Network Working Group                                         D.L. Mills
Request for Comments: 958                               M/A-COM Linkabit
                                                         September 1985

                     Network Time Protocol (NTP)


Status of this Memo

  This RFC suggests a proposed protocol for the ARPA-Internet
  community, and requests discussion and suggestions for improvements.
  Distribution of this memo is unlimited.

Table of Contents

  1.      Introduction
  2.      Service Model
  3.      Protocol Overview
  4.      State Variables and Formats
  5.      Protocol Operation
  5.1.    Protocol Modes
  5.2.    Message Processing
  5.3.    Network Considerations
  5.4.    Leap Seconds
  6.      References
  Appendix A. UDP Header Format
  Appendix B. NTP Data Format

1.  Introduction

  This document describes the Network Time Protocol (NTP), a protocol
  for synchronizing a set of network clocks using a set of distributed
  clients and servers.  NTP is built on the User Datagram Protocol
  (UDP) [13], which provides a connectionless transport mechanism.  It
  is evolved from the Time Protocol [7] and the ICMP Timestamp message
  [6] and is a suitable replacement for both.

  NTP provides the protocol mechanisms to synchronize time in principle
  to precisions in the order of nanoseconds while preserving a
  non-ambiguous date, at least for this century.  The protocol includes
  provisions to specify the precision and estimated error of the local
  clock and the characteristics of the reference clock to which it may
  be synchronized.  However, the protocol itself specifies only the
  data representation and message formats and does not specify the
  synchronizing algorithms or filtering mechanisms.

  Other mechanisms have been specified in the Internet protocol suite
  to record and transmit the time at which an event takes place,
  including the Daytime protocol [8] and IP Timestamp option [9].  The
  NTP is not meant to displace either of these mechanisms.  Additional
  information on network time synchronization can be found in the


Mills                                                           [Page 1]



RFC 958                                                        September
Network Time Protocol


  References at the end of this document.  An earlier synchronization
  protocol is discussed in [3] and synchronization algorithms in [2],
  [5], [10] and [12]. Experimental results on measured roundtrip delays
  and clock offsets in the Internet are discussed in [4] and [11].  A
  comprehensive mathematical treatment of clock synchronization can be
  found in [1].

2.  Service Model

  The intent of the service for which this protocol is designed is to
  connect a few primary reference clocks, synchronized by wire or radio
  to national standards, to centrally accessable resources such as
  gateways. These gateways would use NTP between them to cross-check
  the primary clocks and mitigate errors due to equipment or
  propagation failures. Some number of local-net hosts, serving as
  secondary reference clocks, would run NTP with one or more of these
  gateways.  In order to reduce the protocol overhead, these hosts
  would redistribute time to the remaining local-net hosts.  In the
  interest of reliability selected hosts might be equipped with less
  accurate but less expensive radio clocks and used for backup in case
  of failure of the primary and/or secondary clocks or communication
  paths between them.

  In the normal configuration a subnetwork of primary and secondary
  clocks will assume a hierarchical organization with the more accurate
  clocks near the top and the less accurate below.  NTP provides
  information that can be used to organize this hierarchy on the basis
  of precision or estimated error and even to serve as a rudimentary
  routing algorithm to organize the subnetwork itself.  However, the
  NTP protocol does not include a specification of the algorithms for
  doing this, which is left as a topic for further study.

3.  Protocol Overview

  There is no provision for peer discovery, acquisition, or
  authentication in NTP.  Data integrity is provided by the IP and UDP
  checksums.  No reachability, circuit-management, duplicate-detection
  or retransmission facilities are provided or necessary.  The service
  can operate in a symmetric mode, in which servers and clients are
  indistinguishable yet maintain a small amount of state information,
  or in an unsymmetric mode in which servers need maintain no client
  state other than that contained in the client request.  Moreover,
  only a single NTP message format is necessary, which simplifies
  implementation and can be used in a variety of solicited or
  unsolicited polling mechanisms.

  In what may be the most common (unsymmetric) mode a client sends an


Mills                                                           [Page 2]



RFC 958                                                        September
Network Time Protocol


  NTP message to one or more servers and processes the replies as
  received.  The server interchanges addresses and ports, fills in or
  overwrites certain fields in the message, recalculates the checksum
  and returns it immediately.  Information included in the NTP message
  allows each client/server peer to determine the timekeeping
  characteristics of its other peers, including the expected accuracies
  of their clocks. Using this information each peer is able to select
  the best time from possibly several other clocks, update the local
  clock and estimate its accuracy.

