Network Working Group                                         ISO
    Request for Comments:  905                             April 1984



                  ISO Transport Protocol Specification
                               ISO DP 8073


  Status of this Memo:

    This document is distributed as an RFC for information only.   It
    does not specify a standard for the ARPA-Internet.

  Notes:

    1)  RFC 892 is an older version of  the  ISO  Transport  Protocol
        Specification.   Therefore  this  RFC  should  be  assumed to
        supercede RFC 892.

    2)  This document has been  prepared  by  retyping  the  text  of
        ISO/TC97/SC16/N1576  and  then  applying  proposed  editorial
        corrections  contained  in  ISO/TC97/SC16/N1695.   These  two
        documents,  taken  together, are undergoing voting within ISO
        as a Draft International Standard (DIS).

    3)  Although this RFC has been  reviewed  after  typing,  and  is
        believed  to  be  substantially  correct, it is possible that
        typographic errors not present in the ISO documents have been
        overlooked.

        Alex McKenzie
        BBN



























                            Table of Contents




    1   SCOPE AND FIELD OF APPLICATION........................ 3
    1.1   This International Standard specifies:.............. 3
    1.2   The procedures are defined in terms of:............. 4
    1.3   .................................................... 4
    1.4   .................................................... 5
    2   REFERENCES............................................ 5
    3   DEFINITIONS........................................... 6
    3.1   .................................................... 6
    3.2   .................................................... 6
    3.2.1   equipment:........................................ 7
    3.2.2   transport service user:........................... 7
    3.2.3   network service provider:......................... 7
    3.2.4   local matter:..................................... 7
    3.2.5   initiator:........................................ 7
    3.2.6   responder:........................................ 8
    3.2.7   sending transport entity:......................... 8
    3.2.8   receiving transport entity:....................... 8
    3.2.9   preferred class:.................................. 8
    3.2.10   alternative class:............................... 8
    3.2.11   proposed class:.................................. 9
    3.2.12   selected class:.................................. 9
    3.2.13   proposed parameter:.............................. 9
    3.2.14   selected parameter:.............................. 9
    3.2.15   error indication:................................ 9
    3.2.16   invalid TPDU:................................... 10
    3.2.17   protocol error:................................. 10
    3.2.18   sequence number:................................ 10
    3.2.19   transmit window:................................ 10
    3.2.20   lower window edge:.............................. 11
    3.2.21   upper window edge:.............................. 11
    3.2.22   upper window edge allocated to  the  peer
      entity:
         .................................................... 11
    3.2.23   closed window:.................................. 11
    3.2.24   window information:............................. 11
    3.2.25   frozen reference:............................... 12
    3.2.26   unassigned reference:........................... 12
    3.2.27   transparent (data):............................. 12



                                    i











    3.2.28   owner (of a network connection):................ 12
    3.2.29   retained TPDU:.................................. 12
    4   SYMBOLS AND ABBREVIATIONS............................ 13
    4.1   Data units......................................... 13
    4.2   Types of transport protocol data units............. 13
    4.3   TPDU fields........................................ 13
    4.4   Times and associated variables..................... 14
    4.5   Miscellaneous...................................... 14
    5   OVERVIEW OF THE TRANSPORT PROTOCOL................... 15
    5.1   Service provided by the transport layer............ 15
    5.2   Service assumed from the network layer............. 16
    5.3   Functions of the Transport Layer................... 18
    5.3.1   Overview of functions............................ 18
    5.3.1.1   Functions used at all times.................... 19
    5.3.1.2   Connection Establishment....................... 19
    5.3.1.3   Data Transfer.................................. 20
    5.3.1.4   Release........................................ 21
    5.4   Classes and options................................ 21
    5.4.1   General.......................................... 21
    5.4.2   Negotiation...................................... 22
    5.4.3   Choice of network connection..................... 22
    5.4.4   Characteristics of Class 0....................... 23
    5.4.5   Characteristics of Class 1....................... 23
    5.4.6   Characteristics of Class 2....................... 24
    5.4.6.1   General........................................ 24
    5.4.6.2   Use of explicit flow control................... 24
    5.4.6.3   Non-use of explicit flow control............... 24
    5.4.7   Characteristics of Class 3....................... 24
    5.4.8   Characteristics of Class 4....................... 25
    5.5   Model of the transport layer....................... 25
    6   ELEMENTS OF PROCEDURE................................ 27
    6.1   Assignment to network connection................... 27
    6.1.1   Purpose.......................................... 27
    6.1.2   Network service primitives....................... 27
    6.1.3   Procedure........................................ 28
    6.2   Transport protocol data unit (TPDU) transfer....... 29
    6.2.1   Purpose.......................................... 29
    6.2.2   Network Service Primitives....................... 30
    6.2.3   Procedure........................................ 30
    6.3   Segmenting and reassembling........................ 30
    6.3.1   Purpose.......................................... 30
    6.3.2   TPDUs and parameter used......................... 31
    6.3.3   Procedure........................................ 31



                                   ii











    6.4   Concatenation and separation....................... 31
    6.4.1   Purpose.......................................... 31
    6.4.2   Procedure........................................ 32
    6.5   Connection establishment........................... 32
    6.5.1   Purpose.......................................... 32
    6.5.2   Network service primitives....................... 33
    6.5.3   TPDUs and parameters used........................ 33
    6.5.4   Procedure........................................ 34
    6.6   Connection refusal................................. 40
    6.6.1   Purpose.......................................... 40
    6.6.2   TPDUs and parameters used........................ 40
    6.6.3   Procedure........................................ 41
    6.7   Normal release..................................... 41
    6.7.1   Purpose.......................................... 41
    6.7.2   Network service primitives....................... 42
    6.7.3   TPDUs and parameters used........................ 42
    6.7.4   Procedure for implicit variant................... 43
    6.7.5   Procedure for explicit variant................... 43
    6.8   Error Release...................................... 44
    6.8.1   Purpose.......................................... 45
    6.8.2   Network service primitives....................... 45
    6.8.3   Procedure........................................ 45
    6.9    Association   of   TPDUs   with   transport
      connections
         .................................................... 45
    6.9.1   Purpose.......................................... 45
    6.9.2   Network service primitives....................... 46
    6.9.3   TPDUs and parameters uses........................ 46
    6.9.4   Procedures....................................... 46
    6.9.4.1   Identification of TPDUs........................ 46
    6.9.4.2   Association of individual TPDUs................ 47
    6.10   Data TPDU numbering............................... 49
    6.10.1   Purpose......................................... 49
    6.10.2   TPDUs and parameters used....................... 49
    6.10.3   Procedure....................................... 50
    6.11   Expedited data transfer........................... 50
    6.11.1   Purpose......................................... 50
    6.11.2   Network service primitives...................... 50
    6.11.3   TPDUs and parameter used........................ 51
    6.11.4   Procedures...................................... 51
    6.12   Reassignment after failure........................ 52
    6.12.1   Purpose......................................... 52
    6.12.2   Network service primitives...................... 52



                                   iii











    6.12.3   Procedure....................................... 52
    6.12.4   Timers.......................................... 54
    6.13   Retention until acknowledgement of TPDUs.......... 56
    6.13.1   Purpose......................................... 56
    6.13.2   Network service primitives...................... 56
    6.13.3   TPDUs and parameters used....................... 56
    6.13.4   Procedures...................................... 57
    6.14   Resynchronization................................. 60
    6.14.1   Purpose......................................... 60
    6.14.2   Network service primitives...................... 60
    6.14.3   TPDUs and parameters used....................... 60
    6.14.4   Procedure....................................... 61
    6.14.4.1   Active resynchronization procedures........... 61
    6.14.4.2   Passive resynchronization procedures.......... 62
    6.14.4.3   Data Resynchronization Procedures............. 63
    6.15   Multiplexing and demultiplexing................... 64
    6.15.1   Purpose......................................... 64
    6.15.2   TPDUs and parameters used....................... 64
    6.15.3   Procedure....................................... 65
    6.16   Explicit Flow Control............................. 65
    6.16.1   Purpose......................................... 65
    6.16.2   TPDUs and parameters used....................... 65
    6.16.3   Procedure....................................... 66
    6.17   Checksum.......................................... 66
    6.17.1   Purpose......................................... 66
    6.17.2   TPDUs and parameters used....................... 66
    6.17.3   Procedure....................................... 67
    6.18   Frozen references................................. 68
    6.18.1   Purpose......................................... 68
    6.18.2   Procedure....................................... 68
    6.18.2.1   Procedure for classes 0 and 2................. 68
    6.18.2.2   Procedure for classes 1 and 3................. 69
    6.18.2.3   Procedure for classes 4....................... 70
    6.19   Retransmission on time-out........................ 70
    6.19.1   Purpose......................................... 70
    6.19.2   TPDUs used...................................... 70
    6.19.3   Procedure....................................... 70
    6.20   Resequencing...................................... 70
    6.20.1   Purpose......................................... 71
    6.20.2   TPDUs and parameters used....................... 71
    6.20.3   Procedure....................................... 71
    6.21   Inactivity control................................ 71
    6.21.1   Purpose......................................... 71



                                   iv











    6.21.2   Procedure....................................... 72
    6.22   Treatment of protocol errors...................... 72
    6.22.1   Purpose......................................... 72
    6.22.2   TPDUs and parameters used....................... 72
    6.22.3   Procedure....................................... 72
    6.23   Splitting and recombining......................... 74
    6.23.1   Purpose......................................... 74
    6.23.2   Procedure....................................... 74
    7   Protocol Classes..................................... 76
    8   SPECIFICATION FOR CLASS 0. SIMPLE CLASS.............. 79
    8.1   Functions of class 0............................... 79
    8.2   Procedures for class 0............................. 79
    8.2.1   Procedures applicable at all times............... 79
    8.2.2   Connection establishment......................... 79
    8.2.3   Data transfer.................................... 80
    8.2.4   Release.......................................... 80
    9    SPECIFICATION  FOR  CLASS  1:   BASIC   ERROR
      RECOVERY CLASS
         .................................................... 81
    9.1   Functions of Class 1............................... 81
    9.2   Procedures for Class 1............................. 81
    9.2.1   Procedures applicable at all times............... 81
    9.2.2   Connection establishment......................... 82
    9.2.3   Data Transfer.................................... 82
    9.2.3.1   General........................................ 82
    9.2.3.2   Expedited Data................................. 83
    9.2.4   Release.......................................... 84
    10   SPECIFICATION  FOR  CLASS  2  -  MULTIPLEXING
      CLASS
         .................................................... 85
    10.1   Functions of class 2.............................. 85
    10.2   Procedures for class 2............................ 85
    10.2.1   Procedures applicable at all times.............. 85
    10.2.2   Connection establishment........................ 86
    10.2.3   Data transfer when non  use  of  explicit
      flow control
         .................................................... 86
    10.2.4   Data transfer when use of  explicit  flow
      control
         .................................................... 86
    10.2.4.1   General....................................... 86
    10.2.4.2   Flow control.................................. 87
    10.2.4.3   Expedited data................................ 88



                                    v











    10.2.5   Release......................................... 89
    11   SPECIFICATION FOR CLASS 3: ERROR RECOVERY AND
      MULTIPLEXING CLASS
         .................................................... 90
    11.1   Functions of Class 3.............................. 90
    11.2   Procedures for Class 3............................ 90
    11.2.1   Procedures applicable at all times.............. 90
    11.2.2   Connection Establishment........................ 91
    11.2.3   Data Transfer................................... 91
    11.2.3.1   General....................................... 91
    11.2.3.2   Use of RJ TPDU................................ 92
    11.2.3.3   Flow Control.................................. 93
    11.2.3.4   Expedited data................................ 93
    11.2.4   Release......................................... 94
    12   SPECIFICATION FOR CLASS  4:  ERROR  DETECTION
      AND RECOVERY CLASS
         .................................................... 95
    12.1   Functions of Class 4.............................. 95
    12.2   Procedures for Class 4............................ 95
    12.2.1   Procedures available at all times............... 95
    12.2.1.1   Timers used at all times...................... 95
    12.2.1.1.1   NSDU lifetime (MLR, MRL).................... 98
    12.2.1.1.2   Expected maximum transit delay  (ELR,
      ERL)
         .................................................... 98
    12.2.1.1.3   Acknowledge Time (AR, AL)................... 99
    12.2.1.1.4   Local retransmission time (T1).............. 99
    12.2.1.1.5   Persistence Time (R)........................ 99
    12.2.1.1.6    Bound  on  References  and  Sequence
      Numbers (L)
         ................................................... 100
    12.2.1.2   General Procedures........................... 100
    12.2.2   Procedures for Connection Establishment........ 102
    12.2.2.1   Timers used in Connection Establishment...... 102
    12.2.2.2   General Procedures........................... 103
    12.2.3   Procedures for Data Transfer................... 104
    12.2.3.1   Timers used in Data Transfer................. 104
    12.2.3.2   General Procedures for data transfer......... 104
    12.2.3.3   Inactivity Control........................... 105
    12.2.3.4   Expedited Data............................... 105
    12.2.3.5   Resequencing................................. 106
    12.2.3.6   Explicit Flow Control........................ 107
    12.2.3.7   Sequencing of received AK TPDUs.............. 108



                                   vi











    12.2.3.8   Procedure for transmission of AK TPDUs....... 109
    12.2.3.8.1   Retransmission of AK TPDUs for window
      synchronization
         ................................................... 109
    12.2.3.8.2   Sequence control for transmission  of
      AK TPDUs
         ................................................... 109
    12.2.3.8.3   Retransmission of AK TPDUs after  CDT
      set to zero
         ................................................... 110
    12.2.3.8.4   Retransmission  procedures  following
      reduction of the
         ................................................... 111
    12.2.3.9    Use  of  Flow   Control   Confirmation
      parameter
         ................................................... 112
    12.2.4   Procedures for Release......................... 113
    12.2.4.1   Timers used for Release...................... 113
    12.2.4.2   General Procedures for Release............... 113
    13   STRUCTURE AND ENCODING OF TPDUs.................... 114
    13.1   Validity......................................... 114
    13.2   Structure........................................ 116
    13.2.1   Length indicator field......................... 117
    13.2.2   Fixed part..................................... 117
    13.2.2.1   General...................................... 117
    13.2.2.2   TPDU code.................................... 117
    13.2.3   Variable part.................................. 118
    13.2.3.1   Checksum Parameter (Class 4 only)............ 120
    13.2.4   Data Field..................................... 120
    13.3   Connection Request (CR) TPDU..................... 120
    13.3.1   Structure...................................... 120
    13.3.2   LI............................................. 121
    13.3.3   Fixed Part (Octets 2 to 7)..................... 121
    13.3.4   Variable Part (Octets 8 to p).................. 122
    13.3.5   User Data (Octets p+1 to the end).............. 127
    13.4   Connection Confirm (CC) TPDU..................... 128
    13.4.1   Structure...................................... 128
    13.4.2   LI............................................. 128
    13.4.3   Fixed Part (Octets 2 to 7)..................... 128
    13.4.4   Variable Part (Octet 8 to p)................... 129
    13.4.5   User Data (Octets p+1 to the end).............. 129
    13.5   Disonnect Request (DR) TPDU...................... 129
    13.5.1   Structure...................................... 129



                                   vii











    13.5.2   LI............................................. 129
    13.5.3   Fixed Part (Octets 2 to 7...................... 130
    13.5.4   Variable Part (Octets 8 to p).................. 131
    13.5.5   User Data (Octets p+1 to the end).............. 131
    13.6   Disconnect Confirm (DC) TPDU..................... 132
    13.6.1   Structure...................................... 132
    13.6.2   LI............................................. 132
    13.6.3   Fixed Part (Octets 2 to 6)..................... 132
    13.6.4   Variable Part.................................. 133
    13.7   Data (DT) TPDU................................... 133
    13.7.1   Structure...................................... 133
    13.7.2   LI............................................. 134
    13.7.3   Fixed Part..................................... 134
    13.7.4   Variable Part.................................. 135
    13.7.5   User Data Field................................ 135
    13.8   Expedited Data (ED) TPDU......................... 135
    13.8.1   Structure...................................... 135
    13.8.2   LI............................................. 136
    13.8.3   Fixed Part..................................... 136
    13.8.4   Variable Part.................................. 137
    13.8.5   User Data Field................................ 137
    13.9   Data Acknowledgement (AK) TPDU................... 137
    13.9.1   Structure...................................... 137
    13.9.2   LI............................................. 138
    13.9.3   Fixed Part..................................... 138
    13.9.4   Variable Part.................................. 139
    13.10   Expedited Data Acknowledgement (EA) TPDU........ 140
    13.10.1   Structure..................................... 140
    13.10.2   LI............................................ 141
    13.10.3   Fixed Part.................................... 141
    13.10.4   Variable Part................................. 141
    13.11   Reject (RJ) TPDU................................ 141
    13.11.1   Structure..................................... 142
    13.11.2   LI............................................ 142
    13.11.3   Fixed Part.................................... 142
    13.11.4   Variable Part................................. 143
    13.12   TPDU Error (ER) TPDU............................ 143
    13.12.1   Structure..................................... 143
    13.12.2   LI............................................ 143
    13.12.3   Fixed Part.................................... 144
    13.12.4   Variable Part................................. 144
    14   CONFORMANCE........................................ 145
    14.1   ................................................. 145



                                  viii











    14.2   ................................................. 145
    14.3   ................................................. 145
    14.4   ................................................. 145
    14.5   ................................................. 146
    14.6   Claims of Conformance Shall State................ 146









































                                   ix











    INTRODUCTION

    The Transport Protocol Standard is one of a set of  International
    Standards  produced to facilitate the interconnection of computer
    systems.  The set of standards covers the services and  protocols
    required to achieve such interconnection.

    The Transport Protocol Standard is  positioned  with  respect  to
    other  related  standards  by the layers defined in the Reference
    Model for Open Systems Interconnection (ISO 7498).   It  is  most
    closely  related  to, and lies within the field of application of
    the Transport Service Standard (DP 8072).  It also uses and makes
    reference  to  the  Network  Service  Standard  (DP  8348), whose
    provisions it  assumes  in  order  to  accomplish  the  transport
    protocol's  aims.   The  interelationship  of  these standards is
    depicted in figure 1.





    -------------------------TRANSPORT SERVICE DEFINITION------------
    Transport     | --- Reference to aims --------------
    Protocol      |
    Specification | --- Reference to assumptions -------
    -------------------------NETWORK SERVICE DEFINITION--------------

     Relationaship between Transport Protocol and adjacent services
                               Figure 1 .



    The International Standard specifies  a  common  encoding  and  a
    number  of  classes  of  transport protocol procedures to be used
    with different network qualities of service.

    It is intended that the Transport Protocol should be  simple  but
    general  enough  to  cater for the total range of Network Service
    qualities possible, without restricting future extensions.

    The protocol is structured to give rise to  classes  of  protocol
    which  are  designed  to  minimize possible incompatibilities and
    implementation costs.



                                    1











    The classes are selectable with  respect  to  the  Transport  and
    Network Services in providing the required quality of service for
    the interconnection of two session entities (note that each class
    provides  a different set of functions for enhancement of service
    qualities).

    This protocol standard defines mechanisms that  can  be  used  to
    optimize  network  tariffs and enhance the following qualities of
    service:

       a)  different throughput rates;

       b)  different error rates;

       c)  integrity of data requirements;

       d)  reliability requirements.

    It does not  require  an  implementation  to  use  all  of  these
    mechanisms,  nor  does  it  define methods for measuring achieved
    quality of service or  criteria  for  deciding  when  to  release
    transport connections following quality of service degradation.

    The primary aim of this International Standard is  to  provide  a
    set  of  rules  for  communication  expressed  in  terms  of  the
    procedures to be carried out by peer  entities  at  the  time  of
    communication.   These  rules  for  communication are intended to
    provide a sound basis for development in order to serve a variety
    of purposes:

       a)  as a guide for implementors and designers;

       b)  for use in the testing and procurement of equipment;

       c)  as part of an agreement for the admittance of systems into
           the open systems environment;

       d)  as a refinement of the understanding of OSI.

    It is expected  that  the  initial  users  of  the  International
    Standard  will be designers and implementors of equipment and the
    International Standard contains, in notes or in annexes, guidance
    on the implementation of the procedures defined in the standard.



                                    2











    It should  be  noted  that,  as  the  number  of  valid  protocol
    sequences  is  very  large,  it  is  not  possible  with  current
    technology to verify that  an  implementation  will  operate  the
    protocol  defined  in this International Standard correctly under
    all circumstances.   It  is  possible  by  means  of  testing  to
    establish  confidence  that  an implementation correctly operates
    the protocol in a representative sample of circumstances.  It is,
    however, intended that this International Standard can be used in
    circumstances where two implementations fail  to  communicate  in
    order to determine whether one or both have failed to operate the
    protocol correctly.

    This International Standard contains a section on conformance  of
    equipment   claiming   to   implement   the  procedures  in  this
    International Standard.  Attention is drawn to the fact that  the
    standard   does   not  contain  any  tests  to  demonstrate  this
    conformance.

    The variations and options available  within  this  International
    Standard  are  essential  to  enable  a  Transport  Service to be
    provided for a wide variety of applications  over  a  variety  of
    network  qualities.   Thus, a minimally conforming implementation
    will not be suitable for use in all possible  circumstances.   It
    is  important,  therefore,  to  qualify  all  references  to this
    International Standard with statements of the options provided or
    required  or with statements of the intended purpose of provision
    or use.




    1  SCOPE AND FIELD OF APPLICATION

    1.1  This International Standard specifies:

       a)  five classes of procedures:

           1) Class 0.  Simple class;
           2) Class 1.  Basic error recovery class;
           3) Class 2.  Multiplexing class;
           4) Class 3.  Error recovery and multiplexing class;
           5) Class 4.  Error detection and recovery class,




                                    3











           for the connection oriented transfer of data  and  control
           information  from one transport entity to a peer transport
           entity;

       b)  the means of negotiating the class  of  procedures  to  be
           used by the transport entities;

       c)  the structure and encoding of the transport protocol  data
           units   used   for   the  transfer  of  data  and  control
           information;




    1.2  The procedures are defined in terms of:

       a)  the interactions between peer transport  entities  through
           the exchange of transport protocol data units;

       b)  the  interactions  between  a  transport  entity  and  the
           transport  service  user  in  the  same system through the
           exchange of transport service primitives;

       c)  the  interactions  between  a  transport  entity  and  the
           network  service  provider through the exchange of network
           service primitives.

    These procedures are defined in the main  text  of  the  standard
    supplemented by state tables in annex A.




    1.3

    These procedures are applicable  to  instances  of  communication
    between  systems  which  support  the  Transport Layer of the OSI
    Reference Model and which wish to interconnect in an open systems
    environment.







                                    4











    1.4

    This   International   Standard   also   specifies    conformance
    requirements  for systems implementing these procedures.  It does
    not  contain  tests  which  can  be  used  to  demonstrate   this
    conformance.




    2  REFERENCES

    ISO 7498  Information   processing   systems   -   Open   systems
              interconnection - Basic Reference Model

    DP 8072   Information   processing   systems   -   Open   systems
              interconnection - Transport service definition

    DP 8348   Information   processing   systems   -   Open   systems
              interconnection  -  Connection-oriented network service
              definition.

























                                    5











    SECTION ONE.  GENERAL




    3  DEFINITIONS

    NOTE - The definitions contained  in  this  clause  make  use  of
    abbreviations defined in clause 4.




    3.1

    This International Standard is based on the concepts developed in
    the  Reference  Model for Open Systems Interconnection (DIS 7498)
    and makes use of the following terms defined in that standard:

       a)  concatenation and separation;

       b)  segmenting and reassembling;

       c)  multiplexing and demultiplexing;

       d)  splitting and recombining;

       e)  flow control.




    3.2

    For the purpose of this  International  Standard,  the  following
    definitions apply:










                                    6











    3.2.1  equipment:

    Hardware or software or a combination of both;  it  need  not  be
    physically distinct within a computer system.




    3.2.2  transport service user:

    An abstract representation of  the  totality  of  those  entities
    within a single system that make use of the transport service.




    3.2.3  network service provider:

    An abstract machine that models  the  totality  of  the  entities
    providing the network service, as viewed by a transport entity.




    3.2.4  local matter:

    A decision made by  a  system  concerning  its  behavior  in  the
    Transport  Layer  that is not subject to the requirements of this
    protocol.




    3.2.5  initiator:

    A transport entity that initiates a CR TPDU.










