Network Working Group                                        Vinton Cerf
Request for Comments: 675                                    Yogen Dalal
NIC: 2                                                     Carl Sunshine
INWG: 72                                                   December 1974


        SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM

                        December 1974 Version


1.  INTRODUCTION

  This document describes the functions to be performed by the
  internetwork Transmission Control Program [TCP] and its interface to
  programs or users that require its services. Several basic
  assumptions are made about process to process communication and these
  are listed here without further justification. The interested reader
  is referred to [CEKA74, TOML74, BELS74, DALA74, SUNS74] for further
  discussion.

  The authors would like to acknowledge the contributions of R.
  Tomlinson (three way handshake and Initial Sequence Number
  Selection), D. Belsnes, J. Burchfiel, M. Galland, R. Kahn, D. Lloyd,
  W. Plummer, and J. Postel all of whose good ideas and counsel have
  had a beneficial effect (we hope) on this protocol design.  In the
  early phases of the design work, R. Metcalfe, A. McKenzie, H.
  Zimmerman, G. LeLann, and M. Elie were most helpful in explicating
  the various issues to be resolved. Of course, we remain responsible
  for the remaining errors and misstatements which no doubt lurk in the
  nooks and crannies of the text.

  Processes are viewed as the active elements of all HOST computers in
  a network. Even terminals and files or other I/O media are viewed as
  communicating through the use of processes. Thus, all network
  communication is viewed as inter-process communication.

  Since a process may need to distinguish among several communication
  streams between itself and another process [or processes], we imagine
  that each process may have a number of PORTs through which it
  communicates with the ports of other processes.

  Since port names are selected independently by each operating system,
  TCP, or user, they may not be unique. To provide for unique names at
  each TCP, we concatenate a NETWORK identifier, and a TCP identifier
  with a port name to create a SOCKET name which will be unique
  throughout all networks connected together.




Cerf, Dalal & Sunshine                                          [Page 1]

RFC 675              Specification of Internet TCP         December 1974


  A pair of sockets form a CONNECTION which can be used to carry data
  in either direction [i.e. full duplex]. The connection is uniquely
  identified by the <local socket, foreign socket> address pair, and
  the same local socket can participate in multiple connections to
  different foreign sockets [see Section 2.2].

  Processes exchange finite length LETTERS as a way of communicating;
  thus, letter boundaries are significant. However, the length of a
  letter may be such that it must be broken into FRAGMENTS before it
  can be transmitted to its destination. We assume that the fragments
  will normally be reassembled into a letter before being passed to the
  receiving process. Throughout this document, it is legitimate to
  assume that a fragment contains all or a part of a letter, but that a
  fragment never contains parts of more than one letter.

  We specifically assume that fragments are transmitted from Host to
  Host through means of a PACKET SWITCHING NETWORK [PSN] [ROWE70,
  POUZ73]. This assumption is probably unnecessary, since a circuit
  switched network could also be used, but for concreteness, we
  explicitly assume that the hosts are connected to one or more PACKET
  SWITCHES [PS] of a PSN [HEKA7O, POUZ74, SCWI71].

  Processes make use of the TCP by handing it letters. The TCP breaks
  these into fragments, if necessary, and then embeds each fragment in
  an INTERNETWORK PACKET. Each internetwork packet is in turn embedded
  in a LOCAL PACKET suitable for transmission from the host to one of
  its serving PS. The packet switches may perform further formatting or
  other operations to achieve the delivery of the local packet to the
  destination Host.

  The term LOCAL PACKET is used generically here to mean the formatted
  bit string exchanged between a host and a packet switch. The format
  of bit strings exchanged between the packet switches in a PSN will
  generally not be of concern to us. If an internetwork packet is
  destined for a TCP in a foreign PSN, the packet is routed to a
  GATEWAY which connects the origin PSN with an intermediate or the
  destination PSN. Routing of internetwork packets to the GATEWAY may
  be the responsibility of the source TCP or the local PSN, depending
  upon the PSN Implementation.

  One model of TCP operation is to imagine that there is a basic
  GATEWAY associated with each TCP which provides an interface to the
  local network. This basic GATEWAY performs routing and packet
  reformatting or embedding, and may also implement congestion and
  error control between the TCP and GATEWAYS at or intermediate to the
  destination TCP.