  It should be recognized that clock synchronization requires by its
  nature long periods and multiple comparisons in order to maintain
  accurate timekeeping.  While only a few comparisons are usually
  adequate to maintain local time to within a second, primarily to
  protect against broken hardware or synchronization failure, periods
  of hours or days and tens or hundreds of comparisons are required to
  maintain local time to within a few tens of milliseconds.
  Fortunately, the frequency of comparisons can be quite small and
  almost always non-intrusive to normal network operations.

4.  State Variables and Formats

  NTP timestamps are represented as a 64-bit fixed-point number, in
  seconds relative to 0000 UT on 1 January 1900.  The integer part is
  in the first 32 bits and the fraction part in the last 32 bits, as
  shown in the following diagram.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Integer Part                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Fraction Part                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This format allows convenient multiple-precision arithmetic and
  conversion to Time Protocol representation (seconds), but does
  complicate the conversion to ICMP Timestamp message representation
  (milliseconds).  The low-order fraction bit increments at about
  0.2-nanosecond intervals, so a free-running one-millisecond clock
  will be in error only a small fraction of one part per million, or
  less than a second per year.

  In some cases a particular timestamp may not be available, such as
  when the protocol first starts up.  In these cases the 64-bit field
  is set to zero, indicating the value is invalid or undefined.



Mills                                                           [Page 3]



RFC 958                                                        September
Network Time Protocol


  Following is a description of the various data items used in the
  protocol.  Details of packet formats are presented in the Appendices.

  Leap Indicator

     This is a two-bit code warning of an impending leap-second to be
     inserted in the internationally coordinated Standard Time
     broadcasts.  A leap-second is occasionally added or subtracted
     from Standard Time, which is based on atomic clocks, to maintain
     agreement with Earth rotation.  When necessary, the corrections
     are notified in advance and executed at the end of the last day of
     the month in which notified, usually June or December.  When a
     correction is executed the first minute of the following day will
     have either 59 or 61 seconds.

  Status

     This is a six-bit code indicating the status of the local clock.
     Values are assigned to indicate whether it is operating correctly
     or in one of several error states.

  Reference Clock Type

     This is an eight-bit code identifying the type of reference clock
     used to set the local clock.  Values are assigned for primary
     clocks (locally synchronized to Standard Time), secondary clocks
     (remotely synchronized via various network protocols) and even
     eyeball-and-wristwatch.

  Precision

     This is a 16-bit signed integer indicating the precision of the
     local clock, in seconds to the nearest power of two.  For
     instance, a 60-Hz line-frequency clock would be assigned the value
     -6, while a 1000-Hz crystal clock would be assigned the value -10.

  Estimated Error

     This is a 32-bit fixed-point number indicating the estimated error
     of the local clock at the time last set.  The value is in seconds,
     with fraction point between bits 15 and 16, and is computed by the
     sender based on the reported error of the reference clock, the
     precision and drift rate of the local clock and the time the local
     clock was last set.  For statistical purposes this quantity can be
     assumed equal to the estimated or computed standard deviation, as
     described in [12].



Mills                                                           [Page 4]



RFC 958                                                        September
Network Time Protocol


  Estimated Drift Rate

     This is a 32-bit signed fixed-point number indicating the
     estimated drift rate of the local clock.  The value is
     dimensionless, with fraction point to the left of the high-order
     bit.  While for most purposes this value can be estimated based on
     the hardware characteristics, it is possible to compute it quite
     accurately, as described in [12].

  Reference Clock Identifier

     This is a 32-bit code identifying the particular reference clock.
     The interpretation of its value depends on value of Reference
     Clock Type.  In the case of a primary clock locally synchronized
     to Standard Time (type 1), the value is an ASCII string
     identifying the clock.  In the case of a secondary clock remotely
     synchronized to an Internet host via NTP (type 2), the value is
     the 32-bit Internet address of that host.  In other cases the
     value is undefined.

  Reference Timestamp

     This is a 64-bit timestamp established by the server or client
     host as the timestamp (presumably obtained from a reference clock)
     most recently used to update the local clock.  If the local clock
     has never been synchronized, the value is zero.

  Originate Timestamp

     This is a 64-bit timestamp established by the client host and
     specifying the local time at which the request departed for the
     service host.  It will always have a nonzero value.