                                    7











    3.2.6  responder:

    A transport entity with whom an initiator wishes to  establish  a
    transport connection.

    NOTE - Initiator and responder are  defined  with  respect  to  a
    single  transport  connection.  A transport entity can be both an
    initiator and responder simultaneously.




    3.2.7  sending transport entity:

    A transport entity that sends a given TPDU.




    3.2.8  receiving transport entity:

    A transport entity that receives a given TPDU.




    3.2.9  preferred class:

    The protocol class that the initiator indicates in a CR  TPDU  as
    its first choice for use over the transport connection.




    3.2.10  alternative class:

    A protocol class that the initiator indicates in a CR TPDU as  an
    alternative choice for use over the transport connection.








                                    8











    3.2.11  proposed class:

    A preferred class or an alternative class.




    3.2.12  selected class:

    The protocol class that the responder indicates in a CC TPDU that
    it has chosen for use over the transport connection.




    3.2.13  proposed parameter:

    The value for a parameter that the initiator indicates  in  a  CR
    TPDU that it wishes to use over the transport connection.




    3.2.14  selected parameter:

    The value for a parameter that the responder indicates  in  a  CC
    TPDU that it has chosen for use over the transport connection.




    3.2.15  error indication:

    An N-RESET indication,  or  an  N-DISCONNECT  indication  with  a
    reason code indicating an error, that a transport entity receives
    from the NS-provider.










                                    9











    3.2.16  invalid TPDU:

    A TPDU that  does  not  comply  with  the  requirements  of  this
    International Standard for structure and encoding.




    3.2.17  protocol error:

    A TPDU whose use does not comply  with  the  procedures  for  the
    class.




    3.2.18  sequence number:

       a)  The number  in  the  TPDU-NR  field  of  a  DT  TPDU  that
           indicates  the  order in which the DT TPDU was transmitted
           by a transport entity.

       b)  The number in the YR-TU-NR field of an AK or RJ TPDU  that
           indicates the sequence number of the next DT TPDU expected
           to be received by a transport entity.




    3.2.19  transmit window:

    The set of consecutive sequence numbers which a transport  entity
    has been authorized by its peer entity to send at a given time on
    a given transport connection.












                                   10











    3.2.20  lower window edge:

    The lowest sequence number in a transmit window.




    3.2.21  upper window edge:

    The sequence  number  which  is  one  greater  than  the  highest
    sequence number in the transmit window.




    3.2.22  upper window edge allocated to the peer entity:

    The value that a transport entity communicates to its peer entity
    to be interpreted as its new upper window edge.




    3.2.23  closed window:

    A transmit window that contains no sequence number.




    3.2.24  window information:

    Information contained in a TPDU relating to  the  upper  and  the
    lower window edges.












                                   11











    3.2.25  frozen reference:

    A reference that is not available for assignment to a  connection
    because of the requirements of 6.18.




    3.2.26  unassigned reference:

    A reference that is neither currently in use  for  identifying  a
    transport connection or which is in a frozen state.




    3.2.27  transparent (data):

    TS-user  data  that  is  transferred  intact  between   transport
    entities  and  which  is  unavailable  for  use  by the transport
    entities.




    3.2.28  owner (of a network connection):

    The transport entity that issued the N-CONNECT request leading to
    the creation of that network connection.




    3.2.29  retained TPDU:

    A TPDU  that  is  subject  to  the  retransmission  procedure  or
    retention  until  acknowledgement  procedure and is available for
    possible retransmission.








                                   12











    4  SYMBOLS AND ABBREVIATIONS

    4.1  Data units

       TPDU          Transport protocol data unit
       TSDU          Transport service data unit
       NSDU          Network service data unit




    4.2  Types of transport protocol data units

       CR TPDU          Connection request TPDU
       CC TPDU          Connection confirm TPDU
       DR TPDU          Disconnect request TPDU
       DC TPDU          Disconnect confirm TPDU
       DT TPDU          Data TPDU
       ED TPDU          Expedited data TPDU
       AK TPDU          Data acknowledge TPDU
       EA TPDU          Expedited acknowledge TPDU
       RJ TPDU          Reject TPDU
       ER TPDU          Error TPDU




    4.3  TPDU fields

       LI               Length indicator (field)
       CDT              Credit (field)
       TSAP-ID          Transport service access point
                        identifier (field)
       DST-REF          Destination reference (field)
       SRC-REF          Source reference (field)
       EOT              End of TSDU mark
       TPDU-NR          DT TPDU number (field)
       ED-TPDU-NR       ED TPDU number (field)
       YR-TU-NR         Sequence number response (field)
       YR-EDTU-NR       ED TPDU number response (field)






                                   13











    4.4  Times and associated variables

       T1               Elapsed time between retransmissions
       N                The maximum number of transmissions
       L                Bound on reference
       I                Inactivity time
       W                Window time
       TTR              Time to try reassignment/resynchronization
       TWR              Time to wait for
                           reassignment/resynchronization
       TS1              Supervisory timer 1
       TS2              Supervisory time 2
       MLR              NSDU lifetime  local-to-remote
       MRL              NSDU lifetime  remote-to-local
       ELR              Expected maximum transit delay
                           local-to-remote
       ERL              Expected maximum transit delay
                           remote-to-local
       R                Persistence time
       AL               Local acknowledgement time
       AR               Remote acknowledgement time





    4.5  Miscellaneous


       TS-user          Transport service user
       TSAP             Transport service access point
       NS-provider      Network service provider
       NSAP             Network service access point
       QOS              Quality of service












                                   14











    5  OVERVIEW OF THE TRANSPORT PROTOCOL

    NOTE - This overview is not exhaustive and has been provided  for
    guidance to the reader of this International Standard.




    5.1  Service provided by the transport layer

    The protocol specified in this  International  Standard  supports
    the transport service defined in DP 8072.

    Information is  transferred  to  and  from  the  TS-user  in  the
    transport service primitives listed in table 1.































                                   15















    +-------------------------------------------------------------+
    |           Primitive            |        Parameter           |
    |--------------------------------|----------------------------|
    |T-CONNECT         request       |   Called Address,          |
    |                  indication    |   Calling Address,         |
    |                                |   Expedited Data option,   |
    |                                |   Quality of Service,      |
    |                                |   TS User-Data.            |
    |--------------------------------|----------------------------|
    |T-CONNECT         response      |   Responding Address,      |
    |                  confirm       |   Quality of Service,      |
    |                                |   Expedited Data option,   |
    |                                |   TS User-Data.            |
    |--------------------------------|----------------------------|
    |T-DATA            request       |   TS User-Data.            |
    |                  indication    |                            |
    |--------------------------------|----------------------------|
    |T-EXPEDITED DATA  request       |   TS User-Data.            |
    |                  indication    |                            |
    |--------------------------------|----------------------------|
    |T-DISCONNECT      request       |   TS User-Data.            |
    |--------------------------------|----------------------------|
    |T-DISCONNECT      indication    |   Disconnect reason,       |
    |                                |   TS User-Data.            |
    +--------------------------------|----------------------------+

                  Table 1. Transport service primitives





    5.2  Service assumed from the network layer

    The protocol specified in this International Standard assumes the
    use of the network service defined in DP 8348.

    Information is transferred to and from  the  NS-provider  in  the
    network service primitives listed in table 2.



                                   16















    +---------------------------------------------------------------+
    |        Primitives          |X/Y|       Parameters       |X/Y/Z|
    |----------------------------|---|------------------------|-----|
    |N-CONNECT       request     | X | Called Address,        |  X  |
    |                indication  | X | Calling Address,       |  X  |
    |                response    | X | NS User-Data,          |  Z  |
    |                confirm     | X | QOS parameter set,     |  X  |
    |                            |   | Responding address,    |  Z  |
    |                            |   | Receipt confirmation   |  Y  |
    |                            |   | selection.             |     |
    |----------------------------|---|------------------------|-----|
    |N-DATA          request     | X | NS User-Data,          |  X  |
    |                indication  | X | Confirmation request   |  Y  |
    |----------------------------|---|------------------------|-----|
    |N-DATA ACKNOWLEDGE          |   |                        |     |
    |                request     | Y |                        |     |
    |                indication  | Y |                        |     |
    |----------------------------|---|------------------------|-----|
    |N-EXPEDITED DATA            |   |                        |     |
    |                request     | Y | NS User-Data.          |  Y  |
    |                indication  | Y |                        |     |
    |----------------------------|---|------------------------|-----|
    |N-RESET         request     | X | Originator,            |  Z  |
    |                indication  | X | Reason.                |  Z  |
    |                response    | X |                        |     |
    |                confirm     | X |                        |     |
    |----------------------------|---|------------------------|-----|
    |N-DISCONNECT    request     | X | NS User-Data.          |  Z  |
    |                indication  | X | Originator,            |  Z  |
    |                            |   | Reason.                |  Z  |
    +---------------------------------------------------------------+
                   Table 2. Network service primitives










                                   17











    Key:

       X - The Transport  Protocol  assumes  that  this  facility  is
           provided in all networks.

       Y - The Transport  Protocol  assumes  that  this  facility  is
           provided  in  some networks and a mechanism is provided to
           optionally use the facility.

       Z - The Transport Protocol does not use this parameter.

    NOTES:

       1 - The parameters listed in  this  table  are  those  in  the
           current network service (first DP 8348).

       2 - The way the parameters are exchanged between the transport
           entity and the NS-provider is a local matter.




    5.3  Functions of the Transport Layer

    5.3.1  Overview of functions

    The functions in the  Transport  Layer  are  those  necessary  to
    bridge  the  gap  between the services available from the Network
    Layer and those to be offered to the TS-users.

    The functions in the  Transport  Layer  are  concerned  with  the
    enhancement  of  quality  of  service,  including aspects of cost
    optimization.

    These functions are grouped below into those used  at  all  times
    during a transport connection and those concerned with connection
    establishment, data transfer and release.

    NOTE - This International Standard does not include the following
    functions  which  are under consideration for inclusion in future
    editions of this standard:

       a)  encryption;



                                   18











       b)  accounting mechanisms;

       c)  status exchanges and monitoring of QOS;

       d)  blocking;

       e)  temporary release of network connections;

       f)  alternative checksum algorithm.




    5.3.1.1  Functions used at all times

    The following functions, depending upon the  selected  class  and
    options, are used at all times during a transport connection:

       a)  transmission of TPDUs (see 6.2 and 6.9);

       b)  multiplexing and demultiplexing  (see  6.15),  a  function
           used  to  share a single network connection between two or
           more transport connections;

       c)  error detection (see 6.10, 6.13 and 6.17), a function used
           to  detect  the loss, corruption, duplication, misordering
           or misdelivery of TPDUs;

       d)  error recovery (see 6.12, 6.14, 6.18, 6.19, 6.20, 6.21 and
           6.22),  a  function  used  to  recover  from  detected and
           signalled errors.




    5.3.1.2  Connection Establishment

    The  purpose  of  connection  establishment  is  to  establish  a
    transport   connection   between  two  TS-users.   The  following
    functions of the transport layer during this phase must match the
    TS-users'  requested quality of service with the services offered
    by the network layer:




                                   19











       a)  select network service which best matches the  requirement
           of  the  TS-user  taking  into account charges for various
           services (see 6.5);

       b)  decide whether to multiplex multiple transport connections
           onto a single network connection (see 6.5);

       c)  establish the optimum TPDU size (see 6.5);

       d)  select  the  functions  that  will  be  operational   upon
           entering the data transfer phase (see 6.5);

       e)  map transport addresses onto network addresses;

       f)  provide a  means  to  distinguish  between  two  different
           transport connections (see 6.5);

       g)  transport of TS-user data (see 6.5).




    5.3.1.3  Data Transfer

    The purpose of data transfer is to permit duplex transmission  of
    TSDUs  between  the  two  TS-users  connected  by  the  transport
    connection.   This  purpose  is  achieved  by  means  of  two-way
    simultaneous  communication  and by the following functions, some
    of which are used or not used in accordance with  the  result  of
    the selection performed in connection establishment:

       a)  concatenation and separation (see 6.4), a function used to
           collect  several  TPDUs  into a single NSDU at the sending
           transport  entity  and  to  separate  the  TPDUs  at   the
           receiving transport entity;

       b)  segmenting and reassembling (see 6.3), a function used  to
           segment  a  single  data  TSDU  into multiple TPDUs at the
           sending transport entity and to reassemble them into their
           original format at the receiving transport entity;






                                   20











       c)  splitting and recombining (see 6.23), a function  allowing
           the simultaneous use of two or more network connections to
           support the same transport connection;

       d)  flow control (see 6.16), a function used to  regulate  the
           flow  of  TPDUs  between  two  transport  entities  on one
           transport connection;

       e)  transport connection identification, a means  to  uniquely
           identify  a  transport  connection  between  the  pair  of
           transport entities supporting the  connection  during  the
           lifetime of the transport connection;

       f)  expedited data (see 6.11), a function used to  bypass  the
           flow  control  of  normal  data TPDU.  Expedited data TPDU
           flow is controlled by separate flow control;

       g)  TSDU delimiting (see 6.3), a function  used  to  determine
           the beginning and ending of a TSDU.




    5.3.1.4  Release

    The  purpose  of  release  (see  6.7  and  6.8)  is  to   provide
    disconnection  of  the  transport  connection,  regardless of the
    current activity.




    5.4  Classes and options

    5.4.1  General

    The functions of the Transport Layer  have  been  organized  into
    classes and options.

    A class  defines  a  set  of  functions.   Options  define  those
    functions within a class which may or may not be used.

    This International Standard defines five classes of protocol:



                                   21











       a)  Class 0:  Simple Class;

       b)  Class 1:  Basic Error recovery Class;

       c)  Class 2:  Multiplexing Class;

       d)  Class 3:  Error Recovery and Multiplexing Class;

       e)  Class 4:  Error Detection and Recovery Class.

    NOTE - Transport connections  of  classes  2,  3  and  4  may  be
    multiplexed together onto the same network connection.




    5.4.2  Negotiation

    The use of classes and options is  negotiated  during  connection
    establishment.   The  choice  made by the transport entities will
    depend upon:

       a)  the TS-users' requirements expressed via T-CONNECT service
           primitives;

       b)  the quality of the available network services;

       c)  the user required service versus cost ratio acceptable  to
           the TS-user.




    5.4.3  Choice of network connection

    The following  list  classifies  network  services  in  terms  of
    quality  with  respect  to  error  behavior  in  relation to user
    requirements; its main purpose is to  provide  a  basis  for  the
    decision  regarding  which  class of transport protocol should be
    used in conjunction with given network connection:






                                   22











       a)  Type A.  Network connection with acceptable residual error
           rate  (for  example  not signalled by disconnect or reset)
           and acceptable rate of signalled errors.

       b)  Type B.   Network  connections  with  acceptable  residual
           error  rate  (for  example  not signalled by disconnect or
           reset) but unacceptable rate of signalled errors.

       c)  Type C.  Network connections  with  unacceptable  residual
           error rate.

    It is assumed that each transport entity is aware of the  quality
    of service provided by particular network connections.




    5.4.4  Characteristics of Class 0

    Class 0 provides the simplest type of transport connection and is
    fully  compatible  with the CCITT recommendation S.70 for teletex
    terminals.

    Class 0 has  been  designed  to  be  used  with  type  A  network
    connections.




    5.4.5  Characteristics of Class 1

    Class 1  provides  a  basic  transport  connection  with  minimal
    overheads.

    The main  purpose  of  the  class  is  to  recover  from  network
    disconnect or reset.

    Selection of this class is usually based on reliability criteria.
    Class  1  has  been  designed  to  be  used  with  type B network
    connections.






                                   23











    5.4.6  Characteristics of Class 2

    5.4.6.1  General

    Class 2 provides a way to multiplex several transport connections
    onto  a  single network connection.  This class has been designed
    to be used with type A network connections.




    5.4.6.2  Use of explicit flow control

    The objective is to provide flow control to help avoid congestion
    at transport-connection-end-points and on the network connection.
    Typical use is when traffic is  heavy  and  continuous,  or  when
    there  is  intensive  multiplexing.   Use  of  flow  control  can
    optimize response times and resource utilization.




    5.4.6.3  Non-use of explicit flow control

    The objective is to provide a  basic  transport  connection  with
    minimal  overheads  suitable  when  explicit disconnection of the
    transport connection is desirable.  The option would typically be
    used for unsophisticated terminals, and when no multiplexing onto
    network  connections  is  required.   Expedited  data  is   never
    available.




    5.4.7  Characteristics of Class 3

    Class 3 provides the characteristics of Class 2 plus the  ability
    to  recover  from network disconnect or reset.  Selection of this
    class is usually based upon reliability criteria.   Class  3  has
    been designed to be used with type B network connections.






                                   24











    5.4.8  Characteristics of Class 4

    Class 4  provides  the  characteristics  of  Class  3,  plus  the
    capability  to  detect  and  recover from errors which occur as a
    result of the  low  grade  of  service  available  from  the  NS-
    provider.   The  kinds  of  errors  to be detected include:  TPDU
    loss, TPDU delivery out of sequence, TPDU  duplication  and  TPDU
    corruption.   These  errors  may  affect control TPDUs as well as
    data TPDUs.

    This class also provides for increased throughput capability  and
    additional  resilience  against network failure. Class 4 has been
    designed to be used with type C network connections.




    5.5  Model of the transport layer

    A transport entity communicates with its TS-users through one  or
    more  TSAPs  by means of the service primitives as defined by the
    transport service definition DP 8072.   Service  primitives  will
    cause  or be the result of transport protocol data unit exchanges
    between  the  peer  transport  entities  supporting  a  transport
    connection.   These  protocol  exchanges  are  effected using the
    services of the Network Layer as defined by the  Network  Service
    Definition DP 8348 through one or more NSAPs.

    Transport connection endpoints are identified in end  systems  by
    an  internal, implementation dependent, mechanism so that the TS-
    user and  the  transport  entity  can  refer  to  each  transport
    connection.














                                   25















              +------+                        +------+
    ----------| TSAP |------------------------| TSAP |----------
              +------+                        +------+
                  |                               |
           +---------------+               +---------------+
           | Transport     |               | Transport     |
           |       entity  |               |       entity  |
           +---------------+               +---------------+
                  |                               |
                  |                               |
              +------+                        +------+
    ----------| NSAP |------------------------| NSAP |----------
              +------+                        +------+
                  |                               |
                  +-------------------------------+

                 Figure 2 . Model of the transport layer



    NOTE - For purpose of illustration, this figure  shows  only  one
    TSAP  and  one  NSAP  for  each  transport  entity.   In  certain
    instances, more than one TSAP and/or more than one  NSAP  may  be
    associated with a particular transport entity.


















                                   26











    SECTION TWO.  TRANSPORT PROTOCOL SPECIFICATION




    6  ELEMENTS OF PROCEDURE

    This clause contains elements of procedure which are used in  the
    specification  of  protocol  classes  in  clauses 7 to 12.  These
    elements are not meaningful on their own.

    The procedures define the transfer of TPDUs whose  structure  and
    coding  is  specified  in  clause  13.   Transport entities shall
    accept and respond to any TPDU received in a valid NSDU  and  may
    issue  TPDUs  initiating specific elements of procedure specified
    in this clause.

    NOTE - Where network service primitives and TPDUs and  parameters
    used  are  not significant for a particular element of procedure,
    they have not been included in the specification.




    6.1  Assignment to network connection

    6.1.1  Purpose

    The  procedure  is  used  in  all  classes  to  assign  transport
    connections to network connections.




    6.1.2  Network service primitives

    The  procedure  makes  use  of  the  following  network   service
    primitives:

       a)  N-CONNECT;

       b)  N-DISCONNECT.




                                   27











    6.1.3  Procedure

    Each  transport  connection  shall  be  assigned  to  a   network
    connection.  The initiator may assign the transport connection to
    an existing network connection of which it is the owner or  to  a
    new  network  connection  (see  Note 1) which it creates for this
    purpose.

    The  initiator  shall  not  assign  or  reassign  the   transport
    connection  to  an  existing  network  connection if the protocol
    class(es)  proposed  or  the  class  in  use  for  the  transport
    connection are incompatible with the current usage of the network
    connection with respect to multiplexing (see Note 2).

    During the resynchronization (see 6.14)  and  reassignment  after
    failure  (see 6.12) procedures, a transport entity may reassign a
    transport connection to another network  connection  joining  the
    same  NSAPs,  provided  that  it  is  the  owner  of  the network
    connection and that the transport connection is assigned to  only
    one network connection at any given time.

    During the splitting procedure (see 6.23), a transport entity may
    assign   a   transport   connection  to  any  additional  network
    connection joining the same NSAPs, provided that it is the  owner
    of  the  network  connection and that multiplexing is possible on
    the network connection.

    The responder becomes aware of the assignment when it receives

       a)  a CR TPDU during the  connection  establishment  procedure
           (see 6.5); or

       b)  an RJ TPDU or a retransmitted CR or  DR  TPDU  during  the
           resynchronization   (see   6.14)  and  reassignment  after
           failure (see 6.12) procedures; or

       c)  any TPDU when splitting (see 6.23) is used.









                                   28











    NOTES

       1.  When a new network connection is created, the  quality  of
           service  requested  is  a  local  matter, although it will
           normally be  related  to  the  requirements  of  transport
           connection(s) expected to be assigned to it.

       2.  An existing network connection may also  not  be  suitable
           if,  for example, the quality of service requested for the
           transport  connection  cannot  be  attained  by  using  or
           enhancing the network connection.

       3.  A  network  connection  with  no  transport  connection(s)
           assigned   to   it,   may   be   available  after  initial
           establishment, or because all of the transport connections
           previously  assigned  to  it  have  been  released.  It is
           recommended  that  only  the  owner  of  such  a   network
           connection   should   release   it.   Furthermore,  it  is
           recommended that it not be released immediately after  the
           transmission of the final TPDU of a transport connection -
           either a DR TPDU in response to CR TPDU or a  DC  TPDU  in
           response  to DR TPDU.  An appropriate delay will allow the
           TPDU  concerned  to  reach  the  other  transport   entity
           allowing  the freeing of any resources associated with the
           transport connection concerned.

       4.  After the  failure  of  a  network  connection,  transport
           connections which were previously multiplexed together may
           be assigned to different  network  connections,  and  vice
           versa.




    6.2  Transport protocol data unit (TPDU) transfer

    6.2.1  Purpose

    The TPDU transfer procedure is used  in  all  classes  to  convey
    transport  protocol  data  units  in  user data fields of network
    service primitives.





                                   29











    6.2.2  Network Service Primitives

    The procedure uses the following network service primitives:

       a)  N-DATA;

       b)  N-EXPEDITED DATA




    6.2.3  Procedure

    The  transport  protocol  data  units  (TPDUs)  defined  for  the
    protocol are listed in 4.2.

    When the network expedited variant has been selected for class 1,
    the transport entities shall transmit and receive ED and EA TPDUs
    as NS-user data parameters of N-EXPEDITED DATA primitives.

    In all other cases, transport entities shall transmit and receive
    TPDUs as NS-user data parameters of N-DATA primitives.

    When  a  TPDU  is  put  into  an  NS-user  data  parameter,   the
    significance  of the bits within an octet and the order of octets
    within a TPDU shall be as defined in 13.2.

    NOTE - TPDUs may be concatenated (see 6.4).




    6.3  Segmenting and reassembling

    6.3.1  Purpose

    The segmenting and reassembling procedure is used in all  classes
    to map TSDUs onto TPDUs.








                                   30











    6.3.2  TPDUs and parameter used

    The procedure makes use of the following TPDU and parameter:

       DT TPDUs;

          - End of TSDU.




    6.3.3  Procedure

    A transport entity shall map a TSDU on to an ordered sequence  of
    one  or more DT TPDUs.  This sequence shall not be interrupted by
    other DT TPDUs on the same transport connection.

    All DT TPDUs except the last DT TPDU in a sequence  greater  than
    one shall have a length of data greater than zero.

    NOTES

       1.  The EOT parameter of a DT TPDU indicates  whether  or  not
           there are subsequent DT TPDUs in the sequence.

       2.  There is no requirement that the DT TPDUs shall be of  the
           maximum length selected during connection establishment.




    6.4  Concatenation and separation

    6.4.1  Purpose

    The procedure for concatenation and separation is used in classes
    1, 2, 3 and 4 to convey multiple TPDUs in one NSDU.









                                   31











    6.4.2  Procedure

    A transport  entity  may  concatenate  TPDUs  from  the  same  or
    different transport connections.

