Network Working Group                                J. Mogul (Stanford)
Request for Comments: 950                                J. Postel (ISI)
                                                            August 1985

                Internet Standard Subnetting Procedure


Status Of This Memo

  This RFC specifies a protocol for the ARPA-Internet community.  If
  subnetting is implemented it is strongly recommended that these
  procedures be followed.  Distribution of this memo is unlimited.

Overview

  This memo discusses the utility of "subnets" of Internet networks,
  which are logically visible sub-sections of a single Internet
  network.  For administrative or technical reasons, many organizations
  have chosen to divide one Internet network into several subnets,
  instead of acquiring a set of Internet network numbers.  This memo
  specifies procedures for the use of subnets.  These procedures are
  for hosts (e.g., workstations).  The procedures used in and between
  subnet gateways are not fully described.  Important motivation and
  background information for a subnetting standard is provided in
  RFC-940 [7].

Acknowledgment

  This memo is based on RFC-917 [1].  Many people contributed to the
  development of the concepts described here.  J. Noel Chiappa, Chris
  Kent, and Tim Mann, in particular, provided important suggestions.
  Additional contributions in shaping this memo were made by Zaw-Sing
  Su, Mike Karels, and the Gateway Algorithms and Data Structures Task
  Force (GADS).



















Mogul & Postel                                                  [Page 1]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


1.  Motivation

  The original view of the Internet universe was a two-level hierarchy:
  the top level the Internet as a whole, and the level below it
  individual networks, each with its own network number.  The Internet
  does not have a hierarchical topology, rather the interpretation of
  addresses is hierarchical.  In this two-level model, each host sees
  its network as a single entity; that is, the network may be treated
  as a "black box" to which a set of hosts is connected.

  While this view has proved simple and powerful, a number of
  organizations have found it inadequate, and have added a third level
  to the interpretation of Internet addresses.  In this view, a given
  Internet network is divided into a collection of subnets.

  The three-level model is useful in networks belonging to moderately
  large organizations (e.g., Universities or companies with more than
  one building), where it is often necessary to use more than one LAN
  cable to cover a "local area".  Each LAN may then be treated as a
  subnet.

  There are several reasons why an organization might use more than one
  cable to cover a campus:

     - Different technologies:  Especially in a research environment,
       there may be more than one kind of LAN in use; e.g., an
       organization may have some equipment that supports Ethernet, and
       some that supports a ring network.

     - Limits of technologies:  Most LAN technologies impose limits,
       based on electrical parameters, on the number of hosts
       connected, and on the total length of the cable.  It is easy to
       exceed these limits, especially those on cable length.

     - Network congestion:  It is possible for a small subset of the
       hosts on a LAN to monopolize most of the bandwidth.  A common
       solution to this problem is to divide the hosts into cliques of
       high mutual communication, and put these cliques on separate
       cables.

     - Point-to-Point links:  Sometimes a "local area", such as a
       university campus, is split into two locations too far apart to
       connect using the preferred LAN technology.  In this case,
       high-speed point-to-point links might connect several LANs.

  An organization that has been forced to use more than one LAN has
  three choices for assigning Internet addresses:


Mogul & Postel                                                  [Page 2]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     1. Acquire a distinct Internet network number for each cable;
        subnets are not used at all.

     2. Use a single network number for the entire organization, but
        assign host numbers without regard to which LAN a host is on
        ("transparent subnets").

     3. Use a single network number, and partition the host address
        space by assigning subnet numbers to the LANs ("explicit
        subnets").

  Each of these approaches has disadvantages.  The first, although not
  requiring any new or modified protocols, results in an explosion in
  the size of Internet routing tables.  Information about the internal
  details of local connectivity is propagated everywhere, although it
  is of little or no use outside the local organization.  Especially as
  some current gateway implementations do not have much space for
  routing tables, it would be good to avoid this problem.