  Receive Timestamp

     This is a 64-bit timestamp established by the server host and
     specifying the local time at which the request arrived from the
     client host.  If no request has ever arrived from the client the
     value is zero.

  Transmit Timestamp

     This is a 64-bit timestamp established by the server host and
     specifying the local time at which the reply departed for the
     client host.  If no request has ever arrived from the client the
     value is zero.



Mills                                                           [Page 5]



RFC 958                                                        September
Network Time Protocol


5.  Protocol Operation

  The intent of this document is to specify a standard for data
  representation and message format which can be used for a variety of
  synchronizing algorithms and filtering mechanisms.  Accordingly, the
  information in this section should be considered a guide, rather than
  a concise specification.  Nevertheless, it is expected that a
  standard Internet distributed timekeeping protocol with concisely
  specified synchronizing and filtering algorithms can be evolved from
  the information in this section.

  5.1.  Protocol Modes

     The distinction between client and server is significant only in
     the way they interact in the request/response interchange.  The
     same NTP message format is used by each peer and contains the same
     data relative to the other peer.  In the unsymmetric mode the
     client periodically sends an NTP message to the server, which then
     responds within some interval.  Usually, the server simply
     interchanges addresses and ports, fills in the required
     information and sends the message right back. Servers operating in
     the unsymmetric mode then need retain no state information between
     client requests.

     In the symmetric mode the client/server distinction disappears.
     Each peer maintains a table with as many entries as active peers,
     each entry including a code uniquely identifying the peer (e.g.
     Internet address), together with status information and a copy of
     the Originate Timestamp and Receive Timestamp values last received
     from that peer. The peer periodically sends an NTP message to each
     of these peers including the latest copy of these timestamps.  The
     interval between sending NTP messages is managed solely by the
     sending peer and is unaffected by the arrival of NTP messages from
     other peers.

     The mode assumed by a peer can be determined by inspection of the
     UDP Source Port and Destination Port fields (see Appendix A).  If
     both of these fields contain the NTP service-port number 123, the
     peer is operating in symmetric mode.  If they are different and
     the Destination Port field contains 123, this is a client request
     and the receiver is expected to reply in the manner described
     above.  If they are different and the Source Port field contains
     123, this is a server reply to a previously sent client request.






Mills                                                           [Page 6]



RFC 958                                                        September
Network Time Protocol


  5.2.  Message Processing

     The significant events of interest in NTP occur usually near the
     times the NTP messages depart and arrive the client/server.  In
     order to maintain the highest accuracy it is important that the
     timestamps associated with these events be computed as close as
     possible to the hardware or software driver associated with the
     communications link and, in particular, that departure timestamps
     be recomputed for each retransmission, if used at the link level.

     An NTP message is constructed as follows (see Appendix B).  The
     source peer constructs the UDP header and the LI, Status,
     Reference Clock Type and Precision fields in the NTP data portion.
     Next, it determines the current synchronizing source and
     constructs the Type and Reference Clock Identifier fields.  From
     its timekeeping algorithm (see [12] for examples) it determines
     the Reference Timestamp, Estimated Error and Estimated Drift Rate
     fields.  Then it copies into the Receive Timestamp and Transmit
     Timestamp fields the data saved from the latest message received
     from the destination peer and, finally, computes the Originate
     Timestamp field.

     The destination peer calculates the roundtrip delay and clock
     offset relative to the source peer as follows.  Let t1, t2 and t3
     represent the contents of the Originate Timestamp, Receive
     Timestamp and Transmit Timestamp fields and t4 the local time the
     NTP message is received.  Then the roundtrip delay d and clock
     offset c is:

        d = (t4 - t1) - (t3 - t2)  and  c = (t2 - t1 + t3 - t4)/2 .

     The implicit assumption in the above is that the one-way delay is
     statistically half the roundtrip delay and that the intrinsic
     drift rates of both the client and server clocks are small and
     close to the same value.

  5.3.  Network Considerations

     The client/server peers have an opportunity to learn a good deal
     about each other in the NTP message exchange.  For instance, each
     can learn about the characteristics of the other clocks and select
     among them the most accurate to use as reference clock, compute
     the estimated error and drift rate and use this information to
     manage the dynamics of the subnetwork of clocks.  An outline of a
     suggested mechanism is as follows:

     Included in the table of timestamps for each peer are state


Mills                                                           [Page 7]



RFC 958                                                        September
Network Time Protocol


     variables to indicate the precision, as well as the current
     estimated delay, offset, error and drift rate of its local clock.
     These variables are updated for each NTP message received from the
     peer, after which the estimated error is periodically recomputed
     on the basis of elapsed time and estimated drift rate.