Cerf, Dalal & Sunshine                                          [Page 2]

RFC 675              Specification of Internet TCP         December 1974


  At a GATEWAY between networks, the internetwork packet is unwrapped
  from its local packet format and examined to determine through which
  network the internetwork packet should travel next. The internetwork
  packet is then wrapped in a local packet format suitable to the next
  network and passed on to a new packet switch.

  A GATEWAY is permitted to break up the fragment carried by an
  internetwork packet into smaller fragments if this is necessary for
  transmission through the next network. To do this, the GATEWAY
  produces a set of internetwork packets, each carrying a new fragment.
  The packet format is designed so that the destination TCP may treat
  fragments created by the source TCP or by intermediate GATEWAYS
  nearly identically.

  The TCP is responsible for regulating the flow of internetwork
  packets to and from the processes it serves, as a way of preventing
  its host from becoming saturated or overloaded with traffic. The TCP
  is also responsible for retransmitting unacknowledged packets, and
  for detecting duplicates. A consequence of this error
  detection/retransmission scheme is that the order of letters received
  on a given connection is also maintained [CEKA74, SUNS74]. To perform
  these functions, the TCP opens and closes connections between ports
  as described in Section 4.3. The TCP performs retransmission,
  duplicate detection, sequencing, and flow control on all
  communication among the processes it serves.

2.  The TCP INTERFACE to the USER

2.1  The TCP as a POST OFFICE

  The TCP acts in many ways like a postal service since it provides a
  way for processes to exchange letters with each other. It sometimes
  happens that a process may offer some service, but not know in
  advance what its correspondents' addresses are. The analogy can be
  drawn with a mail order house which opens a post office box which can
  accept mail from any source. Unlike the post box, however, once a
  letter from a particular correspondent arrives, a port becomes
  specific to the correspondent until the owner of the port declares
  otherwise.

  In addition to acting like a postal service, the TCP insures end-to-
  end acknowledgment, error correction, duplicate detection,
  sequencing, and flow control.








Cerf, Dalal & Sunshine                                          [Page 3]

RFC 675              Specification of Internet TCP         December 1974


2.2  Sockets and Addressing

  We have borrowed the term SOCKET from the ARPANET terminology
  [CACR70, MCKE73]. In general, a socket is the concatenation of a
  NETWORK identifier, TCP identifier, and PORT identifier. A CONNECTION
  is fully specified by the pair of SOCKETS at each end since the same
  local socket may participate in many connections to different foreign
  sockets.

  Once the connections is specified in the OPEN command [see section
  2.3.2], the TCP supplies a [short] Local Connection Name by which the
  user refers to the connection in subsequent commands. In particular
  this facilitates using connections with initially unspecified foreign
  sockets.

  TCP's are free to associate ports with processes however they choose.
  However, several basic concepts seem necessary in an implementation.
  There must be well known sockets [WKS] which the TCP associates only
  with the "appropriate" processes by some means. We envision that
  processes may "own" sockets, and that processes can only initiate
  connections on the sockets they own [means for implementing ownership
  is a local issue, but we envision a Request Port user call, or a
  method of uniquely allocating a group of ports to a given process,
  e.g. by associating the high order bits of a port name with a given
  process.]

  Once initiated, a connection may be passed to another process that
  does not own the local socket [e.g. from logger to service process].
  Strictly speaking this is a reconnection issue which might be more
  elegantly handled by a general reconnection protocol as discussed in
  section 3.3. To simplify passing a connection within a single TCP,
  such "invisible" switches may be allowed as in TENEX systems.

  Of course, each connection is associated with exactly one process,
  and any attempt to reference that connection by another process will
  be signaled as an error by the TCP. This prevents stealing data from
  or inserting data into another process' data stream.

  A connection is initiated by the rendezvous of an arriving
  internetwork packet and a waiting Transmission Control Block [TCB]
  created by a user OPEN, SEND, INTERPUPT, or RECEIVE call [see section
  2.3]. The matching of local and foreign socket identifiers determines
  when a successful connection has been initiated. The connection
  becomes established when sequence numbers have been synchronized in
  both directions as described in section 4.3.2.