  The second approach requires some convention or protocol that makes
  the collection of LANs appear to be a single Internet network.  For
  example, this can be done on LANs where each Internet address is
  translated to a hardware address using an Address Resolution Protocol
  (ARP), by having the bridges between the LANs intercept ARP requests
  for non-local targets, see RFC-925 [2].  However, it is not possible
  to do this for all LAN technologies, especially those where ARP
  protocols are not currently used, or if the LAN does not support
  broadcasts.  A more fundamental problem is that bridges must discover
  which LAN a host is on, perhaps by using a broadcast algorithm.  As
  the number of LANs grows, the cost of broadcasting grows as well;
  also, the size of translation caches required in the bridges grows
  with the total number of hosts in the network.

  The third approach is to explicitly support subnets.  This does have
  a disadvantage, in that it is a modification of the Internet
  Protocol, and thus requires changes to IP implementations already in
  use (if these implementations are to be used on a subnetted network).
  However, these changes are relatively minor, and once made, yield a
  simple and efficient solution to the problem.  Also, the approach
  avoids any changes that would be incompatible with existing hosts on
  non-subnetted networks.

  Further, when appropriate design choices are made, it is possible for
  hosts which believe they are on a non-subnetted network to be used on
  a subnetted one, as explained in RFC-917 [1].  This is useful when it
  is not possible to modify some of the hosts to support subnets
  explicitly, or when a gradual transition is preferred.


Mogul & Postel                                                  [Page 3]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


2.  Standards for Subnet Addressing

  This section first describes a proposal for interpretation of
  Internet addresses to support subnets.  Next it discusses changes to
  host software to support subnets.  Finally, it presents a procedures
  for discovering what address interpretation is in use on a given
  network (i.e., what address mask is in use).

  2.1. Interpretation of Internet Addresses

     Suppose that an organization has been assigned an Internet network
     number, has further divided that network into a set of subnets,
     and wants to assign host addresses: how should this be done?
     Since there are minimal restrictions on the assignment of the
     "local address" part of the Internet address, several approaches
     have been proposed for representing the subnet number:

        1. Variable-width field:  Any number of the bits of the local
           address part are used for the subnet number; the size of
           this field, although constant for a given network, varies
           from network to network.  If the field width is zero, then
           subnets are not in use.

        2. Fixed-width field:  A specific number of bits (e.g., eight)
           is used for the subnet number, if subnets are in use.

        3. Self-encoding variable-width field:  Just as the width
           (i.e., class) of the network number field is encoded by its
           high-order bits, the width of the subnet field is similarly
           encoded.

        4. Self-encoding fixed-width field:  A specific number of bits
           is used for the subnet number.

        5. Masked bits:  Use a bit mask ("address mask") to identify
           which bits of the local address field indicate the subnet
           number.

     What criteria can be used to choose one of these five schemes?
     First, should we use a self-encoding scheme?  And, should it be
     possible to tell from examining an Internet address if it refers
     to a subnetted network, without reference to any other
     information?

        An interesting feature of self-encoding is that it allows the




Mogul & Postel                                                  [Page 4]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        address space of a network to be divided into subnets of
        different sizes, typically one subnet of half the address space
        and a set of small subnets.

           For example, consider a class C network that uses a
           self-encoding scheme with one bit to indicate if it is the
           large subnet or not and an additional three bits to identify
           the small subnet.  If the first bit is zero then this is the
           large subnet, if the first bit is one then the following
           bits (3 in this example) give the subnet number.  There is
           one subnet with 128 host addresses, and eight subnets with
           16 hosts each.

        To establish a subnetting standard the parameters and
        interpretation of the self-encoding scheme must be fixed and
        consistent throughout the Internet.

        It could be assumed that all networks are subnetted.  This
        would allow addresses to be interpreted without reference to
        any other information.

           This is a significant advantage, that given the Internet
           address no additional information is needed for an
           implementation to determine if two addresses are on the same
           subnet.  However, this can also be viewed as a disadvantage:
           it may cause problems for networks which have existing host
           numbers that use arbitrary bits in the local address part.
           In other words, it is useful to be able to control whether a
           network is subnetted independently from the assignment of
           host addresses.

        The alternative is to have the fact that a network is subnetted
        kept separate from the address.  If one finds, somehow, that
        the network is subnetted then the standard self-encoded
        subnetted network address rules are followed, otherwise the
        non-subnetted network addressing rules are followed.