     Assuming symmetric mode, a polling interval is established for
     each peer, depending upon its normal synchronization source,
     precision and intrinsic accuracy, which might be determined in
     advance or even as the result of observation.  The delay and
     clock-offset samples obtained can be filtered using
     maximum-likelihood techniques and algorithms described in [12].

     From time to time a local-clock correction is computed from the
     offset data accumulated as above, perhaps using algorithms
     described in [10] and [12].  The correction causes the local clock
     to run slightly fast or slow to the corrected time or to jump
     instantaneously to the correct time, depending on the magnitude of
     the correction.  See [5] and [11] for a discussion of local-clock
     implementation models and synchronizing algorithms.  Note that the
     expectation here is that all network clocks are maintained by
     these algorithms, so that manual intervention is not normally
     required.

     As a byproduct of the above operations an estimate of local-clock
     error and drift rate can be computed.  Note that the magnitude of
     the error estimate must always be greater than that of the
     selected reference clock by at least the inherent precision of the
     local clock. It does not take a leap of imagination to see that
     the estimated error, delay or precision, or some combination of
     them, can be used as a metric for a simple min-hop-type routing
     algorithm to organize the subnetwork so as to provide the most
     accurate time to all peers and to provide automatic fallback to
     alternate sources in case of failures.

     A variety of network configurations can be included in the above
     scenario.  In the case of networks supporting a broadcast
     function, for example, NTP messages can be broadcast from one or
     more server hosts and picked up by client hosts sharing the same
     cable.  Since typical networks of this type have a very low
     propagation delay, the roundtrip-delay calculation can be omitted
     and the clients need not broadcast in return.  Thus, the
     requirement to save per-peer timestamps is removed, so that the
     Receive Timestamp and Transmit Timestamp fields can be set to zero
     and the local-clock offset becomes simply the difference between
     the Originate Timestamp and the local time upon arrival.  In the
     case of long-delay satellite networks with broadcast capabilities,


Mills                                                           [Page 8]



RFC 958                                                        September
Network Time Protocol


     an accurate measure of roundtrip delay is usually available from
     the channel-scheduling algorithm, so the per-peer timestamps again
     can be avoided.

  5.4.  Leap Seconds

     A standard mechanism to effect leap-second correction is not a
     part of this specification.  It is expected that the Leap
     Indicator bits would be set by hand in the primary reference
     clocks, then trickle down to all other clocks in the network,
     which would execute the correction at the specified time and reset
     the bits.





































Mills                                                           [Page 9]



RFC 958                                                        September
Network Time Protocol


6.  References

  1.  Lindsay, W.C., and A.V.  Kantak.  Network Synchronization of
      Random Signals.  IEEE Trans.  Comm.  COM-28, 8 (August 1980),
      1260-1266.

  2.  Mills, D.L.  Time Synchronization in DCNET Hosts.  DARPA Internet
      Project Report IEN-173, COMSAT Laboratories, February 1981.

  3.  Mills, D.L.  DCNET Internet Clock Service.  DARPA Network Working
      Group Report RFC-778, COMSAT Laboratories, April 1981.

  4.  Mills, D.L.  Internet Delay Experiments.  DARPA Network Working
      Group Report RFC-889, M/A-COM Linkabit, December 1983.

  5.  Mills, D.L.  DCN Local-Network Protocols.  DARPA Network Working
      Group Report RFC-891, M/A-COM Linkabit, December 1983.

  6.  Postel, J.  Internet Control Message Protocol.  DARPA Network
      Working Group Report RFC-792, USC Information Sciences Institute,
      September 1981.

  7.  Postel, J.  Time Protocol.  DARPA Network Working Group Report
      RFC-868, USC Information Sciences Institute, May 1983.

  8.  Postel, J.  Daytime Protocol.  DARPA Network Working Group Report
      RFC-867, USC Information Sciences Institute, May 1983.

  9.  Su, Z.  A Specification of the Internet Protocol (IP) Timestamp
      Option.  DARPA Network Working Group Report RFC-781.  SRI
      International, May 1981.

  10. Marzullo, K., and S.  Owicki.  Maintaining the Time in a
      Distributed System.  ACM Operating Systems Review 19, 3 (July
      1985), 44-54.