    The set of concatenated TPDUs may contain:

       a)  any number of TPDUs from the following list:  AK, EA,  RJ,
           ER,   DC  TPDUs,  provided  that  these  TPDUs  come  from
           different transport connections;

       b)  no more than one TPDU from the following  list:   CR,  DR,
           CC,  DT,  ED  TPDUs;  if this TPDU is present, it shall be
           placed last in the set of concatenated TPDUs.

    NOTES

       1.  The TPDUs within a concatenated set may  be  distinguished
           by means of the length indicator parameter.

       2.  The end of a TPDU containing  data  is  indicated  by  the
           termination of the NSDU.

       3.  The number of concatenated TPDUs referred to in 6.4.2.a is
           bounded  by  the  maximum  number of transport connections
           which are multiplexed together except during assignment or
           reassignment.




    6.5  Connection establishment

    6.5.1  Purpose

    The procedure for connection establishment is used in all classes
    to create a new transport connection.









                                   32











    6.5.2  Network service primitives

    The procedure uses the following network service primitive:

    N-DATA




    6.5.3  TPDUs and parameters used

    The procedure uses the following TPDUs and parameters:

       a)  CR TPDU;

           - CDT;
           - DST-REF (set to zero);
           - SRC-REF
           - CLASS and OPTIONS (i.e. preferred class, use of extended
             format, non-use of explicit flow control in class 2);
           - calling TSAP-ID;
           - called TSAP-ID;
           - TPDU size (proposed);
           - version number;
           - security parameter;
           - checksum;
           - additional  option  selection  (i.e.  use   of   network
             expedited  in  class  1,  use of receipt confirmation in
             class  1,  non-use  of  checksum  in  class  4,  use  of
             transport expedited data transfer service);
           - alternative protocol class(es);
           - acknowledge time;
           - throughput (proposed);
           - residual error rate (proposed);
           - priority (proposed);
           - transit delay (proposed);
           - reassignment time;
           - user data.

       b)  CC TPDU;

           - CDT;
           - DST-REF;



                                   33











           - SRC-REF;
           - CLASS and OPTIONS (selected);
           - calling TSAP-ID;
           - called TSAP-ID;
           - TPDU size (selected);
           - security parameter;
           - checksum;
           - additional option selection (selected);
           - acknowledge time;
           - throughput (selected);
           - residual error rate (selected);
           - priority (selected);
           - transit delay (selected);
           - user data.

         NOTE - The  transport  service  defines  transit  delay   as
         requiring  a  previously stated average TSDU size as a basis
         for any  specification.   This  protocol,  as  specified  in
         13.3.4(n),  uses  a  value of 128 octets.  Conversion to and
         from specifications based upon some other value is  a  local
         matter.




    6.5.4  Procedure

    A transport connection is established by means of  one  transport
    entity  (the  initiator)  transmitting  a  CR  TPDU  to the other
    transport entity (the responder), which replies with a CC TPDU.

    Before sending the CR TPDU, the initiator assigns  the  transport
    connection  being  created  to  one  (or  more  if  the splitting
    procedure is being use) network connection(s).  It is this set of
    network  connections  over which the TPDUs are sent.  During this
    exchange, all information and parameters needed for the transport
    entities to operate shall be exchanged or negotiated.

         NOTE - Except  in  class  4,  it  is  recommended  that  the
         initiator  starts  an  optional timer TS1 at the time the CR
         TPDU is  sent.   This  timer  should  be  stopped  when  the
         connection   is   considered   as  accepted  or  refused  or
         unsuccessful.  If the timer expires,  the  initiator  should



                                   34











         reset or disconnect the network connection and, in classes 1
         and 3 freeze  the  reference  (see  6.18).   For  all  other
         transport  connection(s)  multiplexed  on  the  same network
         connection  the  procedures  for  reset  or  disconnect   as
         appropriate should be followed.

    After receiving the CC  TPDU  for  a  class  which  includes  the
    procedure  for  retention  until  acknowledgement  of  TPDUs  the
    initiator shall acknowledge the CC TPDU as  defined  in  table  5
    (see 6.13).

    When the network expedited variant of the expedited data transfer
    (see  6.11)  has  been  agreed  (possible  in  class 1 only), the
    responder shall not send  an  ED  TPDU  before  the  CC  TPDU  is
    acknowledged.

    The following information is exchanged:

       a)  references.  Each transport  entity  chooses  a  reference
           which is to be used by the peer entity is 16 bits long and
           which is arbitrary except for the following restrictions:

           1)  it shall not already be in use or frozen (see 6.18),

           2)  it shall not be zero.

           This mechanism is symmetrical and provides  identification
           of  the  transport  connection  independent of the network
           connection.  The range of references  used  for  transport
           connections,  in  a  given  transport  entity,  is a local
           matter.

       b)  addresses (optional).  Indicate  the  calling  and  called
           transport  service  access  points.   When  either network
           address unambiguously defines the transport  address  this
           information may be omitted.

       c)  initial credit.  Only relevant for classes  which  include
           the explicit flow control function.

       d)  user data.  Not available if  Class  0  is  the  preferred
           class (see note).  Up to 32 octets in other classes.




                                   35











           NOTE - If class 0 is a valid response according  to  table
           3,  inclusion  of  user  data in the CR TPDU may cause the
           responding entity to refuse the  connection  (e.g.  if  it
           only supports class 0).

       e)  acknowledgement time.  Only in class 4.

       f)  checksum parameter.  Only in class 4.

       g)  security parameter.  This parameter and its semantics  are
           user defined.

    The following negotiations take place:

       h)  protocol class.  The initiator shall propose  a  preferred
           class  and  may  propose  any  number of alternative class
           which permit a valid response as defined in table 3.   The
           initiator should assume when it sends the CR TPDU that its
           preferred class  will  be  agreed  to,  and  commence  the
           procedures  associated  with  that  class,  except that if
           class 0 or class 1 is an alternative  class,  multiplexing
           shall  not  commence  until a CC TPDU selecting the use of
           classes 2, 3 or 4 has been received.

           NOTE - This means, for example, that  when  the  preferred
           class    includes   resynchronization   (see   6.14)   the
           resynchronization will  occur  if  a  reset  is  signalled
           during connection establishment.

    The responder shall select one class defined  in  table  3  as  a
    valid  response  corresponding  to the preferred class and to the
    class(es), if any, contained in the alternative  class  parameter
    of  the  CR TPDU.  It shall indicate the selected class in the CC
    TPDU and shall follow the procedures for the selected class.

    If the preferred class is not selected, then on receipt of the CC
    TPDU  the  initiator  shall  adjust  its  operation according the
    procedures of the selected class.








                                   36















    +------------------------------------------------------------+
    | Pre-  |                Alternative class                   |
    |ferred |----------------------------------------------------|
    |class  |   0    |   1    |   2    |   3    |   4    | none  |
    |-------|--------|--------|--------|--------|--------|-------|
    |   0   |not     |not     |not     |not     |not     |class  |
    |       |valid   |valid   |valid   |valid   |valid   |  0    |
    |-------|--------|--------|--------|--------|--------|-------|
    |   1   |class   |class   |not     |not     |not     |class  |
    |       |1 or 0  |1 or 0  |valid   |valid   |valid   |1 or 0 |
    |-------|--------|--------|--------|--------|--------|-------|
    |   2   |class   |not     |class   |not     |not     |class  |
    |       |2 or 0  |valid   |2       |valid   |valid   |  2    |
    |-------|--------|--------|--------|--------|--------|-------|
    |   3   |class   |class 3,|class   |class   |not     |class  |
    |       |3,2 or 0|2,1 or 0|3 or 2  |3 or 2  |valid   |3 or 2 |
    |-------|--------|--------|--------|--------|--------|-------|
    |   4   |class   |class 4,|class   |class   |class   |class  |
    |       |4,2 or 0|2,1 or 0|4 or 2  |4,3 or 2|4 or 2  |4 or 2 |
    +------------------------------------------------------------+
                                Table 3.




    Valid responses corresponding to  the  preferred  class  and  any
    alternative class proposed in the CR TPDU


    NOTES:

       1.  The valid responses indicated in table 3 result from  both
           explicit negotiation, whereby each of the classes proposed
           is a valid response, and implicit negotiation whereby:

           a)  if class 3 or 4 is proposed then class 2  is  a  valid
               response;
           b)  if class 1  is  proposed  then  class  0  is  a  valid
               response.



                                   37











       2.  Negotiation from class 2 to class 1 and from any class  to
           an higher-numbered class is not valid.

       3.  Redundant combinations are not a protocol error.

       j)  TPDU size.  The initiator may propose a maximum  size  for
           TPDUs,  and the responder may accept this value or respond
           with any value between 128 and the proposed value  in  the
           set of values available (see 13.3.4.b).

           NOTE - The length of the  CR  TPDU  does  not  exceed  128
           octets (see 13.3).

       k)  normal or extended format.  Either normal or  extended  is
           available.   When  extended  is  used this applies to CDT,
           TPDU-NR, ED-TPDU-NR, YR-TU-NR and YR-EDTU-NR parameters.

       m)  checksum selection.  This defines whether or not TPDUs  of
           the connection are to include a checksum.

       n)  quality  of  service   parameters.    This   defines   the
           throughput,  transit  delay,  priority  and residual error
           rate.

       p)  the non-use of explicit flow control in class 2.

       q)  the  use  of  network  receipt  confirmation  and  network
           expedited when class 1 is to be used.

       r)  use of expedited data transfer service.  This allows  both
           TS-users  to negotiate the use or non-use of the expedited
           data transport service as defined in the transport service
           (ISO 8072).

    The following information is sent only in the CR TPDU:

       s)  version number.  This defines the version of the transport
           protocol standard used for this connection.

       t)  reassignment time parameter.  This indicates the time  for
           which   the   initiator  will  persist  in  following  the
           reassignment after failure procedure.




                                   38











    The negotiation rules for the options are such that the initiator
    may  propose  either  to  use  or  not  to  use  the option.  The
    responder may either accept the  proposed  choice  or  select  an
    alternative choice as defined in table 4.

    In class 2, whenever a transport entity requests or agrees to the
    transport  expedited  data  transfer  service  or  to  the use of
    extended formats, it shall also request or  agree  (respectively)
    to the use of explicit flow control.





    +-------------------------------------------------------------+
    |        Option         |  Proposal Made   | Valid Selection  |
    |                       | by the Initiator | by the Responder |
    |-----------------------|------------------|------------------|
    |Transport expedited    |       Yes        |    Yes or No     |
    |data transfer service  |       No         |        No        |
    |(Classes 1,2,3,4 only) |                  |                  |
    |-----------------------|------------------|------------------|
    |Use of receipt confir- |       Yes        |    Yes or No     |
    |mation (Class 1 only)  |       No         |        No        |
    |-----------------------|------------------|------------------|
    |Use of the network     |       Yes        |    Yes or No     |
    |expedited variant      |       No         |        No        |
    |(Class 1 only)         |                  |                  |
    |-----------------------|------------------|------------------|
    |Non-use of checksum    |       Yes        |    Yes or No     |
    |(Class 4 only)         |       No         |        No        |
    |-----------------------|------------------|------------------|
    |Non-use of explicit    |       Yes        |    Yes or No     |
    |flow control           |       No         |        No        |
    |(Class 2 only)         |                  |                  |
    |-----------------------|------------------|------------------|
    |Use of extended format |       Yes        |    Yes or No     |
    |(Classes 2,3,4 only)   |       No         |        No        |
    +-------------------------------------------------------------+

     Table 4. Negotiation of options during connection establishment





                                   39











    NOTE - Table 4 defines the procedures for negotiation of options.
    This  negotiation  has  been  designed such that if the initiator
    proposes the mandatory implementation option specified in  clause
    14,  the  responder  has  to  accept  use of this option over the
    transport  connection  except  for  the  use  of  the   transport
    expedited  data transfer service which may be rejected by the TS-
    user.  If the initiator proposes a  non-mandatory  implementation
    option,  the responder is entitled to select use of the mandatory
    implementation option for use over the transport connection.




    6.6  Connection refusal

    6.6.1  Purpose

    The connection refusal procedure is used in all  classes  when  a
    transport  entity refuses a transport connection in response to a
    CR TPDU.




    6.6.2  TPDUs and parameters used

    The procedure makes use of the following TPDUs and parameters:

       a)  DR TPDU;

           - SRC-REF;
           - reason;
           - user data.

       b)  ER TPDU;

           - reject code;
           - rejected TPDU parameter.








                                   40











    6.6.3  Procedure

    If a transport connection cannot be accepted, the responder shall
    respond to the CR TPDU with a DR TPDU.  The reason shall indicate
    why the connection was not accepted.  The source reference  field
    in  the  DR  TPDU  shall be set to zero to indicate an unassigned
    reference.

    If  a  DR  TPDU  is  received  the  initiator  shall  regard  the
    connection as released.

    The responder shall respond to an invalid CR TPDU by  sending  an
    ER  or  DR  TPDU.   If an ER TPDU is received in response to a CR
    TPDU, the initiator shall regard the connection as released.

    NOTES

    1.  When the invalid CR TPDU can be identified as having class  0
        as  the preferred class, it is recommended to respond with an
        ER TPDU.  For all other invalid CR TPDUs either an ER TPDU or
        DR TPDU may be sent.

    2.  If the optimal supervisory timer TS1 has been  set  for  this
        connection  then  the entity should stop the timer on receipt
        of the DR or ER TPDU.




    6.7  Normal release

    6.7.1  Purpose

    The release procedure is used by a transport entity in  order  to
    terminate  a  transport connection.  The implicit variant is used
    only in class 0.  The explicit variant is used in  classes  1,2,3
    and 4.









                                   41











    NOTES

    1.  When the implicit variant is used  (i.e.  in  class  0),  the
        lifetime  of  the transport connection is directly correlated
        with the lifetime of the network connection.

    2.  The use of the explicit  variant  of  the  release  procedure
        enables the transport connection to be released independently
        of the underlying network connection.




    6.7.2  Network service primitives

    The  procedure  makes  use  of  the  following  network   service
    primitives:

       a)  N-DISCONNECT (implicit variant only),

       b)  N-DATA




    6.7.3  TPDUs and parameters used

    The procedure makes use of the following TPDUs and parameters:

       a)  DR TPDU;

           - clearing reason;
           - user data;
           - SRC-REF;
           - DST-REF.

       b)  DC TPDU.









                                   42











    6.7.4  Procedure for implicit variant

    In the implicit variant either  transport  entity  disconnects  a
    transport  connection  by disconnecting the network connection to
    which it is assigned.  When a transport  entity  receives  an  N-
    DISCONNECT  this  should  be  considered  as  the  release of the
    transport connection.




    6.7.5  Procedure for explicit variant

    When the release of a transport connection is to be  initiated  a
    transport entity

       a)  if it has previously sent or received a CC TPDU (see  note
           1),   shall   send   a  DR  TPDU.   It  shall  ignore  all
           subsequently received TPDUs other than a DR  or  DC  TPDU.
           On  receipt  of  a  DR  or  DC  TPDU it shall consider the
           transport connection released;

       b)  in other cases it shall:

           1)  For  classes  other  than  class  4   wait   for   the
               acknowledgement  of  the  outstanding  CR  TPDU; if it
               receives a CC TPDU, it shall follow the procedures  in
               6.7.5.a.


           2)  For class 4 either send a DR TPDU with a zero value in
               the   DST-REF   field   or  follow  the  procedure  in
               6.7.5.b.1.

       A transport entity that receives a DR TPDU shall

       c)  if it has previously sent a DR TPDU for the same transport
           connection, consider the transport connection released;

       d)  if it has previously sent a CR  TPDU  that  has  not  been
           acknowledged by a CC TPDU, consider the connection refused
           (see 6.6).




                                   43











       e)  in other cases, send a DC TPDU and consider the  transport
           connection released.

       NOTES

       1)  This requirement ensures  that  the  transport  entity  is
           aware   of   the   remote   reference  for  the  transport
           connection.

       2)  When the transport connection is  considered  as  released
           the  local  reference is either available for re-use or is
           frozen (see 6.18).

       3)  After the release of a transport  connection  the  network
           connection  can  be released or retained to enable its re-
           use for the assignment of other transport connections (see
           6.1.).

       4)  Except in class 4, it is recommended that, if a  transport
           entity  does  not  receive  acknowledgement  of  a DR TPDU
           within time TS2, it should either reset or disconnect  the
           network   connection,   and   freeze  the  reference  when
           appropriate  (see  6.18).    For   all   other   transport
           connection(s)  multiplexed  on this network connection the
           procedures for reset or disconnect as  appropriate  should
           be followed.

       5)  When a transport entity is waiting for a  CC  TPDU  before
           sending  a  DR TPDU and the network connection is reset or
           released, it  should  consider  the  transport  connection
           released  and,  in  classes  other  than  classes 0 and 2,
           freeze the reference (see 6.18).




    6.8  Error Release









                                   44











    6.8.1  Purpose

    This procedure is used only in classes  0  and  2  to  release  a
    transport connection on the receipt of an N-DISCONNECT or N-RESET
    indication.




    6.8.2  Network service primitives

    The procedure makes use of the following service primitives:

       a)  N-DISCONNECT indication;

       b)  N-RESET indication.




    6.8.3  Procedure

    When, on the network connection to which a  transport  connection
    is  assigned,  an N-DISCONNECT or N-RESET indication is received,
    both  transport  entities  shall  consider  that  the   transport
    connection is released and so inform the TS-users.

    NOTE - In other  classes,  since  error  recovery  is  used,  the
    receipt  of an N-RESET indication or N-DISCONNECT indication will
    result in the invocation of the error recovery procedure.




    6.9  Association of TPDUs with transport connections

    6.9.1  Purpose

    This procedure is used in all classes  to  interpret  a  received
    NSDU  as  TPDU(s)  and,  if possible, to associate each such TPDU
    with a transport connection.





                                   45











    6.9.2  Network service primitives

    This  procedure  makes  use  of  the  following  network  service
    primitives:

       a)  N-DATA indication;

       b)  N-EXPEDITED DATA indication.





    6.9.3  TPDUs and parameters uses

    This procedure makes use of the following TPDUs and parameters:

       a)  any TPDU except CR TPDU, DT TPDU in classes 0 or 1 and  AK
           TPDU in class 1;

           - DST-REF

       b)  CR, CC, DR and DC TPDUs;

           - SCR-REF.

       c)  DT TPDU in classes 0 or 1 and AK TPDU in class 1.




    6.9.4  Procedures

    6.9.4.1  Identification of TPDUs

    If the received NSDU or Expedited NSDU cannot  be  decoded  (i.e.
    does not contain one or more correct TPDUs) or is corrupted (i.e.
    contains a TPDU with a wrong checksum) then the transport  entity
    shall:







                                   46











       a)  if the network connection on which the error  is  detected
           has  a class 0 or class 1 transport connection assigned to
           it, then treat as a protocol error  (see  6.22)  for  that
           transport connection;

       b)  otherwise

           1)  if the NSDU can  be  decoded  but  contains  corrupted
               TPDUs,  ignore the TPDUs (class 4 only) and optionally
               apply 6.9.4.b.2.

           2)  if the NSDU cannot be decoded issue an N-RESET  or  N-
               DISCONNECT  request for the network connection and for
               all the transport connections assigned to this network
               connection  (if any), apply the procedures defined for
               handling of network signalled reset or disconnect.

           If the NSDU can be  decoded  and  is  not  corrupted,  the
           transport entity shall:

       c)  if the network connection on which the NSDU  was  received
           has  a  class  0 transport connection assigned to it, then
           consider the NSDU as forming TPDU and associate  the  TPDU
           with the transport connection (see 6.9.4.2).

       d)  otherwise, invoke the separation procedures and  for  each
           of  the individual TPDUs in the order in which they appear
           in the NSDU apply the procedure defined in 6.9.4.2.




    6.9.4.2  Association of individual TPDUs

    If the received TPDU is a CR TPDU then, if it is a duplicate,  as
    recognized  by using the NSAPs of the network connection, and the
    SRC-REF parameter, then  it  is  associated  with  the  transport
    connection  created  by  the  original  value  of  the  CR  TPDU;
    otherwise it is processed as requesting the  creation  of  a  new
    transport connection.

    If the received TPDU is a DT TPDU and the network connection  has
    a class 0 or 1 transport connection assigned to it, or an AK TPDU



                                   47











    where a class 1 transport connection is assigned, then  the  TPDU
    is associated with the transport connection.

    Otherwise, the DST-REF parameter of the TPDU is used to  identify
    the transport connection.  The following cases are distinguished:

       a)  if the DST-REF is not allocated to a transport connection,
           the  transport  entity  shall  respond on the same network
           connection with a DR TPDU if the TPDU is a CC TPDU, with a
           DC TPDU if the TPDU is a DR TPDU and shall ignore the TPDU
           if neither a DR TPDU nor CC TPDU.  No association  with  a
           transport connection is made.

       b)  if the DST-REF is allocated to a connection, but the  TPDU
           is   received   on  a  network  connection  to  which  the
           connection has not been  assigned  then  there  are  three
           cases:

           1)  if the transport connection is of class 4 and  if  the
               TPDU is received on a network connection with the same
               pair of NSAPs as that of the CR TPDU then the TPDU  is
               considered as performing assignment,

           2)  if the transport connection is  not  assigned  to  any
               network  connection  (waiting  for  reassignment after
               failure) and if the TPDU  is  received  on  a  network
               connection  with the same pair of NSAPs as that of the
               CR TPDU  then  the  association  with  that  transport
               connection is made.

           3)  Otherwise, the TPDU is considered as having a  DST-REF
               not allocated to a transport connection (case a).

       c)  If the TPDU is a DC TPDU then it is  associated  with  the
           transport  connection  to  which the DST-REF is allocated,
           unless the SRC-REF is not the expected one, in which  case
           the DC TPDU is ignored.

       d)  If the TPDU is a DR TPDU then there are three cases:

           1)  if the SRC-REF is not as expected then a DC TPDU  with
               DST-REF  equal  to the SRC-REF of the received DR TPDU
               is sent back and no association is made;



                                   48











           2)  if a CR TPDU is unacknowledged then  the  DR  TPDU  is
               associated  with  the transport connection, regardless
               of the value of its SRC-REF parameter;

           3)  otherwise,  the  DR  TPDU  is  associated   with   the
               transport   connection   identified   by  the  DST-REF
               parameter.

       e)  if  the  TPDU  is  a  CC  TPDU  whose  DST-REF   parameter
           identifies an open connection (one for which a CC TPDU has
           been previously received), and the SRC-REF in the CC  TPDU
           does  not  match  the  remote reference, then a DR TPDU is
           sent back  with  DST-REF  equal  to  the  SRC-REF  of  the
           received CC TPDU and no association is made.

       f)  if none  of  the  above  cases  apply  then  the  TPDU  is
           associated with the transport connection identified by the
           DST-REF parameter.




    6.10  Data TPDU numbering

    6.10.1  Purpose

    Data TPDU numbering is used in classes  1,  2  (except  when  the
    non-use  of  explicit  flow control option is selected), 3 and 4.
    Its purpose is to enable the use of recovery,  flow  control  and
    re-sequencing functions.




    6.10.2  TPDUs and parameters used

    The procedure makes use of the following TPDU and parameter:

       DT TPDU;

       - TPDU-NR.





                                   49











    6.10.3  Procedure

    A Transport entity shall allocate the sequence number zero to the
    TPDU-NR  of  the first DT TPDU which it transmits for a transport
    connection.  For subsequent DT TPDUs sent on the  same  transport
    connection, the transport entity shall allocate a sequence number
    one greater than the previous one.

    When a DT TPDU is retransmitted, the TPDU-NR parameter shall have
    the same value as in the first transmission of that DT TPDU.

    Modulo 2**7 arithmetic shall be used  when  normal  formats  have
    been  selected  and  modulo  2**31  arithmetic shall be used when
    extended formats  have  been  selected.   In  this  International
    Standard  the  relationships 'greater than' and 'less than' apply
    to a set of contiguous TPDU numbers whose range is less than  the
    modulus  and whose starting and finishing numbers are known.  The
    term 'less than' means 'occurring sooner in the window  sequence'
    and  the term 'greater than' means 'occurring later in the window
    sequence'.




    6.11  Expedited data transfer

    6.11.1  Purpose

    Expedited data transfer procedures are selected during connection
    establishment.   The  network  normal data variant may be used in
    classes 1, 2, 3 and 4.  The network  expedited  variant  is  only
    used in class 1.