Cerf, Dalal & Sunshine                                          [Page 4]

RFC 675              Specification of Internet TCP         December 1974


  It is possible to specify a socket only partially by setting the PORT
  identifier to zero or setting both the TCP and PORT identifiers to
  zero. A socket of all zero is called UNSPECIFIED. The purpose behind
  unspecified sockets is to provide a sort of "general delivery"
  facility [useful for logger type processes with well known sockets].

  There are bounds on the degree of unspecificity of socket
  identifiers. TCB's must have fully specified local sockets, although
  the foreign socket may be fully or partly unspecified. Arriving
  packets must have fully specified sockets.

  We employ the following notation:

   x.y.z = fully specified socket with x=net, y=TCP, z=port

   x.y.u = as above, but unspecified port

   x.u.u = as above, but unspecified TCP and port

   u.u.u = completely unspecified

   with respect to implementation, u = 0 [zero]

   We illustrate the principles of matching by giving all cases of
   incoming packets which match with existing TCB's. Generally, both
   the local (foreign) socket of the TCB and the foreign (local) socket
   of the packet must match.

         TCB local   TCB foreign     Packet local    Packet foreign

   (a)     a.b.c       e.f.g           e.f.g           a.b.c

   (b)     a.b.c       e.f.u           e.f.g           a.b.c

   (c)     a.b.c       e.u.u           e.f.g           a.b.c

   (d)     a.b.c       u.u.u           e.f.g           a.b.c

   There are no other legal combinations of socket identifiers which
   match. Case (d) is typical of the ARPANET well known socket idea in
   which the well known socket (a.b.c) LISTENS for a connection from
   any (u.u.u) socket. Cases (b) and (c) can be used to restrict
   matching to a particular TCP or net.








Cerf, Dalal & Sunshine                                          [Page 5]

RFC 675              Specification of Internet TCP         December 1974


2.3  TCP USER CALLS

2.3.1  A Note on Style

   The following sections functionally define the USER/TCP interface.
   The notation used is similar to most procedure or function calls in
   high level languages, but this usage is not meant to rule out trap
   type service calls [e.g. SVC's, UUO's, EMT's,...].

   The user calls described below specify the basic functions the TCP
   will perform to support interprocess communication. Individual
   implementations should define their own exact format, and may
   provide combinations or subsets of the basic functions in single
   calls. In particular, some implementations may wish to automatically
   OPEN a connection on the first SEND, RECEIVE, or INTERRUPT issued by
   the user for a given connection.

   In providing interprocess communication facilities, the TCP must not
   only accept commands, but also return information to the processes
   it serves. This communication consists of:

   (a) general information about a connection [interrupts, remote
       close, binding of unspecified foreign socket].

   (b) replies to specific user commands indicating success or various
       types of failure.

  Although the means for signaling user processes and the exact format
  of replies will vary from one implementation to another, it would
  promote common understanding and testing if a common set of codes
  were adopted. Such a set of Event Codes is described in section 2.4.

  With respect to error messages, references to "local" and "foreign"
  are ambiguous unless it is known whether these refer to the world as
  seen by the sender or receiver of the error message. The authors
  attempted several different approaches and finally settled on the
  convention that these references would be as seen by the receiver of
  the message.

2.3.2  OPEN CONNECTION

  Format: OPEN(local port, foreign socket [, timeout])

  We assume that the local TCP is aware of the identity of the
  processes it serves and will check the authority of the process to
  use the connection specified. Depending upon the implementation of
  the TCP, the source network and TCP identifiers will either be
  supplied by the TCP or by the processes that serve it [e.g. the



Cerf, Dalal & Sunshine                                          [Page 6]

RFC 675              Specification of Internet TCP         December 1974


  program which interfaces the TCP to its packet switch or the packet
  switch itself]. These considerations are the result of concern about
  security, to the extent that no TCP be able to masquerade as another
  one, and so on. Similarly, no process can masquerade as another
  without the collusion of the TCP.

  If no foreign socket is specified [i.e. the foreign socket parameter
  is 0 or not present], then this constitutes a LISTENING local socket
  which can accept communication from any foreign socket. Provision is
  also made for partial specification of foreign sockets as described
  in section 2.2.

