Network Working Group                                      Jeffrey Mogul
Request for Comments: 917                    Computer Science Department
                                                    Stanford University
                                                           October 1984

                           INTERNET SUBNETS


Status Of This Memo

  This RFC suggests a proposed protocol for the ARPA-Internet
  community, and requests discussion and suggestions for improvements.
  Distribution of this memo is unlimited.

Overview

  We discuss the utility of "subnets" of Internet networks, which are
  logically visible sub-sections of a single Internet network.  For
  administrative or technical reasons, many organizations have chosen
  to divide one Internet network into several subnets, instead of
  acquiring a set of Internet network numbers.

  We propose procedures for the use of subnets, and discuss approaches
  to solving the problems that arise, particularly that of routing.

Acknowledgment

  This proposal is the result of discussion with several other people.
  J. Noel Chiappa, Chris Kent, and Tim Mann, in particular, provided
  important suggestions.

1. Introduction

  The original view of the Internet universe was a two-level hierarchy:
  the top level the catenet as a whole, and the level below it a
  collection of "Internet Networks", each with its own Network Number.
  (We do not mean that the Internet has a hierarchical topology, but
  that the interpretation of addresses is hierarchical.)

  While this view has proved simple and powerful, a number of
  organizations have found it inadequate and have added a third level
  to the interpretation of Internet addresses.  In this view, a given
  Internet Network might (or might not) be divided into a collection of
  subnets.

  The original, two-level, view carries a strong presumption that, to a
  host on an Internet network, that network may be viewed as a single
  edge; to put it another way, the network may be treated as a "black
  box" to which a set of hosts is connected.  This is true of the




Mogul                                                           [Page 1]



RFC 917                                                     October 1984
Internet Subnets


  ARPANET, because the IMPs mask the use of specific links in that
  network.  It is also true of most local area network (LAN)
  technologies, such as Ethernet or ring networks.

  However, this presumption fails in many practical cases, because in
  moderately large organizations (e.g., Universities or companies with
  more than one building) it is often necessary to use more than one
  LAN cable to cover a "local area".  For example, at this writing
  there are eighteen such cables in use at Stanford University, with
  more planned.

  There are several reasons why an organization might use more than one
  cable to cover a campus:

     - Different technologies: Especially in a research environment,
       there may be more than one kind of LAN in use; e.g., an
       organization may have some equipment that supports Ethernet, and
       some that supports a ring network.

     - Limits of technologies: Most LAN technologies impose limits,
       based electrical parameters, on the number of hosts connected,
       and on the total length of the cable.  It is easy to exceed
       these limits, especially those on cable length.

     - Network congestion: It is possible for a small subset of the
       hosts on a LAN to monopolize most of the bandwidth.  A common
       solution to this problem is to divide the hosts into cliques of
       high mutual communication, and put these cliques on separate
       cables.

     - Point-to-Point links: Sometimes a "local area", such as a
       university campus, is split into two locations too far apart to
       connect using the preferred LAN technology.  In this case,
       high-speed point-to-point links might connect several LANs.

  An organization that has been forced to use more than one LAN has
  three choices for assigning Internet addresses:

     1. Acquire a distinct Internet network number for each cable.

     2. Use a single network number for the entire organization, but
        assign host numbers without regard to which LAN a host is on.
        (We will call this choice "transparent subnets".)

     3. Use a single network number, and partition the host address
        space by assigning subnet numbers to the LANs. ("Explicit
        subnets".)


Mogul                                                           [Page 2]



RFC 917                                                     October 1984
Internet Subnets


  Each of these approaches has disadvantages.  The first, although not
  requiring any new or modified protocols, does result in an explosion
  in the size of Internet routing tables.  Information about the
  internal details of local connectivity is propagated everywhere,
  although it is of little or no use outside the local organization.
  Especially as some current gateway implementations do not have much
  space for routing tables, it would be nice to avoid this problem.

  The second approach requires some convention or protocol that makes
  the collection of LANs appear to be a single Internet network.  For
  example, this can be done on LANs where each Internet address is
  translated to a hardware address using an Address Resolution Protocol
  (ARP), by having the bridges between the LANs intercept ARP requests
  for non-local targets.  However, it is not possible to do this for
  all LAN technologies, especially those where ARP protocols are not
  currently used, or if the LAN does not support broadcasts.  A more
  fundamental problem is that bridges must discover which LAN a host is
  on, perhaps by using a broadcast algorithm.  As the number of LANs
  grows, the cost of broadcasting grows as well; also, the size of
  translation caches required in the bridges grows with the total
  number of hosts in the network.