    6.11.2  Network service primitives

    The  procedure  makes  use  of  the  following  network   service
    primitives:

       a)  N-DATA;




                                   50











       b)  N-EXPEDITED DATA.




    6.11.3  TPDUs and parameter used

    The procedure makes use of the following TPDUs and parameters:

       a)  ED TPDU;

           - ED TPDU-NR.

       b)  EA TPDU;

           - YR-EDTU-NR.




    6.11.4  Procedures

    The TS-user data parameter of each T-EXPEDITED DATA request shall
    be conveyed as the data field of an Expedited Data (ED) TPDU.

    Each ED TPDU received  shall  be  acknowledged  by  an  Expedited
    Acknowledge (EA) TPDU.

    No more than one ED TPDU shall remain unacknowledged at any  time
    for each direction of a transport connection.

    An ED TPDU with a zero length data field is a protocol error.














                                   51











    NOTES

       1.  The network normal data variant is used, except  when  the
           network expedited variant (available in Class 1 only), has
           been agreed, in which case ED and EA TPDUs are conveyed in
           the  data  fields  of  N-EXPEDITED  DATA  primitives  (see
           6.2.3).

       2.  No TPDUs can be transmitted using network expedited  until
           the  CC  TPDU becomes acknowledged, to prevent the network
           expedited from overtaking the CC TPDU.




    6.12  Reassignment after failure

    6.12.1  Purpose

    The reassignment after failure procedure is used in Classes 1 and
    3 to commence recovery from an NS-provider signalled disconnect.




    6.12.2  Network service primitives

    The procedure uses the following network service primitive:

         N-DISCONNECT indication




    6.12.3  Procedure

    When an N-DISCONNECT indication  is  received  from  the  network
    connection  to  which  a  transport  connection  is assigned, the
    initiator shall apply one of the following alternatives:

       a)  if the TTR timer has not already run out and no DR TPDU is
           retained then:




                                   52











           1)  assign the transport connection to a different network
               connection  (see  6.1)  and start its TTR timer if not
               already started.

           2)  while waiting for the completion of assignment if:

               - an N-DISCONNECT indication is received,  repeat  the
                 procedure from 6.12.3.a,

               - the TTR timer expires, begin procedure 6.12.3.b.

           3)  when     reassignment     is     completed,      begin
               resynchronization (see 6.14) and:

               - if a valid TPDU is received as  the  result  of  the
                 resynchronization, stop the TTR timer, or

               - if TTR runs out, wait for the next event, or

               - if an  N-DISCONNECT  indication  is  received,  then
                 begin   either   procedure   6.12.3.a   or  6.12.3.b
                 depending on the TTR timer.

           NOTE - After the TTR timer expires and while  waiting  for
           the  next  event,  it  is  recommended  that the initiator
           starts the TWR timer.  If the TWR timer expires before the
           next  event  the  initiator  should begin the procedure in
           6.12.3.b.

       b)  if the TTR timer  has  run  out,  consider  the  transport
           connection  as  released  and  freeze  the  reference (see
           6.18).

       c)   if a DR TPDU is retained and the TTR timer  has  not  run
           out,  then  follow  the  actions  in  either  6.12.3.a  or
           6.12.3.b.

    The responder shall start its TWR timer if not  already  started.
    The arrival of the first TPDU related to the transport connection
    (because of resynchronization by  the  initiator)  completes  the
    reassignment  after  failure procedure.  The TWR timer is stopped
    and the responder  shall  continue  with  resynchronization  (see
    6.14).  If reassignment does not take place within this time, the



                                   53











    transport connection is considered released and the reference  is
    frozen (see 6.18).




    6.12.4  Timers

    The reassignment after failure procedure uses two timers:

       a)  TTR, the time to try reassignment/resynchronization timer;

       b)  TWR, the time to wait  for  reassignment/resynchronization
           timer.

    The TTR timer is used by the  initiator.   Its  value  shall  not
    exceed  two  minutes  minus  the  sum  of  the maximum disconnect
    propagation  delay  and  the  transit  delay   of   the   network
    connections  (see  note  1).   The value for the TTR timer may be
    indicated in the CR TPDU.

    The TWR timer is used by the responder.  If the reassignment time
    parameter is present in the CR TPDU, the TWR timer value shall be
    greater than the sum of the TTR timer plus the maximum disconnect
    propagation   delay   plus  the  transit  delay  of  the  network
    connections.

    If the reassignment time parameter is not present in the CR TPDU,
    a default value of 2 minutes shall be used for the TWR timer.

    NOTES

    1.  Provided that the required quality of service is met, TTR may
        be  set  to zero (i.e. no assignment).  This may be done, for
        example, if the rate of NS-provider generated disconnects  is
        very low.

    2.  Inclusion of the reassignment time parameter in the  CR  TPDU
        allows  the  responder  to  use  a  TWR  value of less than 2
        minutes.

    3.  If  the  optional  TS1  and  TS2  timers  are  used,  it   is
        recommended:



                                   54











           a)  to stop TS1 or TS2 if  running  when  TTR  or  TWR  is
               started;

           b)  to  restart  TS1  or  TS2  if   necessary   when   the
               corresponding TPDU (CR TPDU or DR TPDU respectively is
               repeated);

           c)  to select for TS1 and TS2 values greater than TTR.






































                                   55











    6.13  Retention until acknowledgement of TPDUs

    6.13.1  Purpose

    The retention until acknowledgement of TPDUs procedure is used in
    classes  1,  3  and 4 to enable and minimize retransmission after
    possible loss of TPDUs.

    The confirmation of receipt variant is used only in Class 1  when
    it has been agreed during connection establishment (see note).

    The AK variant is used in classes 3 and 4 and  also  in  Class  1
    when  the  confirmation  of  receipt  variant has not been agreed
    during connection establishment.

    NOTE - Use of confirmation of  receipt  variant  depends  on  the
    availability  of  the  network layer receipt confirmation service
    and the expected cost reduction.




    6.13.2  Network service primitives

    The procedure uses the following network service primitives:

       a)  N-DATA;

       b)  N-DATA ACKNOWLEDGE.




    6.13.3  TPDUs and parameters used

    The procedure uses the following TPDUs and parameters:

       a)  CR, CC, DR and DC TPDUs;

       b)  RJ and AK TPDUs;

           - YR-TU-NR.




                                   56











       c)  DT TPDU;

           - TPDU-NR.

       d)  ED TPDU;

           - ED-TPDU-NR.

       e)  EA TPDU;

           - YR-EDTU-NR.




    6.13.4  Procedures

    Copies of the following TPDUs shall be retained upon transmission
    to permit their later retransmission:

       CR, CC, DR, DT and ED TPDUs

    except that if a DR is sent in response to a CR TPDU there is  no
    need to retain a copy of the DR TPDU.

    In the confirmation of receipt variant, applicable only in  Class
    1,  transport  entities receiving N-DATA indications which convey
    DT TPDUs and have the confirmation request field set shall  issue
    an N-DATA ACKNOWLEDGE request (see notes 1 and 2).

    After each TPDU is acknowledged, as shown in table  5,  the  copy
    need  not  be  retained.   Copies  may also be discarded when the
    transport connection is released.













                                   57











    NOTES

       1.  It is a local matter for each transport entity  to  decide
           which N-DATA requests should have the confirmation request
           parameter set.  This decision will normally be related  to
           the amount of storage available for retained copies of the
           DT TPDUs.

       2.  Use of the confirmation request parameter may  affect  the
           quality of network service.




































                                   58















    +-------------------------------------------------------------+
    |RETAINED|              |                                     |
    |  TPDU  |   VARIANT    |    RETAINED UNTIL ACKNOWLEDGED BY   |
    |--------|--------------|-------------------------------------|
    |   CR   | both         |CC, DR or ER TPDU.                   |
    |        |              |                                     |
    |   DR   | both         |DC or DR (in case of collision) TPDU.|
    |        |              |                                     |
    |   CC   | confirmation |N-DATA Acknowledge indication, RJ,   |
    |        | of receipt   |DT, EA or ED TPDU.                   |
    |        | variant      |                                     |
    |        |              |                                     |
    |   CC   | AK variant   |RJ, DT, AK, ED or EA TPDU.           |
    |        |              |                                     |
    |   DT   | confirmation |N-DATA ACKNOWLEDGE indication cor-   |
    |        | of receipt   |responding to an N-DATA request which|
    |        | variant      |conveyed, or came after, the DT TPDU.|
    |        |              |                                     |
    |   DT   | AK variant   |AK or RJ TPDU for which the YR-TU-NR |
    |        |              |is greater than TPDU-NR in the DT    |
    |        |              |TPDU.                                |
    |        |              |                                     |
    |   ED   | both         |EA TPDU for which the YR-EDTU-NR is  |
    |        |              |equal to the ED-TPDU-NR in the       |
    |        |              |ED TPDU.                             |
    +-------------------------------------------------------------+

                    Table 5. Acknowledgement of TPDUs














                                   59











    6.14  Resynchronization

    6.14.1  Purpose

    The resynchronization procedures are used in Classes 1 and  3  to
    restore  the  transport  connection  to  normal  after a reset or
    during reassignment after failure according to 6.12.




    6.14.2  Network service primitives

    The  procedure  makes  use  of  the  following  network   service
    primitive:

         N-RESET indication.




    6.14.3  TPDUs and parameters used

    The procedure uses the following TPDUs and parameters:

       a)  CR, DR, CC and DC TPDUs

       b)  RJ TPDUs;

           - YR-TU-NR.

       c)  DT TPDU;

           - TPDU-NR

       d)  ED TPDU;

           - ED TPDU-NR.

       e)  EA TPDU;

           - YR-EDTU-NR.




                                   60











    6.14.4  Procedure

    A transport entity which is notified of the occurence  of  an  N-
    RESET   or  which  is  performing  'reassignment  after  failure'
    according to 6.12 shall carry out  the  active  resynchronization
    procedure (see 6.14.4.1) unless any of the following hold:

       a)  the transport entity is the responder (see note).  In this
           case  the  passive  resynchronization procedure is carried
           out (see 6.14.4.2).

       b)  the transport entity has  elected  not  to  reassign  (see
           6.12.3.c).  In this case no resynchronization takes place.




    6.14.4.1  Active resynchronization procedures

    The Transport  entity  shall  carry  out  one  of  the  following
    actions:

       a)  if the TTR timer has been previously started and  has  run
           out  (i.e. no valid TPDU has been received), the transport
           connection is considered as released and the reference  is
           frozen (see 6.18).

       b)  otherwise, the TTR timer shall be started  (unless  it  is
           already running) and the first applicable of the following
           actions shall be taken:

           1)  if a CR TPDU is  unacknowledged,  then  the  transport
               entity shall retransmit it;

           2)  if a DR TPDU is  unacknowledged,  then  the  transport
               entity shall retransmit it;

           3)  otherwise, the transport entity shall  carry  out  the
               data resynchronization procedures (6.14.4.3).

           The TTR timer is stopped when a valid TPDU is received.





                                   61











    6.14.4.2  Passive resynchronization procedures

    The transport entity shall not send any TPDUs until  a  TPDU  has
    been received.  The transport entity shall start its TWR timer if
    it was not already started (due to a previous N-DISCONNECT or  N-
    RESET indication).  If the timer runs out prior to the receipt of
    a valid TPDU which commence resynchronization (i.e. CR or  DR  or
    RJ  TPDU)  the transport connection is considered as released and
    the reference is released (see 6.18).

    When a valid TPDU is received the transport entity shall stop its
    TWR  timer  and  carry  out  the appropriate one of the following
    actions, depending on the TPDU:

       a)  if it is a DR TPDU, then the transport entity shall send a
           DC TPDU;

       b)  if it is  a  repeated  CR  TPDU  (see  note  1)  then  the
           transport  entity  shall  carry out the appropriate action
           from the following:

           1)  if a CC TPDU has already been sent, and  acknowledged:
               treat as a protocol error;

           2)  if a DR TPDU is unacknowledged (whether or  not  a  CC
               TPDU  is  unacknowledged): retransmit the DR TPDU, but
               setting the source reference to zero;

           3)  if the T-CONNECT response has not  yet  been  received
               from the user:  take no action;

           4)  otherwise; retransmit  the  CC  TPDU  followed  by  an
               unacknowledged ED TPDU (see note 2) and any DT TPDU;

        NOTES

           1.  A repeated CR TPDU can be identified  by  being  on  a
               network   connection   with  the  appropriate  network
               addresses and having a correct source reference.







                                   62











           2.  The transport entity should not use network  expedited
               until  the  CC  TPDU  is acknowledged (see 6.5).  This
               rule prevents the network  expedited  from  overtaking
               the CC TPDU.

       c)  if it is an RJ or  ED  TPDU  then  one  of  the  following
           actions shall be taken:

           1)  if a DR TPDU is  unacknowledged,  then  the  transport
               entity shall retransmit it;

           2)  otherwise, the transport entity shall  carry  out  the
               data resynchronization procedures (6.14.4.3).

           3)  If a CC TPDU was unacknowledge,  the  RJ  or  ED  TPDU
               should  then  be  considered  as  acknowledging the CC
               TPDU.  If a CC TPDU was never sent, the RJ TPDU should
               then be considered as a protocol error.




    6.14.4.3  Data Resynchronization Procedures

    The transport entity shall carry out the following actions in the
    following order:

       a)  (re)transmit any ED TPDU which is unacknowledged,

       b)  transmit an RJ TPDU with YR-TU-NR field set to the TPDU-NR
           of the next expected DT TPDU;















                                   63











       c)  wait for the next TPDU from the  other  transport  entity,
           unless an RJ or DR TPDU has already been received; if a DR
           TPDU is received the transport entity  shall  send  a  DC,
           freeze   the   reference,   inform   the  TS-user  of  the
           disconnection and take no further action  (i.e.  it  shall
           not  follow  the procedures in 6.14.4.3.d).  If an RJ TPDU
           is  received,  the  procedure  of  6.14.4.3.d   shall   be
           followed.   If  an  ED  TPDU is received the procedures as
           described  in  6.11  shall  be  followed.   If  it  is   a
           duplicated  ED-TPDU the transport entity shall acknowledge
           it, with an EA TPDU, discard the duplicated  ED  TPDU  and
           wait again for the next TPDU.

       d)  (re)transmit  any  DT  TPDUs  which  are   unacknowledged,
           subject  to  any  applicable  flow control procedures (see
           note);

           NOTE - The RJ TPDU may have reduced the credit.




    6.15  Multiplexing and demultiplexing

    6.15.1  Purpose

    The  multiplexing  and  demultiplexing  procedures  are  used  in
    Classes  2,  3  and  4  to allow several transport connections to
    share a network connection at the same time.




    6.15.2  TPDUs and parameters used

    The procedure makes use of the following TPDUs and parameters:

       CC, DR, DC, DT, AK, ED, EA, RJ and ER TPDUs

       - DST-REF






                                   64











    6.15.3  Procedure

    The transport entities shall be able to send and receive  on  the
    same  network  connection  TPDUs belonging to different transport
    connections.

    NOTES

       1.  When performing demultiplexing the transport connection to
           which  the  TPDUs  apply  is  determined by the procedures
           defined in 6.9.

       2.  Multiplexing allows the concatenation of  TPDUs  belonging
           to  different  transport  connections to be transferred in
           the same N-DATA primitive (see 6.4).




    6.16  Explicit Flow Control

    6.16.1  Purpose

    The explicit flow control procedure is used in Classes 2, 3 and 4
    to  regulate  the  flow  of  DT  TPDUs  independently of the flow
    control in the other layers.




    6.16.2  TPDUs and parameters used

    The procedure makes use of the following TPDUs and parameters:

       a)  CR, CC, AK and RJ TPDUs

           - CDT.

       b)  DT TPDU

           - TPDU-NR.





                                   65











       c)  AK TPDU

           - YR-TU-NR;
           - subsequence number;
           - flow control confirmation.

       d)  RJ TPDU

           - YR-TU-NR.




    6.16.3  Procedure

    The procedures differ in different classes.  They are defined  in
    the clauses specifying the separate classes.




    6.17  Checksum

    6.17.1  Purpose

    The checksum procedure is used to detect corruption of  TPDUs  by
    the NS-provider.

    NOTE - Although a checksum algorithm has to  be  adapted  to  the
    type  of  errors  expected  on the network connection, at present
    only one algorithm is defined.




    6.17.2  TPDUs and parameters used

    The procedure uses the following TPDUs and parameters:

       All TPDUs
        - checksum





                                   66











    6.17.3  Procedure

    The checksum is used only in Class 4.  It is always used for  the
    CR TPDU, and is used for all other TPDUs except if the non-use of
    the procedure was agreed during connection establishment.

    The sending  transport  entity  shall  transmit  TPDUs  with  the
    checksum  parameter  set  such  that  the  following formulas are
    satisfied:

       SUM(from i=1 to i=L) OF a[i] EQUALS <zero> (module 255)

       SUM(from i=1 to i=L) OF i*a[i] EQUALS <zero> (module 255)

    where

       i    = number (i.e. position) of an octet within the TPDU
              (see 13.2);
       a[i] = value of octet in position 1;
       L    = length of TPDU in octets.

    A  transport  entity  which  receives  a  TPDU  for  a  transport
    connection  for  which  the  use  of checksum has been agreed and
    which does not satisfy the above formulas shall discard the  TPDU
    (see also note 2).

    NOTES

       1.  An  efficient  algorithm  for  determining  the   checksum
           parameters is given in annex B.

       2.  If the checksum is incorrect, it is not possible  to  know
           with  certainty  to which transport connection the TPDU is
           related; further action may be taken for all the transport
           connections assigned to the network connection (see 6.9).

       3.  The checksum proposed is easy to calculate and so will not
           impose  a  heavy  burden  on implementations.  However, it
           will not detect insertion or loss of leading  or  trailing
           zeros and will not detect some octets misordering.






                                   67











    6.18  Frozen references

    6.18.1  Purpose

    This procedure is used in order to prevent re-use of a  reference
    while  TPDUs  associated  with  the  old use of the reference may
    still exist.




    6.18.2  Procedure

    When a transport entity determines that a  particular  connection
    is  released  it shall place the reference which it has allocated
    to the connection in a frozen state according to  the  procedures
    of the class.  While frozen, the reference shall not be re-used.

    NOTE - The  frozen  reference  procedure  is  necessary   because
    retransmission or misordering can cause TPDUs bearing a reference
    to arrive at an entity after it has released the  connection  for
    which  it  allocated the reference.  Retransmission, for example,
    can arise when the class includes either  resynchronization  (see
    6.14) or retransmission on time out (see 6.19).




    6.18.2.1  Procedure for classes 0 and 2

    The frozen reference procedure is never used for these classes.

    NOTE - However for consistency with the  other  classes  freezing
    the references may be done as a local decision.












                                   68











    6.18.2.2  Procedure for classes 1 and 3

    The frozen reference procedure is used except  in  the  following
    cases (see note 1):

       a)  when the transport entity receives a DC TPDU  in  response
           to a DR TPDU which it has sent (see note 2);

       b)  when the transport  entity  sends  a  DR  or  ER  TPDU  in
           response to a CR TPDU which it has received (see note 3);

       c)  when the transport entity has considered the connection to
           be  released  after  the  expiration of the TWR timer (see
           note 4);

       d)  when the transport entity receives a  DR  or  ER  TPDU  in
           response to a CR TPDU which it has sent.

    The period of time for which the reference remains  frozen  shall
    be greater than the TWR time.

    NOTES

       1.  However, even in these cases, for consistency freezing the
           reference may be done as a local decision.

       2.  When the DC TPDU is received it is certain that the  other
           transport entity considers the connection released.

       3.  When the DR or ER TPDU is sent the peer  transport  entity
           has not been informed of any reference assignment and thus
           cannot possibly make use of a reference (this includes the
           case where a CC TPDU was sent, but was lost).

       4.  In 6.18.2.c the transport entity has  already  effectively
           frozen the reference for an adequate period.










                                   69











    6.18.2.3  Procedure for classes 4

    The frozen reference procedure is always used in  class  4.   The
    period  for  which the reference remains frozen should be greater
    than L (see 12.2.1.1.6).




    6.19  Retransmission on time-out

    6.19.1  Purpose

    The procedure is used in Class 4 to cope with unsignalled loss of
    TPDUs by the NS-provider.




    6.19.2  TPDUs used

    The procedure makes use of the following TPDUs:

       CR, CC, DR, DT, ED, AK TPDUs.




    6.19.3  Procedure

    The procedure is specified in the procedures  for  Class  4  (see
    12.2.1.2.j).




    6.20  Resequencing









                                   70











    6.20.1  Purpose

    The resequencing procedure is  used  in  Class  4  to  cope  with
    misordering of TPDUs by the network service provider.




    6.20.2  TPDUs and parameters used

    The procedure uses the following TPDUs and parameters:

       a)  DT TPDU;
           - TPDU-NR.

       b)  ED TPDU
           - ED TPDU-NR




    6.20.3  Procedure

    The procedure is specified in the procedures  for  Class  4  (see
    12.2.3.5).




    6.21  Inactivity control

    6.21.1  Purpose

    The inactivity control procedure is used in Class 4 to cope  with
    unsignalled termination of a network connection.











                                   71











    6.21.2  Procedure

    The procedure is specified in the procedures  for  Class  4  (see
    12.2.3.3).




    6.22  Treatment of protocol errors

    6.22.1  Purpose

    The procedure for treatment of protocol errors  is  used  in  all
    classes to deal with invalid TPDUs.




    6.22.2  TPDUs and parameters used

    The procedure uses the following TPDUs and parameters:

       a)  ER TPDU;
           - reject cause;
           - TPDU in error.

       b)  DR TPDU;
           - reason code.




    6.22.3  Procedure

    A transport entity that receives a TPDU that can be associated to
    a  transport  connection and is invalid or constitutes a protocol
    error (see 3.2.16 and 3.2.17) shall take  one  of  the  following
    actions  so  as not to jeopardize any other transport connections
    not assigned to that network connection:

       a)  ignoring the TPDU;

       b)  transmitting an ER TPDU;



                                   72











       c)  resetting or closing the network connection; or

       d)  invoking the release procedures appropriate to the class.

    If an ER TPDU is sent in Class 0 it shall contain the  octets  of
    the  invalid  TPDU  up to and including the octet where the error
    was detected (see notes 3, 4 and 5).

    If the TPDU  cannot  be  associated  to  a  particular  transport
    connection then see 6.9.

    NOTES

       1.  In  general,  no  further  action  is  specified  for  the
           receiver  of  the  ER  TPDU  but it is recommended that it
           initiates the release procedure appropriate to the  class.
           If the ER TPDU has been received as an answer to a CR TPDU
           then the connection is regarded as released (see 6.6).

       2.  Care should be  taken  by  a  transport  entity  receiving
           several  invalid TPDUs or ER TPDUs to avoid looping if the
           error is generated repeatedly.

       3.  If the invalid received TPDU is greater than the  selected
           maximum  TPDU  size  it  is  possible  that  it  cannot be
           included in the invalid TPDU parameter of the ER TPDU.

       4.  It is recommended that the sender of the ER TPDU starts an
           optional   timer   TS2   to  ensure  the  release  of  the
           connection.  If the timer expires,  the  transport  entity
           shall  initiate  the release procedures appropriate to the
           class.  The timer should be stopped when a DR TPDU  or  an
           N-DISCONNECT indication is received.

       5.  In classes other  than  0,  it  is  recommended  that  the
           invalid TPDU be also included in the ER TPDU.










                                   73











    6.23  Splitting and recombining

    6.23.1  Purpose

    This procedure is used only in  class  4  to  allow  a  transport
    connection to make use of multiple network connections to provide
    additional  resilience  against  network  failure,  to   increase
    throughput, or for other reasons.




    6.23.2  Procedure

    When this procedure is being used, a transport connection may  be
    assigned  (see 6.1) to multiple network connections (see note 1).
    TPDUs for the connection  may  be  sent  over  any  such  network
    connection.

    If the use of Class 4 is not accepted  by  the  remote  transport
    entity   following   the   negotiation  rules,  then  no  network
    connection except that over which the CR TPDU was sent  may  have
    this transport connection assigned to it.

    NOTES

       1.  The resequencing function of Class 4 (see 6.20) is used to
           ensure that TPDUs are processed in the correct sequence.

       2.  Either transport  entity  may  assign  the  connection  to
           further  network  connections  of which it is the owner at
           any time during the life of the transport connection.