     If a self-encoding scheme is not used, there is no reason to use a
     fixed-width field scheme: since there must in any case be some
     per-network "flag" to indicate if subnets are in use, the
     additional cost of using an integer (a subnet field width or
     address mask) instead of a boolean is negligible.  The advantage
     of using the address mask scheme is that it allows each
     organization to choose the best way to allocate relatively scarce
     bits of local address to subnet and host numbers.  Therefore, we
     choose the address-mask scheme: it is the most flexible scheme,
     yet costs no more to implement than any other.


Mogul & Postel                                                  [Page 5]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     For example, the Internet address might be interpreted as:

        <network-number><subnet-number><host-number>

     where the <network-number> field is as defined by IP [3], the
     <host-number> field is at least 1-bit wide, and the width of the
     <subnet-number> field is constant for a given network.  No further
     structure is required for the <subnet-number> or <host-number>
     fields.  If the width of the <subnet-number> field is zero, then
     the network is not subnetted (i.e., the interpretation of [3] is
     used).

     For example, on a Class B network with a 6-bit wide subnet field,
     an address would be broken down like this:

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0|        NETWORK            |  SUBNET   |    Host Number    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Since the bits that identify the subnet are specified by a
     bitmask, they need not be adjacent in the address.  However, we
     recommend that the subnet bits be contiguous and located as the
     most significant bits of the local address.

     Special Addresses:

        From the Assigned Numbers memo [9]:

           "In certain contexts, it is useful to have fixed addresses
           with functional significance rather than as identifiers of
           specific hosts.  When such usage is called for, the address
           zero is to be interpreted as meaning "this", as in "this
           network".  The address of all ones are to be interpreted as
           meaning "all", as in "all hosts".  For example, the address
           128.9.255.255 could be interpreted as meaning all hosts on
           the network 128.9.  Or, the address 0.0.0.37 could be
           interpreted as meaning host 37 on this network."

        It is useful to preserve and extend the interpretation of these
        special addresses in subnetted networks.  This means the values
        of all zeros and all ones in the subnet field should not be
        assigned to actual (physical) subnets.

           In the example above, the 6-bit wide subnet field may have
           any value except 0 and 63.


Mogul & Postel                                                  [Page 6]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        Please note that there is no effect or new restriction on the
        addresses of hosts on non-subnetted networks.

  2.2. Changes to Host Software to Support Subnets

     In most implementations of IP, there is code in the module that
     handles outgoing datagrams to decide if a datagram can be sent
     directly to the destination on the local network or if it must be
     sent to a gateway.

     Generally the code is something like this:

        IF ip_net_number(dg.ip_dest) = ip_net_number(my_ip_addr)
            THEN
                send_dg_locally(dg, dg.ip_dest)
            ELSE
                send_dg_locally(dg,
                                 gateway_to(ip_net_number(dg.ip_dest)))

     (If the code supports multiply-connected networks, it will be more
     complicated, but this is irrelevant to the current discussion.)

     To support subnets, it is necessary to store one more 32-bit
     quantity, called my_ip_mask.  This is a bit-mask with bits set in
     the fields corresponding to the IP network number, and additional
     bits set corresponding to the subnet number field.

     The code then becomes:

        IF bitwise_and(dg.ip_dest, my_ip_mask)
                                  = bitwise_and(my_ip_addr, my_ip_mask)
            THEN
                send_dg_locally(dg, dg.ip_dest)
            ELSE
                send_dg_locally(dg,
                       gateway_to(bitwise_and(dg.ip_dest, my_ip_mask)))

     Of course, part of the expression in the conditional can be
     pre-computed.

     It may or may not be necessary to modify the "gateway_to"
     function, so that it too takes the subnet field bits into account
     when performing comparisons.

     To support multiply-connected hosts, the code can be changed to




Mogul & Postel                                                  [Page 7]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     keep  the "my_ip_addr" and "my_ip_mask" quantities on a
     per-interface basis; the expression in the conditional must then
     be evaluated for each interface.