  The third approach addresses the key problem: existing standards
  assume that all hosts on an Internet local network are on a single
  cable.  The solution is to explicitly support subnets.  This does
  have a disadvantage, in that it is a modification of the Internet
  Protocol, and thus requires changes to IP implementations already in
  use (if these implementations are to be used on a subnetted network.)
  However, we believe that these changes are relatively minor, and once
  made, yield a simple and efficient solution to the problem.  Also,
  the approach we take in this document is to avoid any changes that
  would be incompatible with existing hosts on non-subnetted networks.

  Further, when appropriate design choices are made, it is possible for
  hosts which believe they are on a non-subnetted network to be used on
  a subnetted one, as will be explained later.  This is useful when it
  is not possible to modify some of the hosts to support subnets
  explicitly, or when a gradual transition is preferred.  Because of
  this, there seems little reason to use the second approach listed
  above.

  The rest of this document describes approaches to subnets of Internet
  Networks.






Mogul                                                           [Page 3]



RFC 917                                                     October 1984
Internet Subnets


  1.1. Terminology

     To avoid either ambiguity or prolixity, we will define a few
     terms, which will be used in the following sections:

     Catenet

        The collection of connected Internet Networks

     Network

        A single Internet network (that may or may not be divided into
        subnets.)

     Subnet

        A subnet of an Internet network.

     Network Number

        As in [8].

     Local Address

        The bits in an Internet address not used for the network
        number; also known as "rest field".

     Subnet Number

        A number identifying a subnet within a network.

     Subnet Field

        The bit field in an Internet address used for the subnet
        number.

     Host Field

        The bit field in an Internet address used for denoting a
        specific host.

     Gateway

        A node connected to two or more administratively distinct
        networks and/or subnets, to which hosts send datagrams to be
        forwarded.



Mogul                                                           [Page 4]



RFC 917                                                     October 1984
Internet Subnets


     Bridge

        A node connected to two or more administratively
        indistinguishable but physically distinct subnets, that
        automatically forwards datagrams when necessary, but whose
        existence is not know to other hosts.  Also called a "software
        repeater".

2. Standards for Subnet Addressing

  Following the division presented in [2], we observe that subnets are
  fundamentally an issue of addressing.  In this section, we first
  describe a proposal for interpretation of Internet Addressing to
  support subnets.  We then discuss the interaction between this
  address format and broadcasting; finally, we present a protocol for
  discovering what address interpretation is in use on a given network.

  2.1. Interpretation of Internet Addresses

     Suppose that an organization has been assigned an Internet network
     number, has further divided that network into a set of subnets,
     and wants to assign host addresses: how should this be done?
     Since there are minimal restrictions on the assignment of the
     "local address" part of the Internet address, several approaches
     have been proposed for representing the subnet number:

        1. Variable-width field: Any number of the bits of the local
           address part are used for the subnet number; the size of
           this field, although constant for a given network, varies
           from network to network.  If the field width is zero, then
           subnets are not in use.

        2. Fixed-width field: A specific number of bits (e.g., eight)
           is used for the subnet number, if subnets are in use.

        3. Self-encoding variable-width field: Just as the width (i.e.,
           class) of the network number field is encoded by its
           high-order bits, the width of the subnet field is similarly
           encoded.

        4. Self-encoding fixed-width field: A specific number of bits
           is is used for the subnet number.  Subnets are in use if the
           high-order bit of this field is one; otherwise, the entire
           local address part is used for host number.

     Since there seems to be no advantage in doing otherwise, all these
     schemes place the subnet field as the most significant field in


Mogul                                                           [Page 5]



RFC 917                                                     October 1984
Internet Subnets


     the local address part.  Also, since the local address part of a
     Class C address is so small, there is little reason to support
     subnets of other than Class A and Class B networks.

     What criteria can we use to choose one of these four schemes?
     First, do we want to use a self-encoding scheme; that is, should
     it be possible to tell from examining an Internet address if it
     refers to a subnetted network, without reference to any other
     information?

     One advantage to self-encoding is that it allows one to determine
     if a non-local network has been divided into subnets.  It is not
     clear that this would be of any use.  The principle advantage,
     however, is that no additional information is needed for an
     implementation to determine if two addresses are on the same
     subnet.  However, this can also be viewed as a disadvantage: it
     may cause problems for non-subnetted networks which have existing
     host numbers that use arbitrary bits in the local address part
     <1>.  In other words, it is useful to be able control whether a
     network is subnetted independently from the assignment of host
     addresses.  Another disadvantage of any self-encoding scheme is
     that it reduces the local address space by at least a factor of
     two.