                                   74











       3.  In order to enable the detection  of  unsignalled  network
           connection   failures,   a   transport  entity  performing
           splitting should ensure that TPDUs are sent  at  intervals
           on  each  supporting  network  connection, for example, by
           sending   successive   TPDUs   on    successive    network
           connections,  where the set of network connections is used
           cyclically.  By  monitoring  each  network  connection,  a
           transport entity may detect unsignalled network connection
           failures, following the inactivity procedures  defined  in
           12.2.3.3.   Thus,  for each network connection no period I
           (see 12.2.3.1) may elapse without the receipt of some TPDU
           for some transport connection.


































                                   75











    7  Protocol Classes

    Table 6 gives an overview of  which  elements  of  procedure  are
    included  in  each  class.   In  certain  cases  the  elements of
    procedure within different classes are  not  identical  and,  for
    this  reason,  table  6  cannot  be  considered  as  part  of the
    definitive specification of the protocol.



    KEY TO TABLE 6

    +---|---------------------------------------------------------+
    | * |Procedure always included in class                       |
    |---|---------------------------------------------------------|
    |   |Not applicable                                           |
    |---|---------------------------------------------------------|
    | m |Negotiable procedure whose implementation in equipment is|
    |   |mandatory                                                |
    |---|---------------------------------------------------------|
    | o |Negotiable procedure whose implementation in equipment is|
    |   |optional                                                 |
    |---|---------------------------------------------------------|
    | ao|Negotiable procedure whose implementation in equipment is|
    |   |optional and where use depends on availability within the|
    |   |network service                                          |
    |---|---------------------------------------------------------|
    |(1)|Not applicable in class 2 when non-use of explicit flow  |
    |   |control is selected                                      |
    |---|---------------------------------------------------------|
    |(2)|When non use of explicit flow control has been selected, |
    |   |multiplexing may lead to degradation of quality of       |
    |   |service                                                  |
    |---|---------------------------------------------------------|
    |(3)|This function is provided in class 4 using procedures    |
    |   |other than those in the cross reference.                 |
    +-------------------------------------------------------------+









                                   76















    +----------------------------------------------------------------+
    |                             |Cross |            |  |  |  |  |  |
    |     Protocol Mechanism      |refe- |   Variant  | 0| 1| 2| 3| 4|
    |                             |rence |            |  |  |  |  |  |
    |-----------------------------|------|------------|--|--|--|--|--|
    | Assignment to network Conn. | 6.1  |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | TPDU Transfer               | 6.2  |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Segmenting and Reassembling | 6.3  |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Concatenation and Separation| 6.4  |            |  | *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Connection Establishment    | 6.5  |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Connection Refusal          | 6.6  |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Normal Release              | 6.7  | implicit   | *|  |  |  |  |
    |                             |      | explicit   |  | *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Error Release               | 6.8  |            | *|  | *|  |  |
    |-----------------------------|------|------------|--|--|--|--|--|
    | Association of TPDUs with   |      |            |  |  |  |  |  |
    | Transport Connection        | 6.9  |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | DT TPDU Numbering           | 6.10 | normal     |  | *|m(1)m| m|
    |                             |      | extended   |  |  |o(1)o| o|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Expedited Data Transfer     | 6.11 | network    |  |  | *|  |  |
    |                             |      | normal     |  | m|(1) *| *|
    |                             |      | network    |  |  |  |  |  |
    |                             |      | expedited  |  |ao|  |  |  |
    |-----------------------------|------|------------|--|--|--|--|--|
    | Reassignment after failure  | 6.12 |            |  | *|  | *|(3)
    +----------------------------------------------------------------+

   Table 6. (First of 2 pages) Allocation of procedures within classes





                                   77











    +----------------------------------------------------------------+
    | Retention until Acknowledge-|      |Conf.Receipt|  |ao|  |  |  |
    | ment of TPDUs               | 6.13 |AK          |  | m|  |  | *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Resynchronisation           | 6.14 |            |  | *|  | *|(3)
    |-----------------------------|------|------------|--|--|--|--|--|
    | Multiplexing and            |      |            |  |  |(2)  |  |
    | Demultiplexing              | 6.15 |            |  |  | *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Explicit Flow Control With  | 6.16 |            |  |  | m| *| *|
    |                    Without  |      |            | *| *| o|  |  |
    |-----------------------------|------|------------|--|--|--|--|--|
    | Checksum (use of)           | 6.17 |            |  |  |  |  | m|
    |          (non-use of)       |      |            | *| *| *| *| o|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Frozen References           | 6.18 |            |  | *|  | *| *|
    |------------------------------------|------------|--|--|--|--|--|
    | Retransmission on Timeout   | 6.19 |            |  |  |  |  | *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Resequencing                | 6.20 |            |  |  |  |  | *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Inactivity Control          | 6.21 |            |  |  |  |  | *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Treatment of Protocol Errors| 6.22 |            | *| *| *| *| *|
    |-----------------------------|------|------------|--|--|--|--|--|
    | Splitting and Recombining   | 6.23 |            |  |  |  |  | *|
    +----------------------------------------------------------------+

    Table 6. (2nd of 2 pages) Allocation of procedures within classes

















                                   78











    8  SPECIFICATION FOR CLASS 0. SIMPLE CLASS

    8.1  Functions of class 0

    Class 0 is designed to have minimum functionality.   It  provides
    only  the  functions  needed  for  connection establishment  with
    negotiation, data transfer with  segmenting  and  protocol  error
    reporting.

    Class 0 provides transport connections with flow control based on
    the  network  service  provided  flow  control, and disconnection
    based on the network service disconnection.




    8.2  Procedures for class 0

    8.2.1  Procedures applicable at all times

    The transport entities shall use the following procedures:

       a)  TPDU transfer (see 6.2);

       b)  association of TPDUs with transport connections (see 6.9);

       c)  treatment of protocol errors (see 6.22);

       d)  error release (see 6.8).




    8.2.2  Connection establishment

    The transport entities shall use the following procedures:

       a)  assignment to network connection (see 6.1); then

       b)  connection establishment (see 6.5)  and,  if  appropriate,
           connection refusal (see 6.6);

       subject to the following constraints:



                                   79











       c)  the CR and CC TPDUs shall contain no parameter field other
           than those for TSAP-ID and maximum TPDU size;

       d)  the CR and CC TPDUs shall not contain a data field.




    8.2.3  Data transfer

    The transport entities shall use the segmenting and  reassembling
    procedure (see 6.3).




    8.2.4  Release

    The transport entities shall use  the  implicit  variant  of  the
    normal release procedure (see 6.7).

    NOTE - the lifetime  of  the  transport  connection  is  directly
    correlated with the lifetime of the network connection.























                                   80











    9  SPECIFICATION FOR CLASS 1: BASIC ERROR RECOVERY CLASS

    9.1  Functions of Class 1

    Class 1 provides transport connections with flow control based on
    the  network  service  provided  flow  control,  error  recovery,
    expedited data transfer, disconnection, and also the  ability  to
    support   consecutive   transport   connections   on   a  network
    connection.

    This class provides the functionality of Class 0 plus the ability
    to  recover  after  a  failure  signalled by the Network Service,
    without involving the TS-user.




    9.2  Procedures for Class 1

    9.2.1  Procedures applicable at all times

    The transport entities shall use the following procedures:

       a)  TPDU transfer (see 6.2);

       b)  association of TPDU with transport connections (see 6.9);

       c)  treatment of protocol errors (see 6.22);

       d)  reassignment after failure (see 6.12);

       e)  resynchronization  (see  6.14),  or   reassignment   after
           failure  (see  6.12)  together with resynchronization (see
           6.14);

       f)  concatenation and separation (see 6.4);

       g)  retention until acknowledgement of TPDU  (see  6.13);  the
           variant  used,  AK or confirmation of receipt, shall be as
           selected during connection establishment (see notes);

       h)  frozen references (see 6.18).




                                   81











    NOTES

       1.  The  negotiation  of  the  variant  of   retention   until
           acknowledgement  of  TPDUs  procedure  to be used over the
           transport connection has been designed such  that  if  the
           initiator  proposes  the  use  of the AK variant (i.e. the
           mandatory implementation option),  the  responder  has  to
           accept  use  of  this option and if the initiator proposes
           use of the confirmation of receipt variant  the  responder
           is entitled to select use of the AK variant.

       2.  The AK variant makes use of AK TPDUs to release copies  of
           retained DT TPDUs.  The CDT parameter of AK TPDUs in class
           1 is not significant, and is set to 1111.

       3.  The confirmation of receipt variant is restricted to  this
           class  and  its  use  depends  on  the availability of the
           network  layer  receipt  confirmation  service,  and   the
           expected cost reduction.




    9.2.2  Connection establishment

    The transport entities shall use the following procedures:

       a)  assignment to network connection (see 6.1); then

       b)  connection establishment (see 6.5)  and,  if  appropriate,
           connection refusal (see 6.6).




    9.2.3  Data Transfer

    9.2.3.1  General

    The sending transport entity shall use the following procedures;

       a)  segmenting (see 6.3); then




                                   82











       b)  the normal format variant of DT TPDU numbering (see 6.10).

       The  receiving  transport  entity  shall  use  the   following
       procedures;

       c)  the normal variant of DT TPDU numbering (see 6.10,; then

       d)  reassembling (see 6.3).

    NOTES

       1.  The use of RJ TPDU during resynchronization (see 6.14) can
           lead  to  retransmission.  Thus the receipt of a duplicate
           DT TPDU is possible; such a DT TPDU is discarded.

       2.  It is possible to decide on a local basis to issue  an  N-
           RESET request in order to force the remote entity to carry
           out the resynchronization (see 6.14).




    9.2.3.2  Expedited Data

    The transport entities shall use either the network  normal  data
    or  the network expedited variants of the expedited data transfer
    procedure (see 6.11)  if  their  use  has  been  selected  during
    connection establishment (see note 1).

    The sending transport entity shall  not  allocate  the  same  ED-
    TPDU-NR to successive ED TPDUs (see notes 2 and 3).

    When acknowledging  an  ED  TPDU  by  sending  and  EA  TPDU  the
    transport  entity  shall put into the YR-EDTU-NR parameter of the
    EA TPDU the value received in the ED-TPDU-NR parameter of the  ED
    TPDU.

    NOTES

       1.  The negotiation of the variant of expedited data  transfer
           procedure  to  be  used  over the transport connection has
           been designed such that if the initiator proposes the  use
           of  the  network  normal  data variant (i.e. the mandatory



                                   83











           implementation option), the responder has to accept use of
           this  option  and  if  the  initiator  proposes use of the
           network expedited variant, the responder  is  entitled  to
           select use of the network normal data variant.

       2.  This numbering enables the receiving transport  entity  to
           discard  repeated  ED  TPDUs  when  resynchronization (see
           6.14) has taken place.

       3.  No other  significance  is  attached  to  the  ED  TPDU-NR
           parameter.  It is recommended, but not essential, that the
           values used be consecutive modulo 128.




    9.2.4  Release

    The transport entities shall use  the  explicit  variant  of  the
    release procedure (see 6.7).


























                                   84











    10  SPECIFICATION FOR CLASS 2 - MULTIPLEXING CLASS

    10.1  Functions of class 2

    Class 2 provides transport connections with or without individual
    flow control; no error detection or error recovery is provided.

    If the network connection resets or  disconnects,  the  transport
    connection  is terminated without the transport release procedure
    and the TS-user is informed.

    When explicit flow control is used, a credit mechanism is defined
    allowing the receiver to inform the sender of the exact amount of
    data he is willing to receive  and  expedited  data  transfer  is
    available.




    10.2  Procedures for class 2

    10.2.1  Procedures applicable at all times

    The transport entities shall use the following procedures

       a)  association of TPDUs with transport connection (see 6.9);

       b)  TPDU transfer (see 6.2);

       c)  treatment of protocol errors (see 6.22);

       d)  concatenation and separation (see 6.4);

       e)  error release (see 6.8).

       Additionally the transport  entities  may  use  the  following
       procedure:

       f)  multiplexing and demultiplexing (see 6.15).







                                   85











    10.2.2  Connection establishment

    The transport entities shall use the following procedures:

       a)  assignment to network connection (see 6.1); then

       b)  connection establishment  (see  6.5)  and,  if  applicable
           connection refusal (see 6.6).




    10.2.3  Data transfer when non use of explicit flow control

            has been selected

    If this option has been selected as a result  of  the  connection
    establishment,  the  transport  entities shall use the segmenting
    procedure (see 6.3).

    The TPDU-NR field of DT TPDUs is not significant and may take any
    value.

    NOTE- -Expedited data transfer is not applicable (see 6.5).




    10.2.4  Data transfer when use of explicit flow control

            has been selected



    10.2.4.1  General

    The sending transport entity shall use the following procedures:

       a)  segmenting (see 6.3); then

       b)  DT TPDU numbering (see 6.10);





                                   86











       The  receiving  transport  entity  shall  use  the   following
       procedures:

       c)  DT TPDU numbering (see 6.10); if a  DT  TPDU  is  received
           which is out of sequence it shall be treated as a protocol
           error; then

       d)  reassembling (see 6.3).

       The variant of the DT TPDU numbering which  is  used  by  both
       transport   entities   shall  be  that  which  was  agreed  at
       connection establishment.




    10.2.4.2  Flow control

    The transport entities shall send an initial credit (which may be
    zero)  in  the  CDT  field  of  the  CR  or CC TPDU.  This credit
    represents the initial value of the upper window  edge  allocated
    to the peer entity.

    The transport entity that receives the CR or the  CC  TPDU  shall
    consider its lower window edge as zero, and its upper window edge
    as the value of the CDT field in the received TPDU.

    In order to authorize the transmission of DT TPDUs, by its  peer,
    a  transport  entity may transmit an AK TPDU at any time, subject
    to the following constraints:

       a)  the YR-TU-NR parameter shall be at most one  greater  than
           the TPDU-NR field of the last received DT TPDU or shall be
           zero if no DT TPDU has been received;

       b)  if an AK TPDU has previously been sent the  value  of  the
           YR-TU-NR  parameter  shall  not  be lower than that in the
           previously sent AK TPDU.

       c)  the sum of the YR-TU-NR and CDT fields shall not  be  less
           than  the upper window edge allocated to the remote entity
           (see note 1).




                                   87











    A transport entity which receives an AK TPDU shall  consider  the
    YR-TU-NR  field  as its new lower window edge, and the sum of YR-
    TU-NR and CDT as its new upper window edge.  If either  of  these
    have  been  reduced  or  if the lower window edge has become more
    than one greater than the TPDU-NR  of  the  last  transmitted  DT
    TPDU, this shall be treated as a protocol error (see 6.22).

    A transport entity shall not  send  a  DT  TPDU  with  a  TPDU-NR
    outside of the transmit window (see notes 2 and 3).

    NOTES

       1.  This means that credit reduction is not applicable.

       2.  This means that a transport entity  is  required  to  stop
           sending  if  the  TPDU-NR  field of the next DT TPDU which
           would be sent would be the upper window edge.  Sending  of
           DT  TPDU  may  be  resumed if an AK TPDU is received which
           increases the upper window edge.

       3.  The rate at which a transport entity progresses the  upper
           window  edge  allocated  to its peer entity constrains the
           throughput attainable on the transport connection.




    10.2.4.3  Expedited data

    The transport entities shall follow the network normal variant of
    the expedited data transfer procedure in 6.11 if its use has been
    agreed  during  connection  establishment.   ED  and   EA   TPDUs
    respectively  are  not  subject to the flow control procedures in
    10.2.4.2.  The ED-TPDU-NR and YR-ETDU-NR  fields  of  ED  and  EA
    TPDUs respectively are not significant and may take any value.











                                   88











    10.2.5  Release

    The transport entities shall use  the  explicit  variant  of  the
    release procedure in 6.7.










































                                   89











    11  SPECIFICATION FOR CLASS 3: ERROR  RECOVERY  AND  MULTIPLEXING
    CLASS

    11.1  Functions of Class 3

    Class 3 provides the  functionality  of  Class  2  (with  use  of
    explicit  flow  control)  plus  the  ability  to  recover after a
    failure signalled by the Network Layer without involving the user
    of the transport service.

    The mechanisms used to achieve this functionality also allow  the
    implementation of more flexible flow control.




    11.2  Procedures for Class 3

    11.2.1  Procedures applicable at all times

    The transport entities shall use the following procedures:

       a)  association of TPDUs with transport connections (see 6.9);

       b)  TPDU   transfer   (see   6.2)    and    retention    until
           acknowledgement of TPDUs (AK variant only) (see 6.13);

       c)  treatment of protocol errors (see 6.22);

       d)  concatenation and separation (see 6.4);

       e)  reassignment  after  failure  (see  6.12),  together  with
           resynchronization (see 6.14);

       f)  frozen references (see 6.18).

    Additionally,  the  transport  entities  may  use  the  following
    procedure:

       g)  multiplexing and demultiplexing (see 6.15);






                                   90











    11.2.2  Connection Establishment

    The transport entities shall use the following procedures;

       a)  assignment to network connections (see 6.1); then

       b)  connection establishment (see 6.5)  and,  if  appropriate,
           together with connection refusal (see 6.6).




    11.2.3  Data Transfer

    11.2.3.1  General

    The sending transport entity shall use the following procedures:

       a)  segmenting (see 6.3), then

       b)  DT TPDU numbering (see 6.10); after receipt of an RJ  TPDU
           (see  11.2.3.2)  the  next  DT  TPDU to be sent may have a
           value which is not the previous value of TPDU-NR plus one.

    The  receiving  transport  entity   shall   use   the   following
    procedures:

       c)  DT TPDU numbering (see 6.10); the TPDU-NR  field  of  each
           received  DT  TPDU shall be treated as a protocol error if
           it exceeds the greatest such value received in a  previous
           DT TPDU by more than one (see note); then

       d)  reassembling  (see  6.3);  duplicated   TPDUs   shall   be
           eliminated before reassembling is performed.

    NOTE - The  use  of  RJ  TPDUs  (see  11.2.3.2)   can   lead   to
    retransmission and reduction of credit.  Thus the receipt of a DT
    TPDU which is a duplicate, or which is greater than or  equal  to
    the  upper  window edge allocated to the peer entity, is possible
    and is therefore not treated as a protocol error.






                                   91











    11.2.3.2  Use of RJ TPDU

    A transport entity may send an RJ TPDU at any time  in  order  to
    invite   retransmission  or  to  reduce  the  upper  window  edge
    allocated to the peer entity (see note 1).

    When an RJ TPDU is  sent,  the  following  constraints  shall  be
    respected:

       a)  the YR-TU-NR parameter shall be at most one  greater  than
           the greatest such value received in a previous DT TPDU, or
           shall be zero if no DT TPDU has  yet  been  received  (see
           note 2);

       b)  if an AK or RJ TPDU has previously been sent the  YR-TU-NR
           parameter  shall  not be lower than that in the previously
           sent AK or RJ TPDU or lower than zero if no AK or RJ TPDU.

    When a transport entity receives an RJ TPDU (see note 3):

       c)  the next DT TPDU  to  be  transmitted,  or  retransmitted,
           shall be that for which the value of the TPDU-NR parameter
           is equal to the value of the YR-TU-NR parameter of the  RJ
           TPDU;

       d)   the sum of the values of the YR-TU-NR and CDT  parameters
           of the RJ TPDU becomes the new upper window edge (see note
           4).

    NOTES

       1.  An  RJ  TPDU  can  also   be   sent   as   part   of   the
           resynchronization   (see   6.14)  and  reassignment  after
           failure (see 6.12) procedures.

       2.  It is recommended that the YR-TU-NR parameter be equal  to
           the TPDU-NR parameter of the next expected DT TPDU.

       3.  These rules are a subset of those specified for when an RJ
           TPDU  is  received during resynchronization (see 6.14) and
           reassignment after failure (see 6.12).





                                   92











       4.  This means that RJ TPDU can be used to  reduce  the  upper
           window   edge   allocated   to  the  peer  entity  (credit
           reduction).




    11.2.3.3  Flow Control

    The procedures shall be as defined in 10.2.4.2, except that:

       a)  a credit reduction may lead to the reception of a DT  TPDU
           with  a  TPDU-NR  parameter  whose value is not, but would
           have been less than the upper window edge allocated to the
           remote  entity  prior to the credit reduction.  This shall
           not be treated as a protocol error;

       b)  receipt of an AK TPDU which sets  the  lower  window  edge
           more  than  one  greater  than  the  TPDU-NR  of  the last
           transmitted DT TPDU shall not be  treated  as  a  protocol
           error,  provided  that all acknowledged DT TPDUs have been
           previously transmitted (see notes 1 and 2).
    NOTES

       1.  This  can  only  occur  during  retransmission   following
           receipt of an RJ TPDU.

       2.  The transport entity may either continue retransmission as
           before or retransmit only those DT TPDUs, not acknowledged
           by  the  AK  TPDU.   In  either  case,   copies   of   the
           acknowledged DT TPDUs, need not be retained further.




    11.2.3.4  Expedited data

    The transport entities  shall  follow  the  network  normal  data
    variant  of  expedited data transfer procedure in 6.11 if its use
    has been agreed during connection establishment.

    The sending transport entity shall  not  allocate  the  same  ED-
    TPDU-NR to successive ED TPDUs.



                                   93











    The receiving transport entity shall transmit an EA TPDU with the
    same  value  in  its YR-EDTU-NR parameter.  If, and only if, this
    number is different from that of the previously received ED  TPDU
    shall  it  generate  a  T-EXPEDITED DATA indication to convey the
    data to the TS-user (see note 2).

    NOTES

       1.  No  other  significance  is  attached  to  the  ED-TPDU-NR
           parameter.  It is recommended, but not essential, that the
           values be consecutive modulo 2**n, where n is  the  number
           of bits of the parameter.

       2.  This procedure ensures that the TS-user does  not  receive
           data corresponding to the same ED TPDU more than once.




    11.2.4  Release

    The transport entities shall use  the  explicit  variant  of  the
    release procedure in 6.7.























                                   94











    12  SPECIFICATION FOR CLASS 4: ERROR DETECTION AND RECOVERY CLASS

    12.1  Functions of Class 4

    Class 4 provides the functionality of Class 3, plus  the  ability
    to  detect  and recover from lost, duplicated, or out of sequence
    TPDUs without involving the TS-user.

    This detection of errors is made by extended use of the  DT  TPDU
    numbering  of Class 2 and Class 3, by time-out mechanisms, and by
    additional procedures.

    This class additionally detects and recovers from  damaged  TPDUs
    by using a checksum mechanism.  The use of the checksum mechanism
    must be available but its  use  or  its  non-use  is  subject  to
    negotiation.

    Further on this  class  provides  additional  resilience  against
    network failure and increased throughput capability by allowing a
    transport connection to make use of multiple network connections.




    12.2  Procedures for Class 4

    12.2.1  Procedures available at all times

    12.2.1.1  Timers used at all times

    This subclause defines timers that apply at all times in class 4.
    These timers are listed in table 7.

    This International Standard does not define specific  values  for
    the  timers,  and the derivations described in this subclause are
    not mandatory.  The values should be chosen so that the  required
    quality   of   service   can   be   provided,   given  the  known
    characteristics of the network.

    Timers that apply only to specific procedures are  defined  under
    the appropriate procedure.