  If the specified connection is already OPEN, an error is returned,
  otherwise a full-duplex transmission control block [TCB] is created
  and partially filled in with data from the OPEN command parameters.
  The TCB format is described in more detail in section 4.2.2.

  No network traffic is generated by the OPEN command. The first SEND
  or INTERRUPT by the local user or the foreign user will cause the TCP
  to synchronize the connection.

  The timeout, if present, permits the caller to set up a timeout for
  all letters transmitted on the connection. If a letter is not
  successfully transmitted within the timeout period, the user is
  notified and may ignore the condition [TCP will continue trying to
  transmit] or direct the TCP to close the connection. The present
  global default is 30 seconds, and connections which are set up
  without specifying another timeout will retransmit every letter for
  at least 30 seconds before notifying the user. The retransmission
  rate may vary, and is the responsibility of the TCP and not the user.
  Most likely, it will be related to the measured time for responses to
  return from letters sent.

  Depending on the TCP implementation, either a local connection name
  will be returned to the user by the TCP, or the user will specify
  this local connection name (in which case another parameter is needed
  in the call). The local connection name can then be used as a short
  hand term for the connection defined by the <local socket, foreign
  socket> pair.

  Responses from the TCP which may occur as a result of this call are
  detailed in section 2.4.

2.3.3 SEND LETTER

  Format: SEND(local connection name, buffer address, byte count, EOL
  flag [, timeout])




Cerf, Dalal & Sunshine                                          [Page 7]

RFC 675              Specification of Internet TCP         December 1974


  This call causes the data contained in the indicated user buffer to
  be sent on the indicated connection. If the connection has not been
  opened, the SEND is considered an error. Some implementations may
  allow users to SEND first, in which case an automatic OPEN would be
  done. If the calling process is not authorized to use this
  connection, an error is returned.

  If the EOL flag is set, the data is the End Of a Letter, and the EOL
  bit will be set in the last packet created from the buffer. If the
  EOL f1ag is not set, subsequent SEND's will appear as part of the
  same letter. This extended letter facility should be used sparingly
  because some TCP's may delay processing packets until an entire
  letter is received.

  If no foreign socket was specified in the OPEN, but the connection is
  established [e.g. because a listening connection has become specific
  due to a foreign letter arriving for the local port] then the
  designated letter is sent to the implied foreign socket. In general,
  users who make use of OPEN with an unspecified foreign socket can
  make use of SEND without ever explicitly knowing the foreign socket
  address.

  However, if a SEND is attempted before the foreign socket becomes
  specified, an error will be returned. Users can use the STATUS call
  to determine the status of the connection. In some implementations
  the TCP may notify the user when an unspecified socket is bound.

  If the timeout is specified, then the current default timeout for
  this connection is changed to the new one. This can affect not only
  all letters sent including and after this one, but also those which
  have not yet been sent, since the timeout is kept in the TCB and not
  associated with each letter sent. Of course, a time is maintained for
  each internetwork packet formed so as to determine how long each of
  these has been on the retransmission queue.

  In the simplest implementation, SEND would not return control to the
  sending process until either the transmission was complete or the
  timeout had been exceeded. This simple method is highly subject to
  deadlocks and is not recommended. [For example both sides of the
  connection try to do SEND's before doing any RECEIVE's.] A more
  sophisticated implementation would return immediately to allow the
  process to run concurrently with network I/O, and, furthermore, to
  allow multiple SENDs to be in progress concurrently. Multiple SENDs
  are served in first come, first served order, so the TCP will queue
  those it cannot service immediately.






Cerf, Dalal & Sunshine                                          [Page 8]

RFC 675              Specification of Internet TCP         December 1974


  NOTA BENE: In order for the process to distinguish among error or
  success indications for different letters, the buffer address should
  be returned along with the coded response to the SEND request. We
  will offer an example event code format in section 2.4, showing the
  information which should be returned to the calling process.

  The semantics of the INTERRUPT call are described later, but this
  call can have an effect on letters which have been given to the TCP
  but not yet sent. In particular, all such letters are flushed by the
  source TCP. Thus one of the responses to a SEND may be "flushed due
  to interrupt."