  2.3. Finding the Address Mask

     How can a host determine what address mask is in use on a subnet
     to which it is connected?  The problem is analogous to several
     other "bootstrapping" problems for Internet hosts: how a host
     determines its own address, and how it locates a gateway on its
     local network.  In all three cases, there are two basic solutions:
     "hardwired" information, and broadcast-based protocols.

     Hardwired information is that available to a host in isolation
     from a network.  It may be compiled-in, or (preferably) stored in
     a disk file.  However, for the increasingly common case of a
     diskless workstation that is bootloaded over a LAN, neither
     hardwired solution is satisfactory.

     Instead, since most LAN technology supports broadcasting, a better
     method is for the newly-booted host to broadcast a request for the
     necessary information.  For example, for the purpose of
     determining its Internet address, a host may use the "Reverse
     Address Resolution Protocol" (RARP) [4].

     However, since a newly-booted host usually needs to gather several
     facts (e.g., its IP address, the hardware address of a gateway,
     the IP address of a domain name server, the subnet address mask),
     it would be better to acquire all this information in one request
     if possible, rather than doing numerous broadcasts on the network.
     The mechanisms designed to boot diskless workstations can also
     load per-host specific configuration files that contain the
     required information (e.g., see RFC-951 [8]).  It is possible, and
     desirable, to obtain all the facts necessary to operate a host
     from a boot server using only one broadcast message.

     In the case where it is necessary for a host to find the address
     mask as a separate operation the following mechanism is provided:

        To provide the address mask information the ICMP protocol [5]
        is extended by adding a new pair of ICMP message types,
        "Address Mask Request" and "Address Mask Reply", analogous to
        the "Information Request" and "Information Reply" ICMP
        messages.  These are described in detail in Appendix I.

        The intended use of these new ICMP messages is that a host,
        when booting, broadcast an "Address Mask Request" message.  A


Mogul & Postel                                                  [Page 8]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        gateway (or a host acting in lieu of a gateway) that receives
        this message responds with an "Address Mask Reply".  If there
        is no indication in the request which host sent it (i.e., the
        IP Source Address is zero), the reply is broadcast as well.
        The requesting host will hear the response, and from it
        determine the address mask.

        Since there is only one possible value that can be sent in an
        "Address Mask Reply" on any given LAN, there is no need for the
        requesting host to match the responses it hears against the
        request it sent; similarly, there is no problem if more than
        one gateway responds.  We assume that hosts reboot
        infrequently, so the broadcast load on a network from use of
        this protocol should be small.

     If a host is connected to more than one LAN, it might have to find
     the address mask for each.

     One potential problem is what a host should do if it can not find
     out the address mask, even after a reasonable number of tries.
     Three interpretations can be placed on the situation:

        1. The local net exists in (permanent) isolation from all other
           nets.

        2. Subnets are not in use, and no host can supply the address
           mask.

        3. All gateways on the local net are (temporarily) down.

     The first and second situations imply that the address mask is
     identical with the Internet network number mask.  In the third
     situation, there is no way to determine what the proper value is;
     the safest choice is thus a mask identical with the Internet
     network number mask.  Although this might later turn out to be
     wrong, it will not prevent transmissions that would otherwise
     succeed.  It is possible for a host to recover from a wrong
     choice: when a gateway comes up, it should broadcast an "Address
     Mask Reply"; when a host receives such a message that disagrees
     with its guess, it should change its mask to conform to the
     received value.  No host or gateway should send an "Address Mask
     Reply" based on a "guessed" value.

     Finally, note that no host is required to use this ICMP protocol
     to discover the address mask; it is perfectly reasonable for a
     host with non-volatile storage to use stored information
     (including a configuration file from a boot server).


Mogul & Postel                                                  [Page 9]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


Appendix I.  Address Mask ICMP

  Address Mask Request or Address Mask Reply

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |      Code     |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Identifier          |       Sequence Number         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Address Mask                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     IP Fields:

        Addresses

           The address of the source in an address mask request message
           will be the destination of the address mask reply message.
           To form an address mask reply message, the source address of
           the request becomes the destination address of the reply,
           the source address of the reply is set to the replier's
           address, the type code changed to AM2, the address mask
           value inserted into the Address Mask field, and the checksum
           recomputed.  However, if the source address in the request
           message is zero, then the destination address for the reply
           message should denote a broadcast.