  11. Mills, D.L.  Experiments in Network Clock Synchronization.  DARPA
      Network Working Group Report RFC-957, M/A-COM Linkabit, August
      1985.

  12. Mills, D.L.  Algorithms for Synchronizing Network Clocks.  DARPA
      Network Working Group Report RFC-956, M/A-COM Linkabit, September
      1985.

  13. Postel, J.  User Datagram Protocol.  DARPA Network Working Group
      Report RFC-768, USC Information Sciences Institute, August 1980.



Mills                                                          [Page 10]



RFC 958                                                        September
Network Time Protocol


Appendix A.  UDP Header Format

  An NTP packet consists of the UDP header followed by the NTP data
  portion.  The format of the UDP header and the interpretation of its
  fields are described in [13] and are not part of the NTP
  specification.  They are shown below for completeness.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Source Port          |       Destination Port        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Length             |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Source Port

     UDP source port number. In the case of unsymmetric mode and a
     client request this field is assigned by the client host, while
     for a server reply it is copied from the Destination Port field of
     the client request.  In the case of symmetric mode, both the
     Source Port and Destination Port fields are assigned the NTP
     service-port number 123.

  Destination Port

     UDP destination port number. In the case of unsymmetric mode and a
     client request this field is assigned the NTP service-port number
     123, while for a server reply it is copied form the Source Port
     field of the client request.  In the case of symmetric mode, both
     the Source Port and Destination Port fields are assigned the NTP
     service-port number 123.

  Length

     Length of the request or reply, including UDP header, in octets.

  Checksum

     Standard UDP checksum.









Mills                                                          [Page 11]



RFC 958                                                        September
Network Time Protocol


Appendix B.  NTP Data Format

  The format of the NTP data portion, which immediately follows the UDP
  header, is shown below along with a description of its fields.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |LI |   Status  |      Type     |           Precision           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Estimated Error                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Estimated Drift Rate                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Reference Clock Identifier                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                 Reference Timestamp (64 bits)                 |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                 Originate Timestamp (64 bits)                 |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                  Receive Timestamp (64 bits)                  |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                  Transmit Timestamp (64 bits)                 |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Leap Indicator (LI)

     Code warning of impending leap-second to be inserted at the end of
     the last day of the current month. Bits are coded as follows:

        00      no warning
        01      +1 second (following minute has 61 seconds)
        10      -1 second (following minute has 59 seconds)
        11      reserved for future use

  Status

     Code indicating status of local clock. Values are defined as
     follows:


Mills                                                          [Page 12]



RFC 958                                                        September
Network Time Protocol


        0       clock operating correctly
        1       carrier loss
        2       synch loss
        3       format error
        4       interface (Type 1) or link (Type 2) failure
        (additional codes reserved for future use)

  Reference Clock Type
  (Type)

     Code identifying the type of reference clock. Values are defined
     as follows:

        0       unspecified
        1       primary reference (e.g. radio clock)
        2       secondary reference using an Internet host via NTP
        3       secondary reference using some other host or protocol
        4       eyeball-and-wristwatch
        (additional codes reserved for future use)

  Precision

     Signed integer in the range +32 to -32 indicating the precision of
     the local clock, in seconds to the nearest power of two.

  Estimated Error

     Fixed-point number indicating the estimated error of the local
     clock at the time last set, in seconds with fraction point between
     bits 15 and 16.

  Estimated Drift Rate

     Signed fixed-point number indicating the estimated drift rate of
     the local clock, in dimensionless units with fraction point to the
     left of the high-order bit.

  Reference Clock
  Identifier

     Code identifying the particular reference clock. In the case of
     type 1 (primary reference), this is a left-justified, zero-filled
     ASCII string identifying the clock, for example:

        WWVB    WWVB radio clock (60 KHz)




Mills                                                          [Page 13]



RFC 958                                                        September
Network Time Protocol


        GOES    GOES satellite clock (468 HMz)
        WWV     WWV radio clock (2.5/5/10/15/20 MHz)
        (and others as necessary)

     In the case of type 2 (secondary reference) this is the 32-bit
     Internet address of the reference host. In other cases this field
     is reserved for future use and should be set to zero.

  Reference Timestamp

     Local time at which the local clock was last set or corrected.

  Originate Timestamp

     Local time at which the request departed the client host for the
     service host.

  Receive Timestamp

     Local time at which the request arrived at the service host.

  Transmit Timestamp

     Local time at which the reply departed the service host for the
     client host.
























Mills                                                          [Page 14]