  Responses from the TCP which may occur as a result of this call are
  detailed in section 2.4.

2.3.4  RECEIVE LETTER

  Format: RECEIVE(local connection name, buffer address, byte count)

  This command allocates a receiving buffer associated with the
  specified connection. If no OPEN precedes this command or the calling
  process is not authorized to use this connection, an error is
  returned.

  In the simplest implementation, control would not return to the
  calling program until either a letter was received, or some error
  occurred, but this scheme is highly subject to deadlocks [see section
  2.3.3]. A more sophisticated implementation would permit several
  RECEIVE's to be outstanding at once, These would be filled as letters
  arrive. This strategy permits increased throughput, at the cost of a
  more elaborate scheme [possibly asynchronous] to notify the calling
  program that a letter has been received.

  If insufficient buffer space is given to reassemble a complete
  letter, an indication that the buffer holds a partial letter will be
  given; the buffer will be filled with as much data as it can hold.

  The remaining parts of a partly delivered letter will be placed in
  buffers as they are made available via successive RECEIVES. If a
  number of RECEIVES are outstanding, they may be filled with parts of
  a single long letter or with at most one letter each. The event codes
  associated with each RECEIVE will indicate what is contained in the
  buffer.

  To distinguish among several outstanding RECEIVES, and to take care
  of the case that a letter is smaller than the buffer supplied, the
  event code is accompanied by both a buffer pointer and a byte count
  indicating the actual length of the letter received.



Cerf, Dalal & Sunshine                                          [Page 9]

RFC 675              Specification of Internet TCP         December 1974


  The semantics of the INTERRUPT system call are discussed later, but
  this call can have an effect on outstanding RECEIVES. When the TCP
  receives an INTERRUPT, it will flush all data currently queued up
  awaiting receipt by the receiving process. If no data is waiting, but
  several buffers have been made available by anticipatory RECEIVE
  commands, these buffers are returned to the process with an error
  indicating that any data that might have been placed in those buffers
  has been flushed. This enables the receiving process to synchronize
  its RECEIVES with the interrupt. That is, the process can distinguish
  between RECEIVES issued before the receipt of the INTERRUPT and these
  issued afterwards.

  Responses from the TCP which may occur as a result of this call are
  detailed in section 2.4.

2.3.5  CLOSE CONNECTION

  Format: CLOSE(local connection name)

  This command causes the connection specified to be closed. If the
  connection is not open or the calling process is not authorized to
  use this connection, an error is returned. Any unfilled receive
  buffers or pending send buffers will be returned to the user with
  event codes indicating they were aborted due to the CLOSE. Users
  should wait for event codes for each SEND before closing the
  connection if they wish to be certain that all letters were
  successfully delivered.

  The user may CLOSE the connection at any time on his own initiative,
  or in response to various prompts from the TCP [remote close
  executed, transmission timeout exceeded, destination inaccessible].

  Because closing a connection requires communication with the foreign
  TCP, connections may remain in the closing state for a short time.
  Attempts to reopen the connection before the TCP replies to the CLOSE
  command will result in errors.

  Responses from the TCP which may occur as a result of this call are
  detailed in section 2.4.

2.3.6  INTERRUPT

  Format: INTERRUPT(local connection name)

  A special control signal is sent to the destination indicating an
  interrupt condition. This facility can be used to simulate "break"
  signals from terminals or error or completion codes from I/O devices,
  for example. The semantics of this signal to the receiving process



Cerf, Dalal & Sunshine                                         [Page 10]

RFC 675              Specification of Internet TCP         December 1974


  are unspecified. The receiving TCP will signal the interrupt to the
  receiving process immediately upon receipt, and will also flush any
  outstanding letters waiting to be delivered. Since it is possib1e to
  tell where in the letter stream this command was invoked, it is
  possible for the receiving TCP to flush only preceding data. The
  sending TCP will flush any letters pending transmission, returning a
  special error code to indicate the flush.

  If the connection is not open or the calling process is not
  authorized to use this connection, an error is returned.

  Responses from the TCP which may occur as a result of this call are
  detailed in section 2.4.