     ICMP Fields:

        Type

           AM1 for address mask request message

           AM2 for address mask reply message

        Code

           0 for address mask request message

           0 for address mask reply message

        Checksum

           The checksum is the 16-bit one's complement of the one's



Mogul & Postel                                                 [Page 10]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


           complement sum of the ICMP message starting with the ICMP
           Type.  For computing the checksum, the checksum field should
           be zero.  This checksum may be replaced in the future.

        Identifier

           An identifier to aid in matching requests and replies, may
           be zero.

        Sequence Number

           A sequence number to aid in matching requests and replies,
           may be zero.

        Address Mask

           A 32-bit mask.

     Description

        A gateway receiving an address mask request should return it
        with the address mask field set to the 32-bit mask of the bits
        identifying the subnet and network, for the subnet on which the
        request was received.

        If the requesting host does not know its own IP address, it may
        leave the source field zero; the reply should then be
        broadcast.  However, this approach should be avoided if at all
        possible, since it increases the superfluous broadcast load on
        the network.  Even when the replies are broadcast, since there
        is only one possible address mask for a subnet, there is no
        need to match requests with replies.  The "Identifier" and
        "Sequence Number" fields can be ignored.

           Type AM1 may be received from a gateway or a host.

           Type AM2 may be received from a gateway, or a host acting in
           lieu of a gateway.











Mogul & Postel                                                 [Page 11]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


Appendix II.  Examples

  These examples show how a host can find out the address mask using
  the ICMP Address Mask Request and Address Mask Reply messages.  For
  the following examples, assume that address 255.255.255.255 denotes
  "broadcast to this physical medium" [6].

  1.  A Class A Network Case

     For this case, assume that the requesting host is on class A
     network 36.0.0.0, has address 36.40.0.123, that there is a gateway
     at 36.40.0.62, and that a 8-bit wide subnet field is in use, that
     is, the address mask is 255.255.0.0.

     The most efficient method, and the one we recommend, is for a host
     to first discover its own address (perhaps using "RARP" [4]), and
     then to send the ICMP request to 255.255.255.255:

        Source address:          36.40.0.123
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     The gateway can then respond directly to the requesting host.

        Source address:          36.40.0.62
        Destination address:     36.40.0.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.0.0

     Suppose that 36.40.0.123 is a diskless workstation, and does not
     know even its own host number.  It could send the following
     datagram:

        Source address:          0.0.0.0
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     36.40.0.62 will hear the datagram, and should respond with this
     datagram:


Mogul & Postel                                                 [Page 12]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        Source address:          36.40.0.62
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.0.0

     Note that the gateway uses the narrowest possible broadcast to
     reply.  Even so, the over use of broadcasts presents an
     unnecessary load to all hosts on the subnet, and so the use of the
     "anonymous" (0.0.0.0) source address must be kept to a minimum.

     If broadcasting is not allowed, we assume that hosts have wired-in
     information about neighbor gateways; thus, 36.40.0.123 might send
     this datagram:

        Source address:          36.40.0.123
        Destination address:     36.40.0.62
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     36.40.0.62 should respond exactly as in the previous case.

        Source address:          36.40.0.62
        Destination address:     36.40.0.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.0.0

  2.  A Class B Network Case

     For this case, assume that the requesting host is on class B
     network 128.99.0.0, has address 128.99.4.123, that there is a
     gateway at 128.99.4.62, and that a 6-bit wide subnet field is in
     use, that is, the address mask is 255.255.252.0.

     The host sends the ICMP request to 255.255.255.255:

        Source address:          128.99.4.123
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0


Mogul & Postel                                                 [Page 13]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     The gateway can then respond directly to the requesting host.

        Source address:          128.99.4.62
        Destination address:     128.99.4.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.252.0

     In the diskless workstation case the host sends:

        Source address:          0.0.0.0
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     128.99.4.62 will hear the datagram, and should respond with this
     datagram:

        Source address:          128.99.4.62
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.252.0

     If broadcasting is not allowed 128.99.4.123 sends:

        Source address:          128.99.4.123
        Destination address:     128.99.4.62
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     128.99.4.62 should respond exactly as in the previous case.