     If a self-encoding scheme is not used, it is clear that a
     variable-width subnet field is appropriate.  Since there must in
     any case be some per-network "flag" to indicate if subnets are in
     use, the additional cost of using an integer (the subnet field
     width) instead of a boolean is negligible.  The advantage of using
     a variable-width subnet field is that it allows each organization
     to choose the best way to allocate relatively scarce bits of local
     address to subnet and host numbers.

     Our proposal, therefore, is that the Internet address be
     interpreted as:

        <network-number><subnet-number><host-number>

     where the <network-number> field is as in [8], the <host-number>
     field is at least one bit wide, and the width of the
     <subnet-number> field is constant for a given network. No further
     structure is required for the <subnet-number> or <host-number>
     fields.  If the width of the <subnet-number> field is zero, then
     the network is not subnetted (i.e., the interpretation of [8] is
     used.)




Mogul                                                           [Page 6]



RFC 917                                                     October 1984
Internet Subnets


     For example, on a Class A network with an eight bit wide subnet
     field, an address is broken down like this:

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|    NETWORK    |     SUBNET    |         Host number         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     We expect that, for reasons of simplicity and efficient
     implementation, that most organizations will choose a subnet field
     width that is a multiple of eight bits.  However, an
     implementation must be prepared to handle other possible widths.

     We reject the use of "recursive subnets", the division of the host
     field into "sub-subnet" and host parts, because:

        - There is no obvious need for a four-level hierarchy.

        - The number of bits available in an IP address is not large
          enough to make this useful in general.

        - The extra mechanism required is complex.

  2.2. Changes to Host Software to Support Subnets

     In most implementations of IP, there is  code in the module that
     handles outgoing packet that does something like:

        IF ip_net_number(packet.ip_dest) = ip_net_number(my_ip_addr)
            THEN
                send_packet_locally(packet, packet.ip_dest)
            ELSE
                send_packet_locally(packet,
                   gateway_to(ip_net_number(packet.ip_dest)))

     (If the code supports multiple connected networks, it will be more
     complicated, but this is irrelevant to the current discussion.)

     To support subnets, it is necessary to store one more 32-bit
     quantity, called my_ip_mask.  This is a bit-mask with bits set in
     the fields corresponding to the IP network number, and additional
     bits set corresponding to the subnet number field.  For example,
     on a Class A network using an eight-bit wide subnet field, the
     mask would be 255.255.0.0.

     The code then becomes:


Mogul                                                           [Page 7]



RFC 917                                                     October 1984
Internet Subnets


        IF bitwise_and(packet.ip_dest, my_ip_mask)
                         = bitwise_and(my_ip_addr, my_ip_mask)
            THEN
                send_packet_locally(packet, packet.ip_dest)
            ELSE
                send_packet_locally(packet,
                   gateway_to(bitwise_and(packet.ip_dest, my_ip_mask)))

     Of course, part of the expression in the conditionally can be
     pre-computed.

     It may or may not be necessary to modify the "gateway_to"
     function, so that it performs comparisons in the same way.

     To support multiply-connected hosts, the code can be changed to
     keep  the "my_ip_addr" and "my_ip_mask" quantities on a
     per-interface basis; the expression in the conditional must then
     be evaluated for each interface.

  2.3. Subnets and Broadcasting

     In the absence of subnets, there are only two kinds of broadcast
     possible within the Internet Protocol <2>: broadcast to all hosts
     on a specific network, or broadcast to all hosts on "this
     network"; the latter is useful when a host does not know what
     network it is on.

     When subnets are used, the situation becomes slightly more
     complicated.  First, the possibility now exists of broadcasting to
     a specific subnet.  Second, broadcasting to all the hosts on a
     subnetted network requires additional mechanism; in [6] the use of
     "Reverse Path Forwarding" [3] is proposed.  Finally, the
     interpretation of a broadcast to "this network" is that it should
     not be forwarded outside of the original subnet.

     Implementations must therefore recognize three kinds of broadcast
     addresses, in addition to their own host addresses:

     This physical network

        A destination address of all ones (255.255.255.255) causes the
        a datagram to be sent as a broadcast on the local physical
        network; it must not be forwarded by any gateway.