2.3.7  STATUS

  Format: STATUS(local connection name)

  This command returns a data block containing the following
  information:

   local socket, foreign socket, local connection name, receive window,
   send window, connection state, number of letters awaiting
   acknowledgment, number of letters pending receipt [including partial
   ones], default transmission timeout

   Depending on the state of the connection, some of this information
   may not be available or meaningful. If the calling process is not
   authorized to use this connection, an error is returned. This
   prevents unauthorized processes from gaining information about a
   connection.

   Responses from the TCP which may occur as a result of this call are
   detailed in section 2.4.

2.4  TCP TO USER MESSAGES

2.4.1  TYPE CODES

   All messages include a type code which identifies the type of user
   call to which the message applies. Types are:

   0 - General message, does not apply to a particular user call

   1 - Applies to OPEN

   2 - Applies to CLOSE




Cerf, Dalal & Sunshine                                         [Page 11]

RFC 675              Specification of Internet TCP         December 1974


   3 - Applies to INTERRUPT

   10 - Applies to SEND

   20 - Applies to RECEIVE

   30 - Applies to STATUS

2.4.2  MESSAGE FORMAT [notional]

   All messages include the following three fields:

     Type code

     Local connection name

     Event code

  For message types 0-3 [General, Open, Close, Interrupt] only these
  three fields are necessary.

  For message type 10 [Send] one additional field is necessary:

     Buffer address

  For message type 20 [Receive] three additional fields are necessary:

     Buffer address

     Byte count

     End-of-letter flag

  For message type 30 [status] additional data might include;

     Local socket, foreign socket

     Send window [measures buffer space at foreign TCP]

     Receive window [measures buffer space at local TCP]

     Connection state [see section 4.3.6]

     Number of letters awaiting acknowledgment

     Number of letters awaiting receipt

     Retransmission timeout



Cerf, Dalal & Sunshine                                         [Page 12]

RFC 675              Specification of Internet TCP         December 1974


2.4.3 EVENT CODES

  The event code specifies the particular event that the TCP wishes to
  communicate to the user.

  In addition to the event code, three flags may be useful to classify
  the event into major categories and facilitate event processing by
  the user:

     E flag: set if event is an error

     L/F flag: indicates whether event was generated by Local TCP, or
     Foreign TCP or network

     P/T flag: indicates whether the event is Permanent or Temporary
     [retry may succeed]

  Events are encoded into 8 bits with the high order bits set to
  indicate the state of the E, L/F, and P/T flags, respectively.

  Events specified so far are listed below with their codes and flag
  settings. A * means a flag does not apply or can take both values for
  this event. Additional events may be defined in the course of
  experimentation.

     0  0**  general success

     1  ELP  connection illegal for this process

     2  OF*  unspecified foreign socket has become bound

     3  ELP  connection not open

     4  ELT  no room for TCB

     5  ELT  foreign socket unspecified

     6  ELP  connection already open
        EFP  unacceptable SYN [or SYN/ACK] arrived at foreign
     TCP. Note: This is not a misprint, the local meaning is different
     from foreign.

     7  EFP  connection does not exist at foreign TCP

     8  EFT  foreign TCP inaccessible [may have subcases]

     9  ELT  retransmission timeout




Cerf, Dalal & Sunshine                                         [Page 13]

RFC 675              Specification of Internet TCP         December 1974


     10 E*P  buffer flushed due to interrupt

     11 OF*  interrupt to user

     12 **P  connection closing

     13 E**  general error

     14 E*P  connection reset

  Possible events for each message type are as follows:

     Type 0[general]: 2,11,12,14

     Type 1[open]: 0,1,4,6,13

     Type 2[close]: 0,1,3,13

     Type 3[interrupt]: 0,1,3,5,7,8,9,12,13

     Type 10[send]: 0,1,3,5,7,8,9,10,11,12,13

     Type 20[receive]: 0,1,3,10,12,13

     Type 30[status]: 0,1,13

  Note that events 6(foreign), 7, 8 are generated at the foreign TCP or
  in the network[s], and these same codes are used in the error field
  of the internet packet [see section 4.2.1].

