There are four aspects of a gateway which are JNT Mail Specific,
     in addition to those relating to addressing.  These are each given
     a section of this appendix.

  2.  Acknowledge-To:

     This field has no direct functional equivalent in X.400.  However,
     it can be supported to an extent, and can be used to improve X.400
     support.

     When going from JNT Mail to X.400, the User Report Request bits of
     each P1.RecipientInfo.perRecipientFlag should be set to confirmed.
     If there is more that one address in the Acknowledge-To: field, or
     if the one address is not equivalent to the 822-P1 return address,
     then:

        a.   Acknowledgement(s) should be generated by the gateway.
             The text of these acknowledgements should indicate that
             they are generated by the gateway.

        b.   The Acknowledge-To: field should also be passed in the
             first P2.BodyPart.

     When going from X.400 to JNT Mail, in cases where
     P1.RecipientInfo.perRecipientFlag has the user bits set to
     confirmed the copy of the message to that recipient should have an
     Acknowledge-To: field containing the P.UMPDUEnvelope.originator.
     No attempt should be made to map Receipt notification requests
     onto Acknowledge-To:.  This is because no association can be
     guaranteed between P2 and P1 level addressing information.

  3.  Trace

     JNT Mail trace uses the Via: syntax.  When going from JNT Mail to
     X.400, the following mapping onto P1.TraceInformation is used.

        P1.DomainSuppliedInfo.action is set to relayed.

        P1.DomainSuppliedInfo.arrival is set to the date-time component


Kille                                                          [Page 59]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


        of the Via: field.  P1.DomainSuppliedInfo.previous has
        P1.CountryName as a null string, and
        P1.AdministrationDomainName as the domain specified in the Via:
        field.
        P1.TraceInformation.GlobalDomainIdentifier has P1.CountryName
        as a null string, and P1.AdministrationDomainName as any
        commented information in the Via: field.  For example:

           Via: UK.AC.Edinburgh ; 17 Jun 85 9:15:29 BST (EMAS V7)

           maps to -

           P1.GlobalDomainIdentifier
              CountryName                  = ""
              AdministrationDomainName     = "(EMAS V7)"
           P1.DomainSuppliedInfo
              arrival                      = 17 Jun 85 9:15:29 BST
              action                       = relayed
              previous
                 CountryName               = ""
                 AdministrationDomainName  = "UK.AC.Edinburgh"

  4.  Timezone specification

     The extended syntax of zone defined in the JNT Mail Protocol
     should be used in the mapping of UTCTime defined in chapter 3.

  5.  Lack of separate 822-P1 originator specification

     In JNT Mail the default mapping of the P1.MPDUEnvelope.originator
     is to the Sender: field.  This can cause a problem if the mapping
     of P2.Heading has already generated a Sender: field.  To overcome
     this, new extended JNT Mail field is defined.  This is chosen to
     align with the JNT recommendation for interworking with full
     RFC 822 systems [Kille84b].

        original-sender     = "Original-Sender" ":" mailbox

     If an IPM has no P2.heading.authorisingUsers component and
     P2.Heading.originator.ORName is different from
     P1.UMPDUEnvelope.originator, map P1.MPDUEnvelope.originator onto
     the Sender: field.

     If an IPM has a P2.heading.authorisingUsers component, and
     P2.Heading.originator.ORName is different from
     P1.UMPDUEnvelope.originator, P1.MPDUEnvelpoe.originator should be



Kille                                                          [Page 60]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


     mapped onto the Sender: field, and P2.Heading.originator mapped
     onto the Original-Sender: field.

     In other cases the P1.MPDUEnvelope.Originator is already correctly
     represented.

     Note that in some pathological cases, this mapping is
     asymmetrical.









































Kille                                                          [Page 61]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Appendix C -- Mappings Specific to Internet Mail

  The Simple Mail Transfer Protocol [Postel82a] is used in the
  ARPA-Internet, and in any network following the US DoD standards for
  internetwork protocols.  This appendix is specific to those hosts
  which use SMTP to exchange mail.