Mogul                                                           [Page 8]



RFC 917                                                     October 1984
Internet Subnets


     Specific network

        The destination address contains a valid network number; the
        local address part is all ones (e.g., 36.255.255.255).

     Specific subnet

        The destination address contains a valid network number and a
        valid subnet number; the host field is all ones (e.g.,
        36.40.255.255).

     For further discussion of Internet broadcasting, see [6].

     One factor that may aid in deciding whether to use subnets is that
     it is possible to broadcast to all hosts of a subnetted network
     with a single operation at the originating host.  It is not
     possible to broadcast, in one step, to the same set of hosts if
     they are on distinct networks.

  2.4. Determining the Width of the Subnet Field

     How can a host (or gateway) determine what subnet field width is
     in use on a network to which it is connected?  The problem is
     analogous to several other "bootstrapping" problems for Internet
     hosts: how a host determines its own address, and how it locates a
     gateway on its local network.  In all three cases, there are two
     basic solutions: "hardwired" information, and broadcast-based
     protocols.

     "Hardwired" information is that available to a host in isolation
     from a network.  It may be compiled-in, or (preferably) stored in
     a disk file.  However, for the increasingly common case of a
     diskless workstation that is bootloaded over a LAN, neither
     hard-wired solution is satisfactory.  Instead, since most LAN
     technology supports broadcasting, a better method is for the
     newly-booted host to broadcast a request for the necessary
     information.  For example, for the purpose of determining its
     Internet address, a host may use the "Reverse Address Resolution
     Protocol" [4].

     We propose to extend the ICMP protocol [9] by adding a new pair of
     ICMP message types, "Address Format Request" and "Address Format
     Reply", analogous to the "Information Request" and "Information
     Reply" ICMP messages.  These are described in detail in
     Appendix I.

     The intended use of these new ICMPs is that a host, when booting,


Mogul                                                           [Page 9]



RFC 917                                                     October 1984
Internet Subnets


     broadcast an "Address Format Request" message <3>.  A gateway (or
     a host acting in lieu of a gateway) that receives this message
     responds with an "Address Format Reply".  If there is no
     indication in the request which host sent it (i.e., the IP Source
     Address is zero), the reply is broadcast as well.  The requesting
     host will hear the response, and from it determine the width of
     the subnet field.

     Since there is only one possible value that can be sent in an
     "Address Format Reply" on any given LAN, there is no need for the
     requesting host to match the responses it hears against the
     request it sent; similarly, there is no problem if more than one
     gateway responds.  We assume that hosts reboot infrequently, so
     the broadcast load on a network from use of this protocol should
     be small.

     If a host is connected to more than one LAN, it must use this
     protocol on each, unless it can determine (from a response on one
     of the LANs) that several of the LANs are part of the same
     network, and thus must have the same subnet field width.

     One potential problem is what a host should do if it receives no
     response to its "Address Format Request", even after a reasonable
     number of tries.  Three interpretations can be placed on the
     situation:

        1. The local net exists in (permanent) isolation from all other
           nets.

        2. Subnets are not in use, and no host supports this ICMP
           request.

        3. All gateways on the local net are (temporarily) down.

     The first and second situations imply that the subnet field width
     is zero.  In the third situation, there is no way to determine
     what the proper value is; the safest choice is thus zero.
     Although this might later turn out to be wrong, it will not
     prevent transmissions that would otherwise succeed.  It is
     possible for a host to recover from a wrong choice: when a gateway
     comes up, it should broadcast an "Address Format Reply"; when a
     host receives such a message that disagrees with its guess, it
     should adjust its data structures to conform to the received
     value.  No host or gateway should send an "Address Format Reply"
     based on a "guessed" value.




Mogul                                                          [Page 10]



RFC 917                                                     October 1984
Internet Subnets


     Finally, note that no host is required to use this ICMP protocol
     to discover the subnet field width; it is perfectly reasonable for
     a host with non-volatile storage to use stored information.

3. Subnet Routing Methods

  One problem that faces all Internet hosts is how to determine a route
  to another host.  In the presence of subnets, this problem is only
  slightly modified.

  The use of subnets means that there are two levels to the routing
  process, instead of one.  If the destination host is on the same
  network as the source host, the routing decision involves only the
  subnet gateways between the hosts.  If the destination is on a
  different network, then the routing decision requires the choice both
  of a gateway out of the source host's network, and of a route within
  the network to that gateway.