                                   95















    +---------------------------|------------------------------------+
    |Symbol|        Name        |            Definition              |
    |------|--------------------|------------------------------------|
    | MLR  |NSDU lifetime       | A bound for the maximum time which |
    |      |local-to-remote     | may elapse between the transmis-   |
    |      |                    | sion of an NSDU by a local trans-  |
    |      |                    | port entity and the receipt of any |
    |      |                    | copy of it by a remote peer entity.|
    |      |                    |                                    |
    | MRL  |NSDU lifetime       | A bound for the maximum time which |
    |      |remote-to-local     | may elapse between the transmission|
    |      |                    | of an SNDU from a remote transport |
    |      |                    | entity to a remote peer entity.    |
    |      |                    |                                    |
    | ELR  |Expected maximum    | A bound for the maximum delay suf- |
    |      |transit delay       | fered by all but a small proportion|
    |      |local-to-remote     | of NSDUs transferred from the local|
    |      |                    | transport entity to a remote peer  |
    |      |                    | entity.                            |
    |      |                    |                                    |
    | ERL  |Expected maximum    | A bound for the maximum delay suf- |
    |      |transit delay       | fered by all but a small proportion|
    |      |remote-to-local     | of NSDUs transferred from a remote |
    |      |                    | transport entity to the local peer |
    |      |                    | entity.                            |
    |      |                    |                                    |
    |  AL  |Local acknowledge   | A bound for the maximum time which |
    |      |time                | can elapse between the receipt of  |
    |      |                    | a TPDU by the local transport en-  |
    |      |                    | tity from the network layer and    |
    |      |                    | the transmission of the corres-    |
    |      |                    | ponding acknowledgement.           |
    |      |                    |                                    |
    |  AR  |Remote acknow-      | As AL, but for the remote entity.  |
    |      |ledgement time      |                                    |
    +----------------------------------------------------------------+

     Table 7. (First of 2 pages) Time Parameters related to class 4




                                   96











    +----------------------------------------------------------------+
    |  T1  |Local retrans-      | A bound for the maximum time that  |
    |      |mission time        | the local transport entity will    |
    |      |                    | wait for acknowledgement before re-|
    |      |                    | transmitting a TPDU.               |
    |      |                    |                                    |
    |  R   |Persistence time    | A bound for the maximum time the   |
    |      |                    | the local transport entity will    |
    |      |                    | continue to transmit a TPDU that   |
    |      |                    | requires acknowledgement.          |
    |      |                    |                                    |
    |  N   |Maximum number of   | A bound for the maximum number of  |
    |      |transmissions       | times which the local transport    |
    |      |                    | entity will continue to transmit a |
    |      |                    | TPDU that requires acknowledgement.|
    |      |                    |                                    |
    |  L   |Bound on references | A bound for the maximum time       |
    |      |and sequence        | between the transmission of a TPDU |
    |      |numbers             | and the receipt of any acknow-     |
    |      |                    | ledgement relating to it.          |
    |      |                    |                                    |
    |  I   |Inactivity time     | A bound for the time after which   |
    |      |                    | a transport entity will, if it     |
    |      |                    | does not receive a TPDU, initiate  |
    |      |                    | the release procedure to terminate |
    |      |                    | the transport connection.          |
    |      |                    |                                    |
    |      |                    | NOTE - This parameter is required  |
    |      |                    | for protection against unsignalled |
    |      |                    | breaks in the network connection.  |
    |      |                    |                                    |
    |  W   |Window time         | A bound for the maximum time a     |
    |      |                    | transport entity will wait before  |
    |      |                    | retransmitting up to date window   |
    |      |                    | information.                       |
    +----------------------------------------------------------------+

     Table 7. (Second of 2 pages) Time Parameters related to class 4








                                   97











    12.2.1.1.1  NSDU lifetime (MLR, MRL)

    The network layer is assumed to provide,  as  an  aspect  of  its
    grade of service, for a bound on the maximum lifetime of NSDUs in
    the network.  This value may be different in  each  direction  of
    transfer  through  a network between two transport entities.  The
    values, for both directions of transfer, are assumed to be  Known
    by  the  transport entities.  The maximum NSDU lifetime local-to-
    remote (MLR) is the maximum time which  may  elapse  between  the
    transmission  of  an  NSDU from the local transport entity to the
    network and receipt of any copy of the NSDU from the  network  at
    the  remote  transport entity.  The maximum NSDU lifetime remote-
    to-local (MRL) is the maximum time which may elapse  between  the
    transmission  of  an NSDU from the remote transport entity to the
    network and receipt of any copy of the NSDU from the  network  at
    the local transport entity.




    12.2.1.1.2  Expected maximum transit delay (ELR, ERL)

    The network layer is assumed to provide,  as  an  aspect  of  its
    grade  of service, an expected maximum transit delay for NSDUs in
    the network.  This value may be different in  each  direction  of
    transfer  through  a network between two transport entities.  The
    values, for both directions of transfer, are assumed to be  Known
    by  the  transport  entities.  The expected maximum transit delay
    local-to-remote (ELR) is the maximum delay suffered by all but  a
    small  proportion  of  NSDUs transferred through the network from
    the local transport entity to the remote transport  entity.   The
    expected  maximum  transit  delay  remote-to-local  (ERL)  is the
    maximum delay suffered by all but a  small  proportion  of  NSDUs
    transfer  through the network from the remove transport entity to
    the local transport entity.











                                   98











    12.2.1.1.3  Acknowledge Time (AR, AL)

    Any transport entity is  assumed  to  provide  a  bound  for  the
    maximum  time which can elapse between its receipt of a TPDU from
    the Network Layer  and  its  transmission  of  the  corresponding
    response.   This  value  is referred to as AL.  The corresponding
    time given by the remote transport entity is referred to as AR.




    12.2.1.1.4  Local retransmission time (T1)

    The local transport entity is assumed to maintain a bound on  the
    time  it  will  wait for an acknowledgement before retransmitting
    the TPDU.  Its value is given by:

       T1 = ELR + ERL + AR + X

    where:

       ELR = Expected maximum transit delay local-to-remote,
       ERL = Expected maximum transit delay remote-to-local,
       AR  = Remote acknowledge time, and
       X   = local processing time for a TPDU.




    12.2.1.1.5  Persistence Time (R)

    The local transport entity is assumed to provide a bound for  the
    maximum  time  for  which  it  may  continue to retransmit a TPDU
    requiring positive acknowledgement.  This value is referred to as
    R.

    The  value  is  clearly  related  to  the  time  elapsed  between
    retransmission,  T1,  and the maximum number of transmissions, N.
    It is not less than T1 * N + X, where X is a  small  quantity  to
    allow  for  additional  internal  delays,  the granularity of the
    mechanism used to implement T1 and so on.  Because R is a  bound,
    the  exact value of X is unimportant as long as it is bounded and
    the value of a bound is known.



                                   99











    12.2.1.1.6  Bound on References and Sequence Numbers (L)

    A bound for the maximum time between the decision to  transmit  a
    TPDU  and the receipt of any response relating to it (L) is given
    by:

       L = MLR + MRL + R + AR

    where:

       MLR = NSDU lifetime local-to-remote,
       MRL = NSDU lifetime remote-to-local,
       R   = Persistence time, and
       AR  = Remote acknowledgement time.

    It is necessary to  wait  for  a  period  L  before  reusing  any
    reference  of  sequence number, to avoid confusion in case a TPDU
    referring to it may be duplicated or delayed.

    NOTES

       1.  In practice, the value of L may be unacceptably large.  It
           may  also  be  only  a  statistical  figure  at  a certain
           confidence level.  A smaller value may therefore  be  used
           where this still allows the required quality of service to
           be provided.

       2.  The  relationships  between  times  discussed  above   are
           illustrated in figures 3 and 4.

           [Figures 3 and 4 are omitted from this copy.]




    12.2.1.2  General Procedures

    The transport entity shall use the following procedures:

       a)  TPDU transfer (see 6.2);

       b)  association of TPDUs with transport connections (see 6.9);




                                   100











       c)  treatment of protocol errors (see 6.22);

       d)  checksum (see 6.17);

       e)  splitting and recombining (see 6.23);

       f)  multiplexing and demultiplexing (see 6.15);

       g)  retention until acknowledgement of TPDUs (see 6.13);

       h)  frozen references (see 6.18).

       j)  retransmission procedures; when  a  transport  entity  has
           some  outstanding  TPDUs  that require acknowledgement, it
           will check that no T1 interval elapses without the arrival
           of   a   TPDU  that  acknowledges  at  least  one  of  the
           outstanding TPDUs.

           If  the  timer  expires,  except  if  the   TPDU   to   be
           retransmitted  is a DT TPDU and it is outside the transmit
           window  due  credit   reduction,   the   first   TPDU   is
           retransmitted   and  the  timer  is  restarted.   After  N
           transmissions (i.e. N-1  retransmissions)  it  is  assumed
           that  useful  two-way  communication is no longer possible
           and the release procedure is  used,  and  the  TS-user  is
           informed.

       NOTES

       1)  This procedure may be implemented by different means.  For
           example:

           a)  one interval is associated with  each  TPDU.   If  the
               timer  expires the associated TPDU will be transmitted
               and the timer T1 will be restarted for all  subsequent
               TPDUs; or

           b)  one  interval  is  associated  with   each   transport
               connection:

               1)  if the transport entity transmits a TPDU requiring
                   acknowledgement, it starts timer T1;




                                   101











               2)  if the  transport  entity  receives  a  TPDU  that
                   acknowledges  one of the TPDUs to be acknowledged,
                   it restarts timer T1 unless the received  TPDU  is
                   an AK which explicitly closes the transmit window.

               3)  if the  transport  entity  receives  a  TPDU  that
                   acknowledges  the last TPDU to be acknowledged, it
                   stops timer T1.

           For a decision whether  the  retransmission  timer  T1  is
           maintained  on a per TPDU or on a per transport connection
           basis, throughput considerations have  to  be  taken  into
           account.

       2.  For DT TPDUs it is a local  choice  to  retransmit  either
           only  the  first  DT  TPDU  or  all  TPDUs  waiting for an
           acknowledgement up to the upper window edge.

       3.  It is recommended that after N transmissions of a DT TPDU,
           the  transport  entity  waits  T1 + W + MRL  to  provide a
           higher possibility of receiving an acknowledgement  before
           entering  the  release  phase.  For other TPDU types which
           may be retransmitted,  it  is  recommended  that  after  N
           transmissions  the  transport  entity  waits  T1 + MRL  to
           provide a higher possibility  of  receiving  the  expected
           reply.




    12.2.2  Procedures for Connection Establishment

    12.2.2.1  Timers used in Connection Establishment

    There are no timers specific to connection establishment.











                                   102











    12.2.2.2  General Procedures

    The transport entities shall use the following procedures:

       a)  assignment to network connection (see 6.1);

       b)  connection establishment  (see  6.5)  and  if  appropriate
           connection  refusal (see 6.6) together with the additional
           procedures:

           1)  a connection is not considered established  until  the
               successful  completion  of a 3-way TPDU exchange.  The
               sender of a CR TPDU shall respond to the corresponding
               CC  TPDU  by  immediately  sending  a DT, ED, DR or AK
               TPDU;

           2)  as a result of duplication  or  retransmission,  a  CR
               TPDU  may  be  received  specifying a source reference
               which is already in use  with  the  sending  transport
               entity.   If  the receiving transport entity is in the
               data transfer phase, having completed the  3-way  TPDU
               exchange  procedure,  or  is waiting for the T-CONNECT
               response from the  TS-user,  the  receiving  transport
               entity  shall ignore such a TPDU.  Otherwise a CC TPDU
               shall be transmitted;

           3)  as a result of duplication  or  retransmission,  a  CC
               TPDU  may  be  received  specifying a paired reference
               which is already  in  use.   The  receiving  transport
               entity  shall  only  acknowledge the duplicate CC TPDU
               according to the procedure in 12.2.2.2.b.1.

           4)  a CC TPDU may be received specifying a reference which
               is  in  the frozen state.  The response to such a TPDU
               shall be a DR TPDU;

           5)  the retransmission procedures (see 12.2.1.2) are  used
               for both the CR TPDU and CC TPDU.








                                   103











    12.2.3  Procedures for Data Transfer

    12.2.3.1  Timers used in Data Transfer

    The data transfer procedures use two additional timers:

       a)  Inactivity Time (I)

       To  protect  against  unsignalled  breaks   in   the   network
       connection  or failure of the peer transport entity (half-open
       connections), each transport entity  maintains  an  inactivity
       interval.  The interval must be greater than E.

       NOTE - A suitable value for I is given by
       2 * (N * maximum of (T1, W))
       unless local needs indicate another more appropriate value.

       b)  Window Time (W)

       A transport entity maintains a timer interval to  ensure  that
       there  is  a  bound  on  the  maximum  interval between window
       updates.




    12.2.3.2  General Procedures for data transfer

    The transport entities shall use the following procedures:

       a)  inactivity control    (see 6.21);

       b)  expedited data        (see 6.11);

       c)  explicit flow control (see 6.16).

    The sending transport entity shall use the  following  procedures
    in the following order:

       d)  segmenting            (see 6.3);

       e)  DT TPDU numbering     (see 6.10).




                                   104











    The receiving transport entity shall use the following procedures
    in the following order:

       f)  DT TPDU numbering     (see 6.10);

       g)  resequencing          (see 6.20);

       h)  reassembling          (see 6.3).




    12.2.3.3  Inactivity Control

    If the interval of the inactivity timer I expires without receipt
    of  some  TPDU,  the  transport entity shall initiate the release
    procedures.   To  prevent  expiration  of  the  remote  transport
    entity's  inactivity  timer when no data is being sent, the local
    transport entity must send AK TPDUs at suitable intervals in  the
    absence  of  data, having regard to the probability of TPDU loss.
    The window synchronization procedures (see 12.2.3.8) ensure  that
    this requirement is met.

    NOTE - It is likely that the release procedure initiated  due  to
    the  expiration  of  the  inactivity  timer  will  fail,  as such
    expiration indicates probable failure of the  supporting  network
    connection or of the remote transport entity.




    12.2.3.4  Expedited Data

    The transport entities  shall  follow  the  network  normal  data
    variant  of the expedited data transfer procedures (see 6.11), if
    the use of transport expedited service  option  has  been  agreed
    during connection establishment.

    The ED TPDU shall have  a  TPDU-NR  which  is  allocated  from  a
    separate sequence space from that of the DT TPDUs.

    A transport entity shall allocate the sequence number zero to the
    ED  TPDU-NR  of  the  first  ED  TPDU  which  it  transmits for a



                                   105











    transport connection.  For subsequent ED TPDU sent  on  the  same
    transport  connection,  the  transport  entity  shall  allocate a
    sequence number one greater than the previous one.

    Modulo 2**7 arithmetic shall be used  when  normal  formats  have
    been  selected  and  modulo  2**31  arithmetic shall be used when
    extended formats have been selected.

    The receiving transport entity shall transmit an EA TPDU with the
    same  sequence number in its YR-ETDU-NR field.  If this number is
    one greater than in the previously in sequence received ED  TPDU,
    the  receiving transport entity shall transfer the data in the ED
    TPDU to the TS-user.

    If  a  transport  entity  does  not  receive  an   EA   TPDU   in
    acknowledgement  to an ED TPDU it shall follow the retransmission
    procedures (see note and 12.2.1.2).

    The sender of an ED TPDU shall not send  any  new  DT  TPDU  with
    higher TPDU-NR until it receives the EA TPDU.

    NOTE - This procedure ensures that ED TPDUs are delivered to  the
    TS-user  in  sequence  and that the TS-user does not receive data
    corresponding to the same  ED  TPDU  more  than  once.   Also  it
    guarantees  the  arrival  of  the ED TPDU before any subsequently
    sent DT TPDU.




    12.2.3.5  Resequencing

    The receiving transport entity shall deliver all DT TPDUs to  the
    TS-user in the order specified by the sequence number field.

    DT TPDUs received out-of-sequence but within the transmit  window
    shall not be delivered to the TS-user until all in-sequence TPDUs
    have been received.  DT TPDU received out-of-sequence and outside
    the transmit window shall be discarded.

    Duplicate TPDUs can  be  detected  because  the  sequence  number
    matches  that  of  preciously  received  TPDUs.  Sequence numbers
    shall not be reused for the period L after  their  previous  use.



                                   106











    Otherwise,  a new, valid TPDU could be confused with a duplicated
    TPDU which had previously been received and acknowledged.

    Duplicated DT TPDUs shall be acknowledged, since  the  duplicated
    TPDU  may  be  the  result of a retransmission resulting from the
    loss of an AK TPDU.

    The data contained in a duplicated DT TPDU shall be ignored.




    12.2.3.6  Explicit Flow Control

    The transport entities shall send an initial  credit  (which  may
    take  the  value  0)  in the CDT field of the CR TPDU or CC TPDU.
    This credit represents the initial value of the upper window edge
    of the peer entity.

    The transport entity which receives the CR TPDU or CC TPDU  shall
    consider  its lower window edge as zero and its upper window edge
    as the value in the CDT field in the received TPDU.

    In order to authorize the transmission of DT TPDUs by its peer, a
    transport entity may transmit an AK TPDU at any time.

    The sequence number of an AK TPDU shall not exceed  the  sequence
    number of the next expected DT TPDU, i.e. it shall not be greater
    than the highest sequence number of a received DT TPDU, plus one.

    A transport entity may send a duplicate AK  TPDU  containing  the
    same  sequence  number,  CDT, and subsequence number field at any
    time.

    A transport entity which receives an AK TPDU shall  consider  the
    value of the YR-TU-NR field as its new lower window edge if it is
    greater than any previously received in a YR-TU-NR field, and the
    sum  of  YR-TU-NR and CDT as its new upper window edge subject to
    the  procedures  for  sequencing  AK  TPDUs  (see  12.2.3.8).   A
    transport  entity shall not transmit or retransmit a DT TPDU with
    a sequence number outside the transmit window.





                                   107











    12.2.3.7  Sequencing of received AK TPDUs

    To allow a receiving transport  entity  to  properly  sequence  a
    series  of AK TPDUs that all contain the same sequence number and
    thereby use the  correct  CDT  value,  AK  TPDUs  may  contain  a
    subsequence  parameter.   For  the  purpose  of  determining  the
    correct sequence of AK TPDUs,  the  absence  of  the  subsequence
    parameter  shall  be equivalent to the value of the parameter set
    to zero.

    An AK TPDU is defined to be in sequence if:

       a)  the sequence number is  greater  than  in  any  previously
           received AK TPDU, or

       b)  the sequence  number  is  equal  to  the  highest  in  any
           previously received AK TPDU, and the subsequence parameter
           is greater than in any previously received AK TPDU  having
           the same value for YR-TU-NR field, or

       c)  the sequence number and  subsequence  parameter  are  both
           equal  to  the  highest in any previously received AK TPDU
           and the credit field is greater than or equal to  that  in
           any  previously  received AK TPDU having the same YR-TU-NR
           field.

    A transport entity is not required  to  include  the  subsequence
    number  in  its  AK  TPDUs.   It  may  also choose not to use the
    subsequence parameter in sequencing  received  AK  TPDUs.   If  a
    transport   entity  chooses  not  to  recognize  the  subsequence
    parameter it shall still sequence received AK TPDUs according  to
    12.2.3.7.a.

    When the receiving transport entity recognizes an out of sequence
    AK TPDU it shall ignore it.











                                   108











    12.2.3.8  Procedure for transmission of AK TPDUs

    12.2.3.8.1  Retransmission of AK TPDUs for window synchronization

    A transport entity shall not allow an interval W to pass  without
    the  transmission  of an AK TPDU.  if the transport entity is not
    using  the  procedure  following  setting  CDT   to   zero   (see
    12.2.3.8.3)   or   reduction   of  the  upper  window  edge  (see
    12.2.3.8.4), and does not have to acknowledge receipt of  any  DT
    TPDU,  then  it  shall achieve this by retransmission of the most
    recent AK TPDU, with up-to-date window information.

    NOTE - The use  of  the  procedures  defined  in  12.2.3.8.3  and
    12.2.3.8.4  are  optional for any transport entity.  The protocol
    operates correctly either with or without these procedures  which
    are defined to enhance the efficiency of its operation.  However,
    if these procedures are not used then W must  be  set  to  ensure
    enough  retransmissions  of  the AK TPDU so that release of TC is
    avoided.    The   value   of   W    should    be    approximately
    W = (T1 * N)/(N-1) when the procedures are not used.




    12.2.3.8.2  Sequence control for transmission of AK TPDUs

    To allow the receiving transport entity to process  AK  TPDUs  in
    the  correct  sequence, as described in 12.2.3.7, the subsequence
    parameter may be included following reduction  of  CDT.   If  the
    value  of  the subsequence number to be transmitted is zero, then
    the parameter should be omitted.

    The value of the subsequence parameter, if used,  shall  be  zero
    (either  explicitly  or  by  absence  of  the  parameter)  if the
    sequence number is greater than the field in previous  AK  TPDUs,
    sent by the transport entity.

    If the sequence number is the same as the previous AK  TPDU  sent
    and  the  CDT  field is equal to or greater than the CDT field in
    the previous AK TPDU sent  then  the  subsequence  parameter,  if
    used, shall be equal to that in the previously sent AK TPDU.

    If the sequence number is the same as the previous AK  TPDU  sent



                                   109











    and  the CDT field is less than the value of the CDT field in the
    previous AK TPDU sent than the subsequence  parameter,  if  used,
    shall be one greater than the value in the previous AK TPDU..




    12.2.3.8.3  Retransmission of AK TPDUs after CDT set to zero

    Due to the possibility of loss of AK TPDUs, the upper window edge
    as  perceived by the transport entity transmitting an AK TPDU may
    differ from that perceived by the intended recipient.   To  avoid
    the possibility of extra delay, the retransmission procedure (see
    12.2.1.2) should be followed for an AK  TPDU,  if  it  opens  the
    transmit window which has previously been closed by sending an AK
    TPDU with CDT field set to zero.

    The  retransmission  procedure,  if  used,  terminates  and   the
    procedure in 12.2.3.8.1 is used when:

       a)  an  AK  TPDU  is  received  containing  the  flow  control
           confirmation  parameter,  whose lower window edge and your
           subsequence fields are equal to the  sequence  number  and
           subsequence  number  in  the  retained  AK  TPDU and whose
           credit field is not zero.

       b)  an AK TPDU is transmitted with a  sequence  number  higher
           than  that  in the retained AK TPDU, due to reception of a
           DT TPDU whose sequence number is equal to the lower window
           edge;

       c)  N transmissions of the retained AK TPDU have taken  place.
           In  this  case  the  transport  entity  shall  continue to
           transmit the AK TPDU at an interval of W.

    An AK TPDU which is subject to the retransmission procedure shall
    not  contain  the  flow control confirmation parameter.  If it is
    required to transmit this parameter concurrently,  an  additional
    AK  TPDU  shall  be  transmitted  having  the  same values in the
    sequence, subsequence (if applicable) and credit fields.






                                   110











    12.2.3.8.4  Retransmission procedures following reduction of the

                upper window edge

    This subclause specifies the procedure for retransmission  of  AK
    TPDUs  after a transport entity has reduced the upper window edge
    (see 12.2.3.6) or for an AK TPDU with the  credit  field  set  to
    zero.  This procedure is used until the lower window edge exceeds
    the highest value of the upper window edge ever transmitted (i.e.
    the  value  existing  at  the  time of credit reduction, unless a
    higher value is retained from a previous credit reduction).

    This retransmission procedure should be followed for any AK  TPDU
    which increases the upper window edge, unless an AK TPDU has been
    received containing a flow control confirmation parameter,  which
    corresponds to an AK TPDU transmitted following credit reduction,
    for which the sum of the credit  and  lower  window  edge  fields
    (i.e.  the  upper  window  edge  value) is greater than the lower
    window edge (YR-TU-NR field) of the transmitted AK TPDU.

    This retransmission procedure for any particular  AK  TPDU  shall
    terminate when:

       a)  an  AK  TPDU  is  received  containing  the  flow  control
           confirmation  parameter,  whose lower window edge and your
           subsequence fields are equal to the lower window edge  and
           subsequence number in the retained AK TPDU; or

       b)  N transmissions of the retained AK TPDU have taken  place.
           In  this  case  the  transport  entity  shall  continue to
           transmit the AK TPDU at an interval of W.

    An AK TPDU which is subject to the retransmission procedure shall
    not  contain  the  flow control confirmation parameter.  If it is
    required to transmit this parameter concurrently,  an  additional
    AK  TPDU  shall  be  transmitted  having  the  same values in the
    sequence, subsequence (if applicable) and credit fields.

       NOTE - Retransmission of AK TPDUs is normally  not  necessary,
       except   following   explicit  closing  of  the  window  (i.e.
       transmission of an AK TPDU with CDT field set  to  zero).   If
       data  is  available  to  be  transmitted,  the  retransmission
       procedure for DT TPDUs will ensure that an AK TPDU is received



                                   111











       granting  further  credit  where this is available.  Following
       credit  reduction,  this  may  no  longer   be   so,   because
       retransmission  may be inhibited by the credit reduction.  The
       rules described in this clause avoid extra delay.

    The rules for determining whether  to  apply  the  retransmission
    procedure  to  an  AK  TPDU  may  be  expressed  alternatively as
    follows.  Let:

         LWE  = lower window edge
         UWE  = upper window edge
         KUWE = lower bound on upper window edge
                held by remote transport entity

    The retransmission procedure is to be used whenever:

         (UWE>LWE) and (KUWE = LWE)

    i.e. when the window is opened and it  is  not  known  definitely
    that the remote transport entity is aware of this.