  1.   Mapping between O/R names and SMTP addresses

     The mappings of Chapter 4 are to be used.

  2.   Use of the ARPA Domain System

     Whenever possible, domain-qualified addresses should be be used to
     specify encoded O/R names.  These domain encodings naturally
     should be independent of any routing information.

  3.   Identification of gateways

     The ARPA-Internet Network Information Center (NIC) will maintain a
     list of registered X.400 gateways in the ARPA Internet.




























Kille                                                          [Page 62]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Appendix D -- Mappings Specific to Phonenet Mail

  There are currently no mappings specific to Phonenet Mail.














































Kille                                                          [Page 63]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Appendix E -- Mappings Specific to UUCP Mail

  Gatewaying of UUCP and X.400 is handled by first gatewaying the UUCP
  address into RFC 822 syntax (using RFC 976) [Horton86a] and then
  gatewaying the resulting RFC 822 address into X.400.  For example, an
  X.400 address

     Country         US
     Organization    Xerox
     Personal Name   John Smith

  might be expressed from UUCP as

     inthop!gate!gatehost.COM!/C=US/O=Xerox/PN=John.Smith/

  (assuming gate is a UUCP-ARPA gateway and gatehost.COM is an
  ARPA-X.400 gateway) or

     inthop!gate!Xerox.COM!John.Smith

  (assuming that Xerox.COM and /C=US/O=Xerox/ are equivalent.)

  In the other direction, a UUCP address [email protected], integrated into
  822, would be handled as any other 822 address.  A non-integrated
  address such as inthop!dest!user might be handled thought a pair of
  gateways:

     Country         US
     ADMD            ATT
     PRMD            ARPA
     Organization    GateOrg
     RFC-822         [email protected]

  or through a single X.400 to UUCP gateway:

     Country         US
     ADMD            ATT
     PRMD            UUCP
     Organization    GateOrg
     UUCP            inthop!dest!user









Kille                                                          [Page 64]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Appendix F -- Format of Address Mapping Tables

  There is a need to specify the association between the domain and
  X.400 namespaces described in 4.2.1.  This is defined as a table
  syntax, but the syntax is defined in a manner which makes it suitable
  for use with domain nameservers (such as the DARPA Domain nameservers
  or the UK NRS).  The symmetry of the mapping is not clear, so a
  separate table is specified for each direction.  For domain -> X.400:

     domain-syntax "#" dmn-orname "#"

     For example:

     AC.UK#PRMD$DES.ADMD$BT.C$UK#
     XEROX.COM#O$Xerox.ADMD$ATT.C$US#

  For X.400 -> domain:

     dmn-orname "#" domain-syntax "#"

  EBNF.domain-syntax will be interpreted according to RFC 920.
  EBNF.dmn-orname will have components ordered as defined in section
  4.2.1, and with the most significant component on the RHS.


























Kille                                                          [Page 65]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


References

  Bonacker85a.

     K.H. Bonacker, U. Pankoke-Babatz, and H. Santo, "EAN - Conformity
     to X.400 and DFN-Pflichtenheft," GMD (Gesellschaft fur Mathematik
     und Datenverarbeitung) report, June 1985.

  CCITT84a.

     CCITT SG 5/VII, "Recommendations X.400," Message Handling Systems:
     System Model - Service Elements, October 1984.

  CCITT84b.

     CCITT SG 5/VII, "Recommendations X.411," Message Handling Systems:
     Message Transfer Layer, October 1984.

  CCITT84c.

     CCITT SG 5/VII, "Recommendations X.420," Message Handling Systems:
     Interpersonal Messaging User Agent Layer, October 1984.

  CCITT84d.

     CCITT SG 5/VII, "Recommendations X.409," Message Handling Systems:
     Presentation Transfer Syntax and Notation, October 1984.

  CEN/CENELEC/85a.