3.  HIGHER LEVEL PROTOCOLS

3.1  INTRODUCTION

  It is envisioned that the TCP will be able to support higher level
  protocols efficiently. It should be easy to interface existing
  ARPANET protocols like TELNET and FTP to the TCP.

3.2  WELL KNOWN SOCKETS

  At some point, a set of well known 24 bit port numbers must be
  picked. The type of service associated with the well known ports
  might include:

     (a)  Logger

     (b)  FTP (File transfer protocol)




Cerf, Dalal & Sunshine                                         [Page 14]

RFC 675              Specification of Internet TCP         December 1974


     (c)  RJE (Remote job entry)

     (d)  Host status

     (e)  TTY Test

     (f)  HELP - descriptive, interactive system documentation

  WE RESERVE WELL KNOWN SOCKET 0 (24 bits of 0) for global messages
  destined for a particular TCP but not related to any particular
  connection. We imagine that this socket would be used for unusual TCP
  synchronization (e.g. RESET ALL) or for testing purposes (e.g.
  sending letters to TRASHCAN or ECHO). This does not conflict with the
  usage that if a socket is 0, it is unspecified, since no user can
  SEND, CLOSE, or INTERRUPT on socket 0.

3.3  RECONNECTION PROTOCOL (RCP)

  Port identifiers fall into two categories: permanent and transient.
  For example, a Logger process is generally assigned a port identifier
  that is fixed and well known. Transient processes will in general
  have ID's which are dynamically assigned.

  In the distributed processing environment of the network, two
  processes that don't have well known port identifiers may often wish
  to communicate. This can be achieved with the help of a well known
  process using a reconnection protocol. Such a protocol is briefly
  outlined using the communication facilities provided by the TCP. It
  essentially provides a mechanism by which port identifiers are
  exchanged in order to establish a connection between a pair of
  sockets.

  Such a protoco1 can be used to achieve the dynamic establishment of
  new connections in order to have multiple processes solving a problem
  cooperatively, or to provide a user process access to a server
  process via a logger, when the logger's end of the connection can not
  be invisibly passed to the server process.

  A paper on this subject by R. Schantz [SCHA74] discusses some of the
  issues associated with reconnection, and some of the ideas contained
  therein went into the design of the protocol outlined below.

  In the ARPANET, a protocol was implemented which would allow a
  process to connect to a well known socket, thus making an implicit
  request for service, and then be switched to another socket so that
  the well known socket could be freed for use by others. Since sockets





Cerf, Dalal & Sunshine                                         [Page 15]

RFC 675              Specification of Internet TCP         December 1974


  in our TCP are permitted to have connections with more than one
  foreign socket, this facility may not be explicitly needed (i.e.
  connections <A,B> and <A,C> are distinguishable).

  However. the well known socket may be in one network and the actual
  service socket(s) may be in another network (or at least in another
  TCP). Thus, the invisible switching of a connection from one port to
  another within a TCP may not be sufficient as an "Initial Connection
  Protocol". We imagine that a process wishes to use socket N1.T1.Q to
  access well known socket N2.T2.P. However, the process associated
  with socket N2.T2.P will actually start up a new process somewhere
  which will use N3.T3.S as its server socket. The N(i) and T(i) may be
  distinct or the same. The user will send to N2.T2.P the relevant user
  information such as user name, password, and account. The server will
  start up the server process and send to N1.T1.Q the actual service
  socket ldentif1er: N3.T3.S. The connection (N1.TI.Q,N2.T2.P) can then
  be closed, and the user can do a RECEIVE on (N1.T1.Q,N3.T3.S). The
  serving process can SEND on (N3.T3.S,N1.T1.Q). There are many
  variations on this scheme, some involving the user process doing a
  RECEIVE on a different socket (e.g. (N1.T1.X,U.U.U)) with the server
  doing SEND on (N3.T3.S,N1.T1.X).  Without showing all the detail of
  synchronization of sequence numbers and the like, we can illustrate
  the exchange as shown below.