  Fortunately, many hosts can ignore this distinction (and, in fact,
  ignore all routing choices) by using a "default" gateway as the
  initial route to all destinations, and relying on ICMP Host Redirect
  messages to define more appropriate routes.  However, this is not an
  efficient method for a gateway or for a multi-homed host, since a
  redirect may not make up for a poor initial choice of route.  Such
  hosts should use a routing information exchange protocol, but that is
  beyond the scope of this document; in any case, the problem arises
  even when subnets are not used.

  The problem for a singly-connected host is thus to find at least one
  neighbor gateway.  Again, there are basic two solutions to this: use
  hard-wired information, or use broadcasts.  We believe that the
  neighbor-gateway acquisition problem is the same with or without
  subnets, and thus the choice of solution is not affected by the use
  of subnets.

  However, one problem remains: a source host must determine if
  datagram to a given destination address must be sent via a gateway,
  or sent directly to the destination host.  In other words, is the
  destination host on the same physical network as the source?  This
  particular phase of the routing process is the only one that requires
  an implementation to be explicitly aware of subnets; in fact, if
  broadcasts are not used, it is the only place where an Internet
  implementation must be modified to support subnets.

  Because of this, it is possible to use some existing implementations
  without modification in the presence of subnets <4>.  For this to
  work, such implementations must:


Mogul                                                          [Page 11]



RFC 917                                                     October 1984
Internet Subnets


     - Be used only on singly-homed hosts, and not as a gateway.

     - Be used on a broadcast LAN.

     - Use an Address Resolution Protocol (ARP), such [7].

     - Not be required to maintain connections in the case of gateway
       crashes.

  In this case, one can modify the ARP server module in a subnet
  gateway so that when it receives an ARP request, it checks the target
  Internet address to see if it is along the best route to the target.
  If it is, it sends to the requesting host an ARP response indicating
  its own hardware address.  The requesting host thus believes that it
  knows the hardware address of the destination host, and sends packets
  to that address.  In fact, the packets are received by the gateway,
  and forwarded to the destination host by the usual means.

  This method requires some blurring of the layers in the gateways,
  since the ARP server and the Internet routing table would normally
  not have any contact.  In this respect, it is somewhat
  unsatisfactory.  Still, it is fairly easy to implement, and does not
  have significant performance costs.  One problem is that if the
  original gateway crashes, there is no way for the source host to
  choose an alternate route even if one exists; thus, a connection that
  might otherwise have been maintained will be broken.

  One should not confuse this method of "ARP-based subnetting" with the
  superficially similar use of ARP-based bridges.  ARP-based subnetting
  is based on the ability of a gateway to examine an IP address and
  deduce a route to the destination, based on explicit subnet topology.
  In other words, a small part of the routing decision has been moved
  from the source host into the gateway.  An ARP-based bridge, in
  contrast, must somehow locate each host without any assistance from a
  mapping between host address and topology.  Systems built out of
  ARP-based bridges should not be referred to as "subnetted".

  N.B.: the use of ARP-based subnetting is complicated by the use of
  broadcasts.  An ARP server [7] should never respond to a request
  whose target is a broadcast address.  Such a request can only come
  from a host that does not recognize the broadcast address as such,
  and so honoring it would almost certainly lead to a forwarding loop.
  If there are N such hosts on the physical network that do not
  recognize this address as a broadcast, then a packet sent with a
  Time-To-Live of T could potentially give rise to T**N spurious
  re-broadcasts.



Mogul                                                          [Page 12]



RFC 917                                                     October 1984
Internet Subnets


4. Case Studies

  In this section, we briefly sketch how subnets have been used by
  several organizations.

  4.1. Stanford University

     At Stanford, subnets were introduced initially for historical
     reasons.  Stanford had been using the Pup protocols [1] on a
     collection of several Experimental Ethernets [5] since 1979,
     several years before Internet protocols came into use.  There were
     a number of Pup gateways in service, and all hosts and gateways
     acquired and exchanged routing table information using a simple
     broadcast protocol.

     When the Internet Protocol was introduced, the decision was made
     to use an eight-bit wide subnet number; Internet subnet numbers
     were chosen to match the Pup network number of a given Ethernet,
     and the Pup host numbers (also eight bits) were used as the host
     field of the Internet address.