    KUWE is maintained as follows.  When credit is reduced,  KUWE  is
    set to LWE.  Subsequently, it is increased only upon receipt of a
    valid flow control  confirmation  (i.e.  one  which  matches  the
    retained  lower  window edge and subsequence).  In this case KUWE
    is set to the implied upper  window  edge  of  the  flow  control
    confirmation,  i.e.  the  sum  of  its lower window edge and your
    credit fields.  By this means, it can be  ensured  that  KUWE  is
    always  less than or equal to the actual upper window edge in use
    by the transmitter of DT TPDUs.




    12.2.3.9  Use of Flow Control Confirmation parameter

    At any time, an AK TPDU may  be  transmitted  containing  a  flow
    control  confirmation  parameter.   The  lower  window edge, your
    subsequence and your credit fields  shall  be  set  to  the  same
    values  as the corresponding fields in the most recently received
    in sequence AK TPDU.





                                   112











    An AK TPDU  containing  a  flow  control  confirmation  parameter
    should be transmitted whenever:

       a)  a duplicate AK TPDU is received, with the value of  YR-TU-
           NR, CDT, and subsequence fields equal to the most recently
           received AK TPDU,  but  not  itself  containing  the  flow
           control confirmation parameter;

       b)  an AK TPDU is received which increases  the  upper  window
           edge  but  not the lower window edge, and the upper window
           edge was formerly equal to the lower window edge; or

       c)  an AK TPDU is received which increases  the  upper  window
           edge  but  not the lower window edge, and the lower window
           edge is lower than the highest value of the  upper  window
           edge  received  and  subsequently  reduced (i.e. following
           credit reduction).




    12.2.4  Procedures for Release

    12.2.4.1  Timers used for Release

    There are no timers used only for release.




    12.2.4.2  General Procedures for Release

    The transport entity shall use the  explicit  variant  of  normal
    release (see 6.7).












                                   113











    13  STRUCTURE AND ENCODING OF TPDUs

    13.1  Validity

    Table 8 specifies those TPDUs which are valid for each class  and
    the code for each TPDU.

       KEY:  xxxx (bits 4-1):  used to signal the CDT (set to 0000
                               in classes 0 and 1)

             zzzz (bits 4-1):  used to signal CDT in classes 2, 3,
                               4 set to 1111 in class 1

             NF:               Not available when the non explicit
                               flow control option is selected.

             NRC:              Not available when the receipt
                               confirmation option is selected.

    NOTE  - These codes are  already  in  use  in  related  protocols
    defined by standards oganizations other than CCITT/ISO.

























                                   114
















    +-------------------------------------------------------------+
    |                       | Validity within   |       |         |
    |                       |     classes       |  see  |  Code   |
    |                       |-------------------| Clause|         |
    |                       | 0 | 1 | 2 | 3 | 4 |       |         |
    |-----------------------|-------------------|-------|---------|
    |CR Connection Request  | x | x | x | x | x | 13.3  |1110 xxxx|
    |-----------------------|---|---|---|---|---|-------|---------|
    |CC Connection Confirm  | x | x | x | x | x | 13.4  |1101 xxxx|
    |-----------------------|---|---|---|---|---|-------|---------|
    |DR Disconnect Request  | x | x | x | x | x | 13.5  |1000 0000|
    |-----------------------|---|---|---|---|---|-------|---------|
    |DC Disconnect Confirm  |   | x | x | x | x | 13.6  |1100 0000|
    |-----------------------|---|---|---|---|---|-------|---------|
    |DT Data                | x | x | x | x | x | 13.7  |1111 0000|
    |-----------------------|---|---|---|---|---|-------|---------|
    |ED Expedited Data      |   | x | NF| x | x | 13.8  |0001 0000|
    |-----------------------|---|---|---|---|---|-------|---------|
    |AK Data Acknowledgement|   |NRC| NF| x | x | 13.9  |0110 zzzz|
    |-----------------------|---|---|---|---|---|-------|---------|
    |EA Expedited Data      |   | x | NF| x | x | 13.10 |0010 0000|
    |Acknowledgement        |   |   |   |   |   |       |         |
    |-----------------------|---|---|---|---|---|-------|---------|
    |RJ Reject              |   | x |   | x |   | 13.11 |0101 zzzz|
    |-----------------------|---|---|---|---|---|-------|---------|
    |ER TPDU Error          | x | x | x | x | x | 13.12 |0111 0000|
    |-----------------------|---|---|---|---|---|-------|---------|
    |                       |   |   |   |   |   |   -   |0000 0000|
    |                       |---|---|---|---|---|-------|---------|
    |not available          |   |   |   |   |   |   -   |0011 0000|
    | (see note)            |---|---|---|---|---|-------|---------|
    |                       |   |   |   |   |   |   -   |1001 xxxx|
    |                       |---|---|---|---|---|-------|---------|
    |                       |   |   |   |   |   |   -   |1010 xxxx|
    +-------------------------------------------------------------+

                           Table 8. TPDU code




                                   115











    13.2  Structure

    All the transport protocol data units (TPDUs)  shall  contain  an
    integral  number  of  octets.   The octets in a TPDU are numbered
    starting from 1 and increasing in the order they are put into  an
    NSDU.  The bits in an octet are numbered from 1 to 8, where bit 1
    is the low-ordered bit.

    When consecutive octets are used to represent  a  binary  number,
    the lower octet number has the least significant value.

    NOTE -  When the encoding  of  a  TPDU  is  represented  using  a
    diagram in this clause, the following representation is used:

       a)  octets are shown with the lowest  numbered  octet  to  the
           left, higher numbered octets being further to the right;

       b)  within an octet, bits are shown with bit 8 to the left and
           bit 1 to the right.

    TPDUs shall contain, in the following order:

       a)  the header, comprising:

           1)  the length indicator (LI) field;

           2)  the fixed part;

           3)  the variable part, if present;

       b)  the data field, if present.

    This structure is illustrated below:

         octet    1   2 3 4 ... n   n+1  ...    p  p+1 ...end
                +---+-------------+--------------+-----------+
                | LI| fixed part  | variable part| data field|
                +---+-------------+--------------+-----------+
                <---------------   header ------>







                                   116











    13.2.1  Length indicator field

    This field is contained in the first octet  of  the  TPDUs.   The
    length  is  indicated by a binary number, with a maximum value of
    254 (1111 1110).  The length indicated shall be the header length
    in   octets   including  parameters,  but  excluding  the  length
    indicator field and user data, if any.  The value 255 (1111 1111)
    is  reserved  for  possible  extensions.  If the length indicated
    exceeds the size of the NS-user data which is present, this is  a
    protocol error.




    13.2.2  Fixed part

    13.2.2.1  General

    The fixed part contains frequently occurring parameters including
    the  code of the TPDU.  The length and the structure of the fixed
    part are defined by the TPDU code and in  certain  cases  by  the
    protocol  class  and the formats in use (normal or extended).  If
    any of the parameters of the fixed part have an invalid value, or
    if the fixed part cannot be contained with the header (as defined
    by LI) this is a protocol error.

    NOTE - In  general,  the  TPDU  code  defines  the   fixed   part
    unambiguously.   However,  different  variants  may exist for the
    same TPDU code (see normal and extended formats).




    13.2.2.2  TPDU code

    This field contains the TPDU code and is contained in octet 2  of
    the  header.  It is used to define the structure of the remaining
    header.  This field is a  full  octet  except  in  the  following
    cases:







                                   117











          1110 xxxx     Connection Request
          1101 xxxx     Connection Confirm
          0101 xxxx     Reject
          0110 xxxx     Data Acknowledgement

    where xxxx (bits 4-1) is used to signal the CDT.

    Only those codes defined in 13.1 are valid.




    13.2.3  Variable part

    The  variable  part  is  used  to  define  less  frequently  used
    parameters.   If  the  variable part is present, it shall contain
    one or more parameters.

    NOTE - The number of parameters that  may  be  contained  in  the
    variable  part  is  indicated  by the length of the variable part
    which is LI minus the length of the fixed part.

    Each parameter contained within the variable part  is  structured
    as follows:

                   Bits   8    7    6    5    4    3    2    1
         Octets          +------------------------------------+
          n+1            |          Parameter Code            |
                         |------------------------------------|
          n+2            |          Parameter Length          |
                         |          Indication (e.g. m)       |
                         |------------------------------------|
          n+3            |                                    |
                         |          Parameter Value           |
          n+2+m          |                                    |
                         +------------------------------------|










                                   118











    - The parameter code field is coded in binary;

      NOTE - Without extensions, it provides a maximum number of  255
      different  parameters.   However,  as noted below, bits 8 and 7
      cannot take every possible  value,  so  the  practical  maximum
      number  of  different  parameters is less.  Parameter code 1111
      1111 is reserved for possible extensions of the parameter code.

    - The  parameter  length  indication  indicates  the  length,  in
      octets, of the parameter value field.

      NOTE - The length is indicated by a binary number,  m,  with  a
      theoretical  maximum value of 255.  The practical maximum value
      of m is lower.  For example, in the case of a single  parameter
      contained within the variable part, two octets are required for
      the parameter code and the parameter length indication  itself.
      Thus, the value of m is limited to 248.  For larger fixed parts
      of the header and for each succeeding  parameter,  the  maximum
      value of m decreases.

    - The parameter value field contains the value of  the  parameter
      identified in the parameter code field.

    - No parameter codes use bits 8 and 7 with the value 00.

    - The parameters defined in the  variable  part  may  be  in  any
      order.   If  any  parameter  is duplicated then the later value
      shall be used.  A parameter not defined in  this  International
      Standard  shall  be treated as a protocol error in any received
      TPDU except a CR TPDU; in a CR TPDU it shall  be  ignored.   If
      the  responding  transport  entity  selects a class for which a
      parameter of the CR TPDU is not defined,  it  may  ignore  this
      parameter,   except  the  class  and  option,  and  alternative
      protocol class parameters which shall always be interpreted.  A
      parameter  defined in this International Standard but having an
      invalid value shall be treated  as  a  protocol  error  in  any
      received  TPDU  except  a  CR  TPDU.   In a CR TPDU it shall be
      treated as a protocol error if  it  is  either  the  class  and
      option  parameter  or  the  alternative  class parameter or the
      additional option  parameter;  otherwise  it  shall  be  either
      ignored or treated as a protocol error.





                                   119











    13.2.3.1  Checksum Parameter (Class 4 only)

    All TPDU types may contain a 16-bit checksum parameter  in  their
    variable  part.  This parameter shall be present in a CR TPDU and
    shall be present in all other TPDUs except when the  non  use  of
    checksum option is selected.

    Parameter Code:    1100 0011
    Parameter Length:  2
    Parameter Value:   Result of checksum algorithm.  This algorithm
                       is specified in 6.17.




    13.2.4  Data Field

    This field contains transparent user data.  Restrictions  on  its
    size are noted for each TPDU.




    13.3  Connection Request (CR) TPDU

    The length of the CR TPDU shall not exceed 128 octets.




    13.3.1  Structure

    The structure of the CR TPDU shall be as follows:

     1    2        3        4       5   6    7    8    p  p+1...end
    +--+------+---------+---------+---+---+------+-------+---------+
    |LI|CR CDT|     DST - REF     |SRC-REF|CLASS |VARIAB.|USER     |
    |  |1110  |0000 0000|0000 0000|   |   |OPTION|PART   |DATA     |
    +--+------+---------+---------+---+---+------+-------+---------+







                                   120











    13.3.2  LI

    See 13.2.1




    13.3.3  Fixed Part (Octets 2 to 7)

    The structure of this part shall contain:

       a)  CR       :  Connection Request Code:  1110.  Bits  8-5  of
                       octet 2;

       b)  CDT      :  Initial Credit  Allocation  (set  to  0000  in
                       Classes  0  and  1 when specified as preferred
                       class).  Bits 4-1 of octet 2;

       c)  DST-REF  :  Set to zero;

       d)  SRC-REF  :  Reference selected  by  the  transport  entity
                       initiating   the   CR  TPDU  to  identify  the
                       requested transport connection;

       e)  CLASS and   Bits 8-5 of octet 7 defines the preferred
           OPTION:     transport protocol class to be  operated  over
                       the   requested  transport  connection.   This
                       field shall take one of the following values:

                       0000  Class 0
                       0001  Class 1
                       0010  Class 2
                       0011  Class 3
                       0100  Class 4

    The CR TPDU contains the first choice of class in the fixed part.
    Second  and subsequent choices are listed in the variable part if
    required.

    Bits 4-1 of octet 7 define options to be used  on  the  requested
    transport connection as follows:





                                   121












    +-----|-----------------------------------------------+
    | BIT |                  OPTION                       |
    |-----|-----------------------------------------------|
    |  4  |  0   always                                   |
    |     |                                               |
    |  3  |  0   always                                   |
    |     |                                               |
    |  2  | =0   use of normal formats in all classes     |
    |     | =1   use of extended formats in Classes 2,3,4 |
    |     |                                               |
    |  1  | =0   use of explicit flow control in Class 2  |
    |     | =1   no use of explicit flow control in       |
    |     |      Class 2                                  |
    +-----------------------------------------------------+


    NOTES

    1.  The connection establishment procedure  (see  6.5)  does  not
        permit  a given CR TPDU to request use of transport expedited
        data transfer service (additional option  parameter)  and  no
        use of explicit flow control in Class 2 (bit 1 = 1).

    2.  Bits 4 to 1 are always zero in Class 0 and have no meaning.




    13.3.4  Variable Part (Octets 8 to p)

    The following parameters are permitted in the variable part:

       a)  Transport Service Access Point Identifier (TSAP-ID)

           Parameter code:    1100 0001 for  the  identifier  of  the
                              Calling TSAP.
                              1100 0010 for  the  identifier  of  the
                              Called TSAP
           Parameter length:  not defined in this standard
           Parameter value:   identifier of  the  calling  or  called
                              TSAP respectively.




                                   122











           If a TSAP-ID is given in the request it may be returned in
           the confirmation.

       b)  TPDU size

           This parameter defines the proposed maximum TPDU size  (in
           octets including the header) to be used over the requested
           transport connection.  The coding of this parameter is:

           Parameter code:    1100 0000
           Parameter Length:  1 octet

           Parameter value:

           0000 1101  8192 octets (not allowed in Class 0)
           0000 1100  4096 octets (not allowed in Class 0)
           0000 1011  2048 octets
           0000 1010  1024 octets
           0000 1001   512 octets
           0000 1000   256 octets
           0000 0111   128 octets

           Default value is 0000 0111 (128 octets)

       c)  Version Number (not used  if  Class  0  is  the  preferred
           class)

           Parameter code:         1100 0100
           Parameter length:       1 octet
           Parameter value field:  0000 0001

           Default value is 0000 0001 (not used in Class 0)

       d)  Security Parameters (not used if Class 0 is the  preferred
           class)

           This parameter is user defined.
           Parameter code:    1100 0101
           Parameter length:  user defined
           Parameter value:   user defined

       e)  Checksum (used only if class 4  is  the  preferred  class)
           (see 13.2.3.1)



                                   123











           This parameter shall  always  be  present  in  a  CR  TPDU
           requesting   Class  4,  even  if  the  checksum  selection
           parameter is used  to  request  non-use  of  the  checksum
           facility.

       f)  Additional Option Selection (not used if Class  0  is  the
           preferred class)

           This parameter defines the selection  to  be  made  as  to
           whether or not additional options are to be used.

           Parameter code:    1100 0110
           Parameter length:  1
           Parameter value:


           +------------------------------------------------------+
           |BIT|                   OPTION                         |
           |---|--------------------------------------------------|
           | 4 | 1=  Use of network expedited in Class 1          |
           |   | 0=  Non use of network expedited in Class 1      |
           |   |                                                  |
           | 3 | 1=  Use of receipt confirmation in Class 1       |
           |   | 0=  Use of explicit AK variant in Class 1        |
           |   |                                                  |
           | 2 | 0=  16-bit checksum defined in 6.17 is to be used|
           |   |     in Class 4                                   |
           |   | 1=  16-bit checksum defined in 6.17 is not to be |
           |   |     used on Class 4                              |
           |   |                                                  |
           | 1 | 1=  Use of transport expedited data transfer     |
           |   |     service                                      |
           |   | 0=  No use of transport expedited data transfer  |
           |   |     service                                      |
           +------------------------------------------------------+

           Default value is 000 0001

           Bits related to options particular  to  a  class  are  not
           meaningful  if that class is not proposed and may take any
           value.





                                   124











       g)  Alternative protocol class(es) (not used if Class 0 is the
           preferred class)

           Parameter code:    1100 0111
           Parameter length:  n

           Parameter value encoded as a sequence  of  single  octets.
           Each octet is encoded as for octet 7 but with bits 4-1 set
           to zero (i.e. no alternative option selections permitted).

       h)  Acknowledge Time (used only if class 4  is  the  preferred
           class)

           This parameter conveys the maximum acknowledge time AL  to
           the  remote  transport  entity.  It is an indication only,
           and is not subject to negotiation (see 12.2.1.1.3)
           Parameter code:    1000 0101
           Parameter length:  2
           Parameter value:   n, a binary number where n is the
                              maximum acknowledge time, expressed
                              in milliseconds.

       j)  Throughput (not used if class 0 is the preferred class)

           Parameter code:    1000 1001
           Parameter length:  12 or 24
           Parameter value:

           1st 12 Octets:     maximum throughput, as follows:

           1st 3 octets:      Target   value,   calling-called   user
                              direction
           2nd 3 octets:      Min.  acceptable,  calling-called  user
                              direction
           3rd 3 octets:      Target   value,   called-calling   user
                              direction
           4th 3 octets:      Min.  acceptable,  called-calling  user
                              direction

           2nd 12 octets (optional):  average throughput, as follows:

           5th 3 octets:      Target   value,   calling-called   user
                              direction



                                   125











           6th 3 octets:      Min.  acceptable,  calling-called  user
                              direction
           7th 3 octets:      Target   value,   called-calling   user
                              direction
           8th 3 octets:      Min.  acceptable,  called-calling  user
                              direction

           Where the average throughput is omitted, it is  considered
           to have the same value as the maximum throughput.

           Values are expressed in octets per second.

       k)  Residual error rate (not used if class 0 is the  preferred
           class)

           Parameter code:    1000 1001
           Parameter length:  12
           1st 3 octets:      Target   value,   calling-called   user
                              direction
           2nd 3 octets:      Min.  acceptable,  calling-called  user
                              direction
           3rd 3 octets:      Target   value,   called-calling   user
                              direction
           4th 3 octets:      Min.  acceptable,  called-calling  user
                              direction

       l)  Residual error rate (not used if class 0 is the  preferred
           class)

           Parameter code:    1000 0110
           Parameter length:  3
           Parameter value:
           1st octet:         Target value, power of 10
           2nd octet:         Min. acceptable, power of 10
           3rd octet:         TSDU size of interest, expressed  as  a
                              power of 2

       m)  Priority (not used if class 0 is the preferred class)

           Parameter code:    1000 0111
           Parameter length:  2
           Parameter value:   Integer (0 is the highest priority)




                                   126











       n)  Transit delay (not used if class 0 is the preferred class)

           Parameter code:    1000 1000
           Parameter length:  8
           Parameter value:
           1st 2 octets:      Target   value,   calling-called   user
                              direction
           2nd 2 octets:      Max.  acceptable,  calling-called  user
                              direction
           3rd 2 octets:      Target   value,   called-calling   user
                              direction
           4th 2 octets:      Max.  acceptable,  called-calling  user
                              direction

           Values are expressed in milliseconds, and are based upon a
           TSDU size of 128 octets.

       p)  assignment time (not used if class 0, 2 or class 4 is  the
           preferred class)

           This parameter conveys the Time to Try Reassignment  (TTR)
           which  will  be  used  when  following  the  procedure for
           Reassignment after Failure (see 6.12).
           Parameter code:    1000 1011
           Parameter length:  2
           Parameter value:   n, a binary number where n is  the  TTR
                              value expressed in seconds.




    13.3.5  User Data (Octets p+1 to the end)

    No user data are permitted in Class 0, and are  optional  in  the
    other classes.  Where permitted, it may not exceed 32 octets.











                                   127











    13.4  Connection Confirm (CC) TPDU

    13.4.1  Structure

    The structure of the CC TPDU shall be as follows:

      1      2     3   4   5   6     7     8     p   p+1 ...end
    +---+----+---+---+---+---+---+-------+--------+-------------+
    |LI | CC  CDT|DST-REF|SRC-REF| CLASS |VARIABLE| USER        |
    |   |1101|   |   |   |   |   | OPTION|  PART  | DATA        |
    +---+----+---+---+---+---+---+-------+--------+-------------+




    13.4.2  LI

    See 13.2.1




    13.4.3  Fixed Part (Octets 2 to 7)

    The fixed part shall contain:

       a)  CC:  Connection Confirm Code:  1101.  Bits 8-5 of octet 2;

       b)  CDT:  Initial Credit Allocation (set to 0000 in Classes  0
           and 1).  Bits 4-1 of octet 2;

       c)  DST-REF:  Reference identifying  the  requested  transport
           connection at the remote transport entity;

       d)  SRC-REF:  Reference identifying  the  requested  transport
           connection at the remote transport entity.

       e)  Class and Option:  Defines the selected transport protocol
           class   and  option  to  be  operated  over  the  accepted
           transport connection according to  the  negotiation  rules
           specified in 6.5;





                                   128











    13.4.4  Variable Part (Octet 8 to p)

    The parameters are defined in  13.3.4  and  are  subject  to  the
    constraints states in 6.5 (connection establishment).  Parameters
    ruled out by selection of an alternative class and  option  shall
    not be present.




    13.4.5  User Data (Octets p+1 to the end)

    No user data are permitted in class 0, and are  optional  in  the
    other  classes.   Where  permitted,  it may not exceed 32 octets.
    The user data are subject to the constraints of  the  negotiation
    rules (see 6.5).




    13.5  Disonnect Request (DR) TPDU

    13.5.1  Structure

    The structure of the DR TPDU shall be as follows:

      1     2      3     4    5     6     7    8     p   p+1 ...end
    +--+---------+----+-----+----+-----+------+--------+----------+
    |LI|    DR   | DST-REF. | SRC-REF. |REASON|VARIABLE| USER     |
    |  |1000 0001|    |     |    |     |      |  PART  | DATA     |
    +--+---------+----+-----+----+-----+------+--------+----------+




    13.5.2  LI

    See Section 13.2.1








                                   129











    13.5.3  Fixed Part (Octets 2 to 7

    The fixed part shall contain:

       a)  DR:  Disconnect Request Code:  1000 0000;

       b)  DST-REF:  Reference identifying the  transport  connection
           at the remote transport entity;

       c)  SRC-REF:  Reference identifying the  transport  connection
           at  the  transport entity initiating the TPDU.  Value zero
           when reference is unassigned;

       d)  REASON:   Defines  the  reason   for   disconnecting   the
           transport  connection.   This  field shall take one of the
           following values:

           The following values may be used for Classes 1 to 4:

           1)  128 + 0 - Normal  disconnect  initiated   by   session
                  entity
           2)  128 + 1 - Remote  transport   entity   congestion   at
                  connect request time
           3) *128 + 2 - Connection negotiation failed (i.e. proposed
                  class(es) not supported)
           4)  128 + 3 - Duplicate source reference detected for  the
                  same pair of NSAPS.
           5)  128 + 4 - Mismatched references
           6)  128 + 5 - Protocol error
           7)  128 + 6 - Not used
           8)  128 + 7 - Reference overflow
           9)  128 + 8 - Connection request refused on  this  network
                  connection
           10) 128 + 9 - Not used
           11) 128 + 10- Header or parameter length invalid











                                   130











       The following values can be used for all classes:

           12)       0 - Reason not specified
           13)       1 - Congestion at TSAP
           14)      *2 - Session entity not attached to TSAP
           15)      *3 - Address unknown

       NOTE - Reasons marked with an asterisk (*) may be reported  to
       the TS-user as persistent, other reasons as transient.




    13.5.4  Variable Part (Octets 8 to p)

    The variable part may contain

       a)  A parameter allowing additional information related to the
           clearing of the connection.

           Parameter code:    1110 0000
           Parameter length:  Any value provided that the  length  of
                              the DR TPDU does not exceed the maximum
                              agreed TPDU size or  128  when  the  DR
                              TPDU  is  used  during  the  connection
                              refusal procedure
           Parameter value:   Additional information.  The content of
                              this field is user defined.

       b)  Checksum (see 13.2.3.1)




    13.5.5  User Data (Octets p+1 to the end)

    This field shall not exceed 64 octets and is used  to  carry  TS-
    user   data.   The  successful  transfer  of  this  data  is  not
    guaranteed by the transport protocol.  When a DR TPDU is used  in
    Class 0 it shall not contain this field.