        Source address:          128.99.4.62
        Destination address:     128.99.4.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.252.0




Mogul & Postel                                                 [Page 14]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


  3.  A Class C Network Case (illustrating non-contiguous subnet bits)

     For this case, assume that the requesting host is on class C
     network 192.1.127.0, has address 192.1.127.19, that there is a
     gateway at 192.1.127.50, and that on network an 3-bit subnet field
     is in use (01011000), that is, the address mask is 255.255.255.88.

     The host sends the ICMP request to 255.255.255.255:

        Source address:          192.1.127.19
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     The gateway can then respond directly to the requesting host.

        Source address:          192.1.127.50
        Destination address:     192.1.127.19
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.255.88.

     In the diskless workstation case the host sends:

        Source address:          0.0.0.0
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     192.1.127.50 will hear the datagram, and should respond with this
     datagram:

        Source address:          192.1.127.50
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.255.88.

     If broadcasting is not allowed 192.1.127.19 sends:




Mogul & Postel                                                 [Page 15]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        Source address:          192.1.127.19
        Destination address:     192.1.127.50
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     192.1.127.50 should respond exactly as in the previous case.

        Source address:          192.1.127.50
        Destination address:     192.1.127.19
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.255.88

Appendix III.  Glossary

  Bridge

     A node connected to two or more administratively indistinguishable
     but physically distinct subnets, that automatically forwards
     datagrams when necessary, but whose existence is not known to
     other hosts.  Also called a "software repeater".

  Gateway

     A node connected to two or more administratively distinct networks
     and/or subnets, to which hosts send datagrams to be forwarded.

  Host Field

     The bit field in an Internet address used for denoting a specific
     host.

  Internet

     The collection of connected networks using the IP protocol.

  Local Address

     The rest field of the Internet address (as defined in [3]).

  Network

     A single Internet network (which may or may not be divided into
     subnets).


Mogul & Postel                                                 [Page 16]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


  Network Number

     The network field of the Internet address.

  Subnet

     One or more physical networks forming a subset of an Internet
     network.  A subnet is explicitly identified in the Internet
     address.

  Subnet Field

     The bit field in an Internet address denoting the subnet number.
     The bits making up this field are not necessarily contiguous in
     the address.

  Subnet Number

     A number identifying a subnet within a network.

Appendix IV.  Assigned Numbers

  The following assignments are made for protocol parameters used in
  the support of subnets.  The only assignments needed are for the
  Internet Control Message Protocol (ICMP) [5].

  ICMP Message Types

     AM1 = 17

     AM2 = 18


















Mogul & Postel                                                 [Page 17]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


References

  [1]  Mogul, J., "Internet Subnets", RFC-917, Stanford University,
       October 1984.

  [2]  Postel, J., "Multi-LAN Address Resolution", RFC-925,
       USC/Information Sciences Institute, October 1984.

  [3]  Postel, J., "Internet Protocol", RFC-791, USC/Information
       Sciences Institute, September 1981.

  [4]  Finlayson, R., T. Mann, J. Mogul, M. Theimer, "A Reverse Address
       Resolution Protocol", RFC-903, Stanford University, June 1984.

  [5]  Postel, J., "Internet Control Message Protocol", RFC-792,
       USC/Information Sciences Institute, September 1981.

  [6]  Mogul, J., "Broadcasting Internet Datagrams", RFC-919, Stanford
       University, October 1984.

  [7]  GADS, "Towards an Internet Standard Scheme for Subnetting",
       RFC-940, Network Information Center, SRI International,
       April 1985.

  [8]  Croft, B., and J. Gilmore, "BOOTP -- UDP Bootstrap Protocol",
       RFC-951, Stanford University, August 1985.

  [9]  Reynolds, J., and J. Postel, "Assigned Numbers", RFC-943,
       USC/Information Sciences Institute, April 1985.




















Mogul & Postel                                                 [Page 18]