     The Pup-only gateways were then modified to forward Internet
     datagrams according to their Pup routing tables; they otherwise
     had no understanding of Internet packets and in fact did not
     adjust the Time-to-live field in the Internet header.  This seems
     to be acceptable, since bugs that caused forwarding loops have not
     appeared.  The Internet hosts that are multi-homed and thus can
     serve as gateways do adjust the Time-to-live field; since all of
     the currently also serve as Pup gateways, no additional routing
     information exchange protocol was needed.

     Internet host implementations were modified to understand subnets
     (in several different ways, but with identical effects).  Since
     all already had Pup implementations, the Internet routing tables
     were maintained by the same process that maintained the Pup
     routing tables, simply translating the Pup network numbers into
     Internet subnet numbers.

     When 10Mbit Ethernets were added, the gateways were modified to
     use the ARP-based scheme described in an earlier section; this
     allowed unmodified hosts to be used on the 10Mbit Ethernets.

     IP subnets have been in use since early 1982; currently, there are
     about 330 hosts, 18 subnets, and a similar number of subnet
     gateways in service.  Once the Pup-only gateways are converted to
     be true Internet gateways, an Internet-based routing exchange
     protocol will be introduced, and Pup will be phased out.


Mogul                                                          [Page 13]



RFC 917                                                     October 1984
Internet Subnets


  4.2. MIT

     MIT was the first IP site to accumulate a large collection of
     local network links.  Since this happened before network numbers
     were divided into classes, to have assigned each link at MIT its
     own IP network number would have used up a good portion of the
     available address space.  MIT decided to use one IP network
     number, and to manage the 24-bit "rest" field itself, by dividing
     it into three 8-bit fields; "subnet", "reserved, must be zero",
     and "host".   Since the CHAOS protocol already in use at MIT used
     an 8-bit subnet number field, it was possible to assign each link
     the same subnet number in both protocols.  The IP host field was
     set to 8 bits since most available local net hardware at that
     point used 8 bit addresses, as did the CHAOS protocol; it was felt
     that reserving some bits for the future was wise.

     The initial plan was to use a dynamic routing protocol between the
     IP subnet gateways; several such protocols have been mooted but
     nobody has bothered to implement one; static routing tables are
     still used.  It is likely that this change will finally be made
     soon.

     To solve the problem that imported IP software always needed
     modification to work in the subnetted environment, MIT searched
     for a model of operation that led to the least change in host IP
     software.  This led to a model where IP gateways send ICMP Host
     Redirects rather than Network Redirects.  All internal MIT IP
     gateways now do so.  With hosts that can maintain IP routing
     tables for non-local communication on a per host basis, this hides
     most of the subnet structure.  The "minimum adjustment" for host
     software to work correctly in both subnetted and non-subnetted
     environments is the bit-mask algorithm mentioned earlier.

     MIT has no immediate plans to move toward a single "approved"
     protocol; this is due partly to the degree of local autonomy and
     the amount of installed software, and partly to the lack of a
     single prominent industry standard.  Rather, the approach taken
     has been to provide a single set of physical links and packet
     switches, and to layer several "virtual" protocol nets atop the
     single set of links.  MIT has had some bad experiences with trying
     to exchange routing information between protocols and wrap one
     protocol in another; the general approach is to keep the protocols
     strictly separated except for sharing the basic hardware.  Using
     ARP to hide the subnet structure is not much in favor; it is felt
     that this overloads the address resolution operation.  In a
     complicated system (i.e. one with loops, and variant link speeds),



Mogul                                                          [Page 14]



RFC 917                                                     October 1984
Internet Subnets


     a more sophisticated information interchange will be needed
     between gateways; making this an explicit mechanism (but one
     insulated from the hosts) was felt to be best.

  4.3. Carnegie-Mellon University

     CMU uses a Class B network currently divided into 11 physical
     subnets (two 3Mbit Experimental Ethernets, seven 10Mbit Ethernets,
     and two ProNet rings.) Although host numbers are assigned so that
     all addresses with a given third octet will be on the same subnet
     (but not necessarily vice versa), this is essentially an
     administrative convenience.  No software currently knows the
     specifics of this allocation mechanism or depends on it to route
     between cables.