                                   131











    13.6  Disconnect Confirm (DC) TPDU

    This TPDU shall not be used in Class 0.




    13.6.1  Structure

    The structure of DC TPDU shall be as follows:

      1       2         3     4     5     6    7        p
    +----+-----------+-----+-----+-----+-----+-------+--------+
    | LI |    DC     |  DST REF  |  SRC REF  | Variable Part  |
    |    | 1100 0000 |     |     |     |     |       |        |
    +----+-----------+-----+-----+-----+-----+-------+--------+




    13.6.2  LI

    See 13.2.1




    13.6.3  Fixed Part (Octets 2 to 6)

    The fixed part shall contain:

       a)  DC:  Disconnect Confirm Code:  1100 0000;

       b)  DST-REF:  See 13.4.3;

       c)  SRC-REF:  See 13.4.3.










                                   132











    13.6.4  Variable Part

    The variable part shall contain the  checksum  parameter  if  the
    condition in (see 13.2.3.1) applies.




    13.7  Data (DT) TPDU

    13.7.1  Structure

    Depending on the class and the option the DT TPDU shall have  one
    of the following structures.

       a)  Normal format for Classes 0 and 1

      1       2         3          4       5             ... end
    +----+-----------+-----------+------------ - - - - - -------+
    | LI |    DT     |  TPDU-NR  | User Data                    |
    |    | 1111 0000 |  and EOT  |                              |
    +----+-----------+-----------+------------ - - - - - -------+


       b)  Normal format for Classes 2, 3 and 4

      1      2       3   4     5     6       p    p+1       ... end
    +----+---------+---+---+-------+-----+-------+----------- - - -+
    | LI |   DT    |DST-REF|TPDU-NR|Variable Part|User Data        |
    |    |1111 0000|   |   |and EOT|     |       |                 |
    +----+---------+---+---+-------+-----+-------+----------- - - -+

       c)  Extended Format for  use  in  Classes  2,  3  and  4  when
           selected during connection establishment.

      1      2       3   4   5,6 7,8  9     p  p+1      ... end
    +----+---------+---+---+---------+--------+---------- - - -+
    | LI |   DT    |DST-REF| TPDU-NR |Variable|User Data       |
    |    |1111 0000|   |   | and EOT |  Part  |                |
    +----+---------+---+---+---------+--------+---------- - - -+






                                   133











    13.7.2  LI

    See 13.2.1




    13.7.3  Fixed Part

    The fixed part shall contain:

       a)  DT:       Data Transfer Code:  1111 0000;

       b)  DST-REF:  See 13.4.3;

       c)  EOT:      When set to ONE, indicates that the  current  DT
                     TPDU is the last data unit of a complete DT TPDU
                     sequence (End of TSDU).  EOT is bit 8 of octet 3
                     in  class  0  and 1, bit 8 of octet 5 for normal
                     formats for classes 2, 3 and  4  and  bit  8  of
                     octet 8 for extended formats;

       d)  TPDU-NR:  TPDU send Sequence Number  (zero  in  Class  0).
                     May  take  any value in Class 2 without explicit
                     flow control.  TPDU-NR is bits 7-1  of  octet  3
                     for  classes  0  and  1, bits 7-1 of octet 5 for
                     normal formats in classes 2, 3 and 4, octets  5,
                     6  and  7  together with bits 7-1 of octet 8 for
                     extended formats.

       NOTE - Depending on the class, the fixed part of the  DT  TPDU
       uses the following octets:

            Classes 0 and 1:                Octets 2 to 3;
            Classes 2,3,4 normal format:    Octets 2 to 5;
            Classes 2,3,4 extended format:  Octets 2 to 8.










                                   134











    13.7.4  Variable Part

    The variable part shall contain the  checksum  parameter  if  the
    condition in see 13.2.3.1 applies.




    13.7.5  User Data Field

    This field contains data of the TSDU being transmitted.

    NOTE - The length of this field is limited to the negotiated TPDU
    size  for  this  transport connection minus 3 octets in Classes 0
    and 1, and minus 5 octets (normal  header  format)  or  8  octets
    (extended  header  format)  in  the  other classes.  The variable
    part, if present, may further reduce the size of  the  user  data
    field.




    13.8  Expedited Data (ED) TPDU

    The ED TPDU shall not be used in Class 0 or in Class 2  when  the
    no explicit flow control option is selected or when the expedited
    data transfer service has not been selected for the connection.




    13.8.1  Structure

    Depending on the format negotiated  at  connection  establishment
    the ED TPDU shall have one of the following structures:











                                   135











       a)  Normal Format (classes 1, 2, 3, 4)

     1     2       3   4      5     6        p    p+1     ... end
    +--+---------+---+---+---------+-----+-------+---------------+
    |LI|   ED    |DST-REF|EDTPDU-NR|Variable Part|User Data      |
    |  |0001 0000|   |   |and EOT  |     |       |               |
    +--+---------+---+---+---------+-----+-------+---------------+


       b)  Extended Format (for use in classes 2, 3, 4 when  selected
           during connection establishment).


     1     2       3   4   5,6,7,8  9        p    p+1     ... end
    +--+---------+---+---+---------+-----+-------+---------------+
    |LI|   ED    |DST-REF|EDTPDU-NR|Variable Part|User Data      |
    |  |0001 0000|   |   |and EOT  |     |       |               |
    +--+---------+---+---+---------+-----+-------+---------------+




    13.8.2  LI

    See 13.2.1




    13.8.3  Fixed Part

    The fixed part shall contain:

       a)  ED:          Expedited Data code:  0001 0000;

       b)  DST-REF:     see 13.4.3;

       c)  ED-TPDU-NR:  Expedited TPDU  identification  number.   ED-
                        TPDU-NR is used in classes 1, 3 and 4 and may
                        take any value in Class 2.  Bits 7-1 of octet
                        5  for  normal  formats and octets 5, 6 and 7
                        together  with  bits  7-1  of  octet  8   for
                        extended formats;



                                   136











       d)  EOT:         end of TSDU always set to 1 (bit 8 of octet 5
                        for  normal  formats and bit 8 of octet 8 for
                        extended formats).

       NOTE - Depending on the format the fixed part shall be  either
       octets 2 to 5 or 2 to 8.




    13.8.4  Variable Part

    The variable part shall contain the  checksum  parameter  if  the
    condition defined in 13.2.3.1 applies.




    13.8.5  User Data Field

    This field contains an expedited TSDU (1 to 16 octets).




    13.9  Data Acknowledgement (AK) TPDU

    This TPDU shall not be used for Class 0 and Class 2 when the  "no
    explicit  flow  control" option is selected, and for Class 1 when
    the network receipt confirmation option is selected.




    13.9.1  Structure

    Depending on the class and option agreed the AK TPDU  shall  have
    one of the following structures:








                                   137











       a)  Normal Format (classes 1, 2, 3, 4)

     1     2      3     4        5        6        p
    +--+--------+----------+------------+---------------+
    |LI| AK CDT | DST-REF  |  YR-TU-NR  | Variable Part |
    |  | 0110   |          |            |               |
    +--+--------+----------+------------+---------------+

       b)  Extended Format (for use in classes 2, 3, 4 when  selected
           during connection establishment).

     1      2      3     4    5,6,7,8   9,10 11    p
    +--+---------+---------+----------+-----+--------+
    |LI|    AK   | DST-REF | YR-TU-NR | CDT |Variable|
    |  |0110 0000|         |          |     |  Part  |
    +--+---------+---------+----------+-----+--------+




    13.9.2  LI

    See 13.2.1




    13.9.3  Fixed Part

    The fixed part shall contain (in octet 2 to 5 when normal  format
    is used, 2 to 10 otherwise) the following parameters:

       a)  AK:        Acknowledgement code:  0110;

       b)  CDT:       Credit Value (set to 1111 in  class  1).   Bits
                      4-1  of octet 2 for normal formats and octets 9
                      and 10 for extended formats;

       c)  DST-REF:   See 13.4.3;

       d)  YR-TU-NR:  Sequence number indicating the next expected DT
                      TPDU  number.   For normal formats, bits 7-1 of
                      octet 5; bit 8 of octet 5  is  not  significant



                                   138











                      and  shall  take  the  value  0.   For extended
                      formats, octets 5, 6 and 7 together  with  bits
                      7-1  of  octet  8;  bit  8  of  octet  8 is not
                      significant and shall take the value 0.




    13.9.4  Variable Part

    The variable part contains the following parameters:

       a)  Checksum  See  13.2.3.1  if  the  condition  in   13.2.3.1
           applies;

       b)  Subsequence  number  when  optionally   used   under   the
           conditions  defined in class 4.  This parameter is used to
           ensure  that  AK  TPDUs  are  processed  in  the   correct
           sequence.    If  it  is  absent,  this  is  equivalent  to
           transmitting the parameter with a value of zero.
           Parameter code:    1000 1010
           Parameter length:  2
           Parameter value:   16-bit sub-sequence number;

       c)  Flow Control Confirmation Class  4  when  optionally  used
           under  the  conditions defined in class 4.  This parameter
           contains a copy of the information received in an AK TPDU,
           to  allow  the transmitter of the AK TPDU to be certain of
           the  state  of  the  receiving   transport   entity   (see
           12.2.3.10).
           Parameter code:    1000 1011
           Parameter length:  8
           Parameter value:   defined as follows

           1.  Lower Window Edge (32 bits)
               Bit 8 of  octet  4  is  set  to  zero,  the  remainder
               contains  the  YR-TU-NR value of the received AK TPDU.
               When normal format has been selected, only  the  least
               significant  seven  bits  (bits  1 to 7 of octet 1) of
               this field are significant.

           2.  Your Sub-Sequence (16 bits)
               Contains the value of the  sub-sequence  parameter  of



                                   139











               the  received  AK  TPDU, or zero if this parameter was
               not present.

           3.  Your Credit (16 bits)
               Contains the value of the CDT field of the received AK
               TPDU.   When normal format has been selected, only the
               least significant four bits (bits 1 to 4 of  octet  1)
               of this field are significant.




    13.10  Expedited Data Acknowledgement (EA) TPDU

    This TPDU shall not be used for Class 0 and Class 2 when  the  no
    explicit flow control option is selected.




    13.10.1  Structure

    Depending on the option (normal  or  extended  format)  the  TPDU
    structure shall be:

       a)  Normal Format (classes 1,2,3,4)

            1      2      3     4      5      6        p
           +--+---------+---------+----------+------+------+
           |LI|   EA    | DST-REF | YR-TU-NR |Variable Part|
           |  |0010 0000|         |          |      |      |
           +--+---------+---------+----------+------+------+

       b)  Extended Format (for use in classes 2, 3,  4  if  selected
           during connection establishment)

            1      2      3     4    5,6,7,8  9        p
           +--+---------+---------+----------+------+------+
           |LI|   EA    | DST-REF | YR-TU-NR |Variable Part|
           |  |0010 0000|         |          |      |      |
           +--+---------+---------+----------+------+------+





                                   140











    13.10.2  LI

    See 13.2.1




    13.10.3  Fixed Part

    The fixed part shall contain (in octets 2 to 5 when normal format
    is used, in octets 2 to 8 otherwise):

       a)  EA:          Expedited Acknowledgement code:  0010 0000;

       b)  DST-REF:     See 13.4.3;

       c)  YR-EDTU-NR:  Identification   of   the   ED   TPDU   being
                        acknowledged.  May take any value in Class 2;

                        For normal formats bits 7-1 of octet 5; bit 8
                        of  octet 5 is not significant and shall take
                        the value 0.  For  extended  formats,  octets
                        5,6  and 7 together with bits 7-1 of octet 8;
                        bit 8 of octet 8 is not significant and shall
                        take the value 0.




    13.10.4  Variable Part

    The  variable  part  may  contain  the  checksum  parameter  (see
    13.2.3.1).




    13.11  Reject (RJ) TPDU

    The RJ TPDU shall not be used in Classes 0, 2 and 4.






                                   141











    13.11.1  Structure

    The RJ TPDU shall have one of the following formats:

       a)  Normal Format (classes 1 and 3)

             1      2        3     4       5
           +----+----------+----+----+------------+
           | LI |  RJ CDT  | DST-REF |  YR-TU-NR  |
           |    | 0101     |    |    |            |
           +----+----------+----+----+------------+

       b)  Extended Format (for use in classes 3 if  selected  during
           connection establishment).

            1       2       3     4   5,6,7,8   9,10
           +--+-----------+----+----+----------+-----+
           |LI|     RJ    | DST-REF | YR-TU-NR | CDT |
           |  | 0101 0000 |    |    |          |     |
           +--+-----------+----+----+----------+-----+




    13.11.2  LI

    See 13.2.1.




    13.11.3  Fixed Part

    The fixed part shall contain (in octets 2 to 5 when normal format
    is used, in octets 2 to 10 otherwise):

       a)  RJ:        Reject Code:  0101.  Bits 8-5 of octet 2;

       b)  CDT:       Credit Value (set to 1111 in  class  1).   Bits
                      4-1  of octet 2 for normal formats and octets 9
                      and 10 for extended formats;

       c)  DST-REF:   See 13.4.3;



                                   142











       d)  YR-TU-NR:  Sequence number indicating  the  next  expected
                      TPDU from which retransmission should occur.

                      For normal formats, bits 7-1 of octet 5; bit  8
                      of  octet  5  is not significant and shall take
                      the value 0.  For extended formats, octets  5,6
                      and  7 together with bits 7-1 of octet 8; bit 8
                      of octet 8 is not significant  and  shall  take
                      the value 0.




    13.11.4  Variable Part

    There is no variable part for this TPDU type.




    13.12  TPDU Error (ER) TPDU

    13.12.1  Structure

      1        2       3     4     5         6   P
    +----+-----------+----+----+--------+----------+
    | LI |    ER     | DST-REF | Reject | Variable |
    |    | 0111 0000 |    |    | Cause  |   Part   |
    +----+-----------+----+----+--------+----------+




    13.12.2  LI

    See 13.2.1










                                   143











    13.12.3  Fixed Part

    The fixed part shall contain:

       a)  ER:            TPDU Error Code:  0111 0000;

       b)  DST-REF:       See 13.4.3;

       c)  REJECT CAUSE:  0000 0000  Reason not specified
                          0000 0001  Invalid parameter code
                          0000 0010  Invalid TPDU type
                          0000 0011  Invalid parameter value.




    13.12.4  Variable Part

    The variable part may contain the following parameters:

       a)  Invalid TPDU

           Parameter code:    1100 0001

           Parameter length:  number of octets of the value field

           Parameter Value:  Contains the bit pattern of the rejected
                              TPDU  up  to  and  including  the octet
                              which  caused  the   rejection.    This
                              parameter is mandatory in Class 0.

       b)  Checksum

           This parameter  shall  be  present  if  the  condition  in
           13.2.3.1 applies.











                                   144











    SECTION THREE.  CONFORMANCE




    14  CONFORMANCE

    14.1

    A system claiming to implement the procedures specified  in  this
    standard shall comply with the requirements in 14.2 - 14.5.




    14.2

    The system shall implement Class 0 or Class 2 or both.




    14.3

    If the system implements Class  3  or  Class  4,  it  shall  also
    implement Class 2.




    14.4

    If the system implements Class 1, it shall also  implement  Class
    0.












                                   145











    14.5

    For each class which the system claims to implement,  the  system
    shall be capable of:

       a)  initiating CR TPDUs or responding  to  CR  TPDUs  with  CC
           TPDUs or both;

       b)  responding to any other TPDU and operating network service
           in accordance with the procedures for the class;

       c)  operating all the  procedures  for  the  class  listed  as
           mandatory in table 9;

       d)  operating  those  procedures  for  the  class  listed   as
           optional in table 9 for which conformance is claimed;

       e)  handling all TPDUs of lengths up to the lesser value of:

           1)  the maximum length for the class;

           2)  the maximum for which conformance is claimed.

           NOTE - This requirement indicates that TPDU sizes  of  128
           octets are always implemented.




    14.6  Claims of Conformance Shall State

       a)  which class or classes of protocol are implemented;

       b)  whether the system is capable of initiating or  responding
           to CR TPDUs or both;

       c)  which of the procedures listed as optional in table 9  are
           implemented;








                                   146











       d)  the maximum size of TPDU implemented; the value  shall  be
           chosen  from the following list and all values in the list
           which are less than this maximum shall be implemented:

           128, 256, 512, 1024, 2048, 4096 or 8192 octets.









































                                   147















    +------------------------------------------------------------+
    |       PROCEDURE          |    CLASS 0     |    CLASS 1     |
    |--------------------------|----------------|----------------|
    |                          |                |                |
    |TPDU with checksum        | NA             | NA             |
    |TPDU wihout checksum      | mandatory      | mandatory      |
    |                          |                |                |
    |--------------------------|----------------|----------------|
    |Expedited data transfer   | NA             | mandatory      |
    |No expedited data transfer| mandatory      | mandatory      |
    |                          |                |                |
    |--------------------------|----------------|----------------|
    |Flow control in Class 2   | NA             | NA             |
    |No flow control in Class 2| NA             | NA             |
    |                          |                |                |
    |--------------------------|----------------|----------------|
    |Normal formats            | mandatory      | mandatory      |
    |Extended formats          | NA             | NA             |
    |                          |                |                |
    |--------------------------|----------------|----------------|
    |Use of receipt confirma-  |                |                |
    |tion in Class 1           | NA             | optional       |
    |No use of receipt con-    |                |                |
    |firmation in Class 1      | NA             | mandatory      |
    |                          |                |                |
    |--------------------------|----------------|----------------|
    |Use of network expedited  |                |                |
    |in Class 1                | NA             | optional       |
    |No use of network expedi- |                |                |
    |ted in Class 1            | NA             | mandatory      |
    |                          |                |                |
    +------------------------------------------------------------+

    NA indicates the procedure is not applicable.
            Table 9. (First of 2 pages) Provision of options







                                   148











    +------------------------------------------------------------+
    |       PROCEDURE          | CLASS 2  | CLASS 3  |  CLASS 4  |
    |--------------------------|----------|----------|-----------|
    |                          |          |          |           |
    |TPDU with checksum        |NA        |NA        |mandatory  |
    |TPDU wihout checksum      |mandatory |mandatory |optional   |
    |                          |          |          |           |
    |--------------------------|----------|----------|-----------|
    |Expedited data transfer   |mandatory |mandatory |mandatory  |
    |No expedited data transfer|mandatory |mandatory |mandatory  |
    |                          |          |          |           |
    |--------------------------|----------|----------|-----------|
    |Flow control in Class 2   |mandatory |NA        |NA         |
    |No flow control in Class 2|optional  |NA        |NA         |
    |                          |          |          |           |
    |--------------------------|----------|----------|-----------|
    |Normal formats            |mandatory |mandatory |mandatory  |
    |Extended formats          |optional  |optional  |optional   |
    |                          |          |          |           |
    |--------------------------|----------|----------|-----------|
    |Use of receipt confirma-  |          |          |           |
    |tion in Class 1           |NA        |NA        |NA         |
    |No use of receipt con-    |          |          |           |
    |firmation in Class 1      |NA        |NA        |NA         |
    |                          |          |          |           |
    |--------------------------|----------|----------|-----------|
    |Use of network expedited  |          |          |           |
    |in Class 1                |NA        |NA        |NA         |
    |No use of network expedi- |          |          |           |
    |ted in Class 1            |NA        |NA        |NA         |
    |                          |          |          |           |
    +------------------------------------------------------------+

    NA indicates the procedure is not applicable
           Table 9. (Second of 2 pages) Provision of options











                                   149











    ANNEX A - STATE TABLES


    This annex is an integral part of the body of this  International
    Standard.

    This Annex provides a more precise description of  the  protocol.
    In  the  event  of a discrepancy between the description in these
    tables and that contained in the text, the text takes precedence.

    The state table also  define  the  mapping  between  service  and
    protocol events that TS-users can expect.

    This annex describes the transport protocol  in  terms  of  state
    tables.    The  state  tables  show  the  state  of  a  transport
    connection, the events that occur in the  protocol,  the  actions
    taken and the resultant state.

    [The state tables have been omitted from this copy.]



























                                   150











    ANNEX B - CHECKSUM ALGORITHMS

    (This annex is provided for information for implementors  and  is
    not an integral part of the body of the standard.)



    B.1  SYMBOLS

    The following symbols are used:

       C0  variables used in the algorithms
       C1

       i   number (i.e. position) of an octet within  the  TPDU  (see
           12.1)

       n   number (i.e. position) of the first octet of the  checksum
           parameter

       L   length of the complete TPDU

       X   value of the first octet of the checksum parameter

       Y   value of the second octet of the checksum parameter.



    B.2  ARITHMETIC CONVENTIONS

    Addition is performed in one of the two following modes:

       a)  modulo 255 arithmetic;

       b)  one's  complement  arithmetic  in  which  if  any  of  the
           variables  has the value minus zero (i.e. 255) it shall be
           regarded as though it was plus zero (i.e. 0).



    B.3  ALGORITHM FOR GENERATING CHECKSUM PARAMETERS





                                   151











    B.3.1  Set up the complete TPDU with the value  of  the  checksum
    parameter field set to zero.


    B.3.2  Initialize C0 and C1 to zero.



    B.3.3  Process each octet sequentially from i = 1 to L by:

       a)  adding the value of the octet to C0; then

       b)  adding the value of C0 to C1.



    B.3.4  Calculate X and Y such that

       X = -C1 + (L-n).CO
       Y =  C1 - (L-n+1).C0



    B.3.5  Place the values  X  and  Y  in  octets  n  and  (n  +  1)
    respectively.

    [A Note describing the above algorithm in  mathematical  notation
    has been omitted from this copy.]



    B.4  ALGORITHM FOR CHECKING CHECKSUM PARAMETERS


    B.4.1  Initialize C0 and C1 to zero.


    B.4.2  Process each octet of the TPDU sequentially from i = 1  to
    L by:

       a)  adding the value of the octet to C0; then

       b)  adding the value of C0 to C1.



                                   152











    B.4.3  If, when all the octets have  been  processed,  either  or
    both  of  C0  and  C1  does not have the value zero, the checksum
    formulas in 6.17 have not been satisfied.

    NOTE - The nature of  the  algorithm  is  such  that  it  is  not
    necessary to compare explicitly the stored checksum bytes.








































                                   153











    Explanatory Report

    The Transport Layer Services and Protocols have been under  study
    within  TC97/SC16  since  1979.   It  was  agreed  by SC16 at its
    meeting in Berlin, November 1980, that the Service  and  Protocol
    documents would be progressed concurrently.

    At the SC16 meeting in Tokyo, June 1982, authorization was  given
    (Resolutions  10  and  11,  SC16  N  1233)  to  register both the
    Transport  Service  Definition   and   the   Transport   Protocol
    Specification  as Draft Proposals and to circulate them for a 90-
    day ballot.

    Following the close of the letter ballot  an  Editing  Group  was
    convened to integrate editorial comments and make recommendations
    regarding proposed technical  changes.   The  revised  texts  and
    proposed recommendations were reviewed by SC16/WG6 at its meeting
    in Vienna, March 1983.  The revised text of the Transport Service
    Definition  (SC16  N  1435) was accepted as presented whereas the
    revised  text  of  the  Transport  Protocol  (SC16  N  1433)  was
    subjected  to  an  additional 60-day ballot.  Consistent with the
    SC16 decision regarding the parallel progression of both DPs, the
    Transport   Service  Definition  was  held  in  abeyance  pending
    acceptance by SC16 of the revised Transport Protocol  (Second  DP
    8073).

    A second Editing Group was  convened  in  Paris,  July  1983,  to
    review  comments  submitted  on  Second DP 8073.  The Minutes and
    Report of this meeting are documented in SC16 N1575  and  N  1574
    respectively.   The  two  negative votes (DIN and NNI) were given
    full consideration.  The NNI concerns have been fully covered  in
    the revised text prepared by the Editing Group.  The DIN concerns
    have been taken into account  and  incorporated  in  their  large
    majority.

    Upon the recommendation of the Editing Group, DP 8072 and DP 8073
    are  forwarded  for registration as Draft International Standards
    and letter ballot of ISO Member Bodies.








                                   154