     CEN/CENELEC/Information Technology/Working Group on Private
     Message Handling Systems, "FUNCTIONAL STANDARD A/3222,"
     CEN/CLC/IT/WG/PMHS N 17, October 1985.

  Crocker82a.

     D.H. Crocker, "Standard of the Format of ARPA Internet Text
     Messages," RFC 822, August 1982.

  Horton85a.

     M.R. Horton, "Draft Standard for ARPA/MHS Addressing Gateways,"
     AT&T Bell Laboratories, October 1985.






Kille                                                          [Page 66]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  Horton86a.

     M.R. Horton, "UUCP Mail Interchange Format Standard", RFC 976,
     February 1986.

  ICL84a.

     ICL, "Comparison of service elements of Grey Book Mail and X.400,"
     Mailgroup Note 18: Extract from unpublished report for ITSU
     (Information Technology Standards Unit), July 1984.

  Kille84a.

     S.E. Kille, (editor), JNT Mail Protocol (revision 1.0), Joint
     Network Team, Rutherford Appleton Laboratory, March 1984.

  Kille84b.

     S.E. Kille, "Gatewaying between RFC 822 and JNT Mail," JNT
     Mailgroup Note 15, May 1984.

  Kille86a.

     S.E. Kille, "O/R Names in the UK Academic Community," UK Working
     Document, March 1986.

  Larmouth83a.

     J. Larmouth, "JNT Name Registration Technical Guide," Salford
     University Computer Centre, April 1983.

  Neufeld85a.

     G. Neufeld, J. Demco, B. Hilpert, and R. Sample, "EAN: an X.400
     message system," in Second International Symposium on Computer
     Message Systems, Washington, pp. 1-13, North Holland,
     September 1985.

  Postel82a.

     J. Postel, "Simple Mail Transfer Protocol," RFC 821, August 1982.

  Postel84a.

     J. Postel and J. Reynolds, "Domain Requirements," RFC 920,
     October 1984.



Kille                                                          [Page 67]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


  Rose85a.

     M.T. Rose, "Mapping Service Elements between ARPA and MHS," Draft
     proposal, October 1985.

  Rose85b.

     M.T. Rose and E.A. Stefferud, "Proposed Standard for Message
     Encapsulation," RFC 934, January 1985.








































Kille                                                          [Page 68]



RFC 987                                                        June 1986
Mapping between X.400 and RFC 822


Notes:

  <0>  UNIX is a trademark of Bell Laboratories.

  <1>  The term gateway is used to describe a component performing the
       protocol mappings between RFC 822 and X.400.  This is standard
       usage amongst mail implementors, but should be noted carefully
       by transport and network service implementors.  (Sometime called
       a "mail relay".)

  <2>  If the remote protocol is JNT Mail, a notification may also be
       sent by the recipient UA.

  <3>  The asymmetry occurs where an ASCII string contains the sequence
       EBNF.ps-encoded-char.  This would be mapped directly to
       PrintableString, but the reverse mapping would be to the value
       implied by the sequence.

  <4>  It might be suggested that for reasons of elegance,
       EBNF.ps-delim (left parenthesis) is encoded as
       EBNF.ps-encoded-char. This is not done, as it it would never be
       possible to represent a PrintableString containing the character
       "(" in ASCII.  This is because an "(" in ASCII would be mapped
       to the encoding in PrintableString.

  <5>  In practice, a gateway will need to parse various illegal
       variants on 822.date-time.  In cases where 822.date-time cannot
       be parsed, it is recommended that the derived UTCTime is set to
       the value at the time of translation.

  <6>  P2.ORname is defined as P1.ORName.

  <7>  This recommendation may change in the light of CCITT or
       CEN/CENELEC guidelines on the use of initials.

  <8>  It would be possible to use a ForwardedIPMessage for these
       fields, but the semantics are (arguably) slightly different, and
       it is probably not worth the effort.

  <9>  Although this violates chapter 1, part 4, principles 2 and 3, it
       is suggested that this is justified by principle 1.








Kille                                                          [Page 69]