     Instead, an ARP-based bridge scheme is used.  When a host
     broadcasts an ARP request, all bridges which receive it cache the
     original protocol address mapping and then forward the request
     (after the appropriate adjustments) as an ARP broadcast request
     onto each of their other connected cables.  When a bridge receives
     a non-broadcast ARP reply with a target protocol address not its
     own, it consults its ARP cache to determine the cable onto which
     the reply should be forwarded.  The bridges thus attempt to
     transparently extend the ARP protocol into a heterogenous
     multi-cable environment.  They are therefore required to turn ARP
     broadcasts on a single cable into ARP broadcasts on all other
     connected cables even when they "know better".  This algorithm
     works only in the absence of cycles in the network connectivity
     graph (which is currently the case).  Work is underway to replace
     this simple-minded algorithm with a protocol implemented among the
     bridges, in support of redundant paths and to reduce the
     collective broadcast load.  The intent is to retain the ARP base
     and host transparency, if possible.

     Implementations supporting the 3Mbit Ethernet and 10Mb proNET ring
     at CMU use RFC-826 ARP (instead of some wired-in mapping such as
     simply using the 8-bit hardware address as the the fourth octet of
     the IP address).

     Since there are currently no redundant paths between cables, the
     issue of maintaining connections across bridge crashes is moot.
     With about 150 IP-capable hosts on the net, the bridge caches are
     still of reasonable size, and little bandwidth is devoted to ARP
     broadcast forwarding.

     CMU's network is likely to grow from its relatively small,
     singly-connected configuration centered within their CS/RI


Mogul                                                          [Page 15]



RFC 917                                                     October 1984
Internet Subnets


     facility to a campus-wide intra-departmental configuration with
     5000-10000 hosts and redundant connections between cables.  It is
     possible that the ARP-based bridge scheme will not scale to this
     size, and a system of explicit subnets may be required.  The
     medium-term goal, however, is an environment into which unmodified
     extant (especially 10Mb ethernet based) IP implementations can be
     imported; the intent is to stay with a host-transparent (thus
     ARP-based) routing mechanism as long as possible.  CMU is
     concerned that even if subnets become part of the IP standard they
     will not be widely implemented; this is the major obstacle to
     their use at CMU.






































Mogul                                                          [Page 16]



RFC 917                                                     October 1984
Internet Subnets


I. Address Format ICMP

  Address Format Request or Address Format Reply

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |      Code     |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Identifier          |       Sequence Number         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     IP Fields:

        Addresses

           The address of the source in an address format request
           message will be the destination of the address format reply
           message.  To form an address format reply message, the
           source address of the request becomes the destination
           address of the reply, the source address of the reply is set
           to the replier's address, the type code changed to A2, the
           subnet field width inserted into the Code field, and the
           checksum recomputed.  However, if the source address in the
           request message is zero, then the destination address for
           the reply message should denote a broadcast.

     ICMP Fields:

        Type

           A1 for address format request message

           A2 for address format reply message

        Code

           0 for address format request message

           Width of subnet field, in bits, for address format reply
           message

        Checksum

           The checksum is the 16-bit one's complement of the one's




Mogul                                                          [Page 17]



RFC 917                                                     October 1984
Internet Subnets


           complement sum of the ICMP message starting with the ICMP
           Type.  For computing the checksum, the checksum field should
           be zero.  This checksum may be replaced in the future.

        Identifier

           An identifier to aid in matching request and replies, may be
           zero.

        Sequence Number

           A sequence number to aid in matching request and replies,
           may be zero.

     Description

        A gateway receiving an address format request should return it
        with the Code field set to the number of bits of Subnet number
        in IP addresses for the network to which the datagram was
        addressed.  If the request was broadcast, the destination
        network is "this network".  The Subnet field width may be from
        0 to (31 - N), where N is the width in bits of the IP net
        number field (i.e., 8, 16, or 24).

        If the requesting host does not know its own IP address, it may
        leave the source field zero; the reply should then be
        broadcast.  Since there is only one possible address format for
        a network, there is no need to match requests with replies.
        However, this approach should be avoided if at all possible,
        since it increases the superfluous broadcast load on the
        network.

           Type A1 may be received from a gateway or a host.

           Type A2 may be received from a gateway, or a host acting in
           lieu of a gateway.













Mogul                                                          [Page 18]



RFC 917                                                     October 1984
Internet Subnets


II. Examples

  For these examples, we assume that the requesting host has  address
  36.40.0.123, that there is a gateway at 36.40.0.62, and that on
  network 36.0.0.0, an 8-bit wide subnet field is in use.

  First, suppose that broadcasting is allowed, and that 36.40.0.123
  knows  its own address.  It sends the following datagram:

     Source address:          36.40.0.123
     Destination address:     36.255.255.255
     Protocol:                ICMP = 1
     Type:                    Address Format Request = A1
     Code:                    0

  36.40.0.62 will hear the datagram, and should respond with this
  datagram:

     Source address:          36.40.0.62
     Destination address:     36.40.0.123
     Protocol:                ICMP = 1
     Type:                    Address Format Reply = A2
     Code:                    8

  For the following examples, assume that address 255.255.255.255
  denotes "broadcast to this physical network", as described in [6].

  The previous example is inefficient, because it potentially
  broadcasts  the request on many subnets.  The most efficient method,
  and the one we recommend, is for a host to first discover its own
  address (perhaps  using the "Reverse ARP" protocol described in [4]),
  and then to send  the ICMP request to 255.255.255.255:

     Source address:          36.40.0.123
     Destination address:     255.255.255.255
     Protocol:                ICMP = 1
     Type:                    Address Format Request = A1
     Code:                    0

  The gateway can then respond directly to the requesting host.

  Suppose that 36.40.0.123 is a diskless workstation, and does not know
  even its own host number.  It could send the following datagram:






Mogul                                                          [Page 19]



RFC 917                                                     October 1984
Internet Subnets


     Source address:          0.0.0.0
     Destination address:     255.255.255.255
     Protocol:                ICMP = 1
     Type:                    Address Format Request = A1
     Code:                    0

  36.40.0.62 will hear the datagram, and should respond with this
  datagram:

     Source address:          36.40.0.62
     Destination address:     36.40.255.255
     Protocol:                ICMP = 1
     Type:                    Address Format Reply = A2
     Code:                    8

  Note that the gateway uses the narrowest possible broadcast to reply
  (i.e., sending the reply to 36.255.255.255 would mean that it is
  transmitted on many subnets, not just the one on which it is needed.)
  Even so, the overuse of broadcasts presents an unnecessary load to
  all hosts on the subnet, and so we recommend that use of the
  "anonymous" (0.0.0.0) source address be kept to a minimum.

  If  broadcasting is not allowed, we assume that hosts have wired-in
  information about neighbor gateways; thus, 36.40.0.123 might send
  this datagram:

     Source address:          36.40.0.123
     Destination address:     36.40.0.62
     Protocol:                ICMP = 1
     Type:                    Address Format Request = A1
     Code:                    0

  36.40.0.62 should respond exactly as in the previous case.
















Mogul                                                          [Page 20]



RFC 917                                                     October 1984
Internet Subnets


Notes

  <1>  For example, some host have addresses assigned by concatenating
       their Class A network number with the low-order 24 bits of a
       48-bit Ethernet hardware address.

  <2>  Our discussion of Internet broadcasting is based on [6].

  <3>  If broadcasting is not supported, them presumably a host "knows"
       the address of a neighbor gateway, and should send the ICMP to
       that gateway.

  <4>  This is what was referred to earlier as the coexistence of
       transparent and explicit subnets on a single network.



































Mogul                                                          [Page 21]



RFC 917                                                     October 1984
Internet Subnets


References

  1.  D.R. Boggs, J.F. Shoch, E.A. Taft, and R.M. Metcalfe. "Pup: An
      Internetwork Architecture."  IEEE Transactions on Communications
      COM-28, 4, pp612-624, April 1980.

  2.  David D. Clark.  Names, Addresses, Ports, and Routes.  RFC-814,
      MIT-LCS, July 1982.

  3.  Yogan K. Dalal and Robert M. Metcalfe. "Reverse Path Forwarding
      of Broadcast Packets."  Comm. ACM 21, 12, pp1040-1048, December
      1978.

  4.  Ross Finlayson, Timothy Mann, Jeffrey Mogul, Marvin Theimer. A
      Reverse Address Resolution Protocol. RFC-903, Stanford
      University, June 1984.

  5.  R.M. Metcalfe and D.R. Boggs. "Ethernet: Distributed Packet
      Switching for Local Computer Networks."  Comm. ACM 19, 7,
      pp395-404, July 1976.  Also CSL-75-7, Xerox Palo Alto Research
      Center, reprinted in CSL-80-2.

  6.  Jeffrey Mogul. Broadcasting Internet Datagrams. RFC-919, Stanford
      University, October 1984.

  7.  David Plummer. An Ethernet Address Resolution Protocol. RFC-826,
      Symbolics, September 1982.

  8.  Jon Postel. Internet Protocol. RFC-791, USC-ISI, September 1981.

  9.  Jon Postel. Internet Control Message Protocol. RFC-792, USC-ISI,
      September 1981.

















Mogul                                                          [Page 22]