     USER                             SERVER

                                      1. RECEIVE(N2.T2.P,U.U.U)

     1. SEND (N1.T1.Q,N2.T2.P)==>

                                  <== 2. SEND(N2.T2.P,N1.T1.Q)

                                         With "N3.T3.S" as data

     2. RECEIVE(N1.T1.Q,N2.T2.P)

     3. CLOSE(N1.T1.Q,N2.T2.P)==>

                                  <:= 3. CLOSE(N2.T2.P,N1.T1.Q)

     4. RECEIVE(N1.T1.Q,N3.T3.S)

                                  <== 4. SEND(N3.T3.S,N1.T1.Q)

  At this point, a connection is open between N1.T1.Q and N3.T3.S. A
  variation might be to have the user do an extra RECEIVE on
  (N1.T1.X,U.U.U) and have the data "N1.T1.X" be sent in the first user
  SEND. Then, the server can start up the real serving process and do a



Cerf, Dalal & Sunshine                                         [Page 16]

RFC 675              Specification of Internet TCP         December 1974


  SEND on (N3.T3.S,N1.T1.X) without having to send the "N3.T3.S" data
  to the user. Or perhaps both server and receiver exchange this data,
  to assure security of the ultimate connection (i.e. some wild process
  might try to connect to N1.T1.X if it is merely RECEIVING on foreign
  socket U.U.U.).

  We do not propose any specific reconnection protocol here, but leave
  this to further deliberation, since it is really a user level
  protocol issue.

4.  TCP IMPLEMENTATION

4.1  INTRODUCTION

  Conceptually, the TCP is made up of several processes. Some of these
  deal with USER/TCP commands, and others with packets arriving from
  the network. The TCP also has an internal measurement facility which
  can be activated remotely.

  Any particular TCP could be viewed in a number of ways. It could be
  implemented as an independent process, servicing many user processes.
  It could be viewed as a set of re-entrant library routines which
  share a common interface to the local PSN, and common buffer storage.
  It could even be viewed as a set of processes, some handling the
  user, some the input of packets from the net, and some the output of
  packets to the net.

4.2  TCP DATA STRUCTURES

4.2.1  INTERNETWORK PACKET FONMAT

  8 bits: Internet information

     2 bits: Reserved for local PSN use

     2 bits: Header format (11 in binary)

     4 bits: Protocol version number

  8 bits: Header length in octets (32 is the current value)

  16 bits: Length of text in octets

  32 bits: Packet sequence number

  32 bits: Acknowledgment number (i.e. sequence number of next octet
  expected).




Cerf, Dalal & Sunshine                                         [Page 17]

RFC 675              Specification of Internet TCP         December 1974


  16 bits: Window size (in octets)

  16 bits: Control Information

     Listed from high to low order:

     SYN: Request to synchronize sending sequence numbers

     ACK: There is a valid acknowledgment in the 32 bit ACK field

     FIN: Sender will stop SENDing and RECEIVEing on this connection

     DSN: The sender has stopped using sequence numbers and wants to
     initiate a new sequence number for sending.

     EOS: This packet is the end of a segment and therefore has a
     checksum in the 16 bit checksum field. If this bit is not set, the
     16 bit checksum field is to be ignored. The bit is usually set,
     but if fragmentation at a GATEWAY occurs, the packets preceding
     the last one will not have checksums, and the last packet will
     have the checksum for the entire original fragment (segment) as it
     was calculated by the sending TCP.

     EOL: This packet contains the last fragment of a letter. The EOS
     bit will always be set in this case.

     INT: The sender wants to INTERRUPT on this connection.

     XXX: six (6) unused control bits

     OD: three (3) bits of control dispatch:

        000: Null (the control octet contents should be ignored}

        001: Event Code is present in the control octet. These were
        defined in section 2.4.3.

        010: Special Functions

        011: Reject (codes as yet undefined)

        1XX: Unused

  8 bits: Control Data Octet

     If CD is 000 then this octet is to be ignored.





Cerf, Dalal & Sunshine                                         [Page 18]

RFC 675              Specification of Internet TCP         December 1974


     If CD is 001, this octet contains event codes defined in section
     2.4.3

     If CD is 010, this octet contains a special function code as
     defined below:

        0: RESET all connections between Source and Destination TCPs

        l: RESET the specific connection referenced in this packet

        2: ECHO return packet to sender with the special function code
        ECHOR (Echo Reply).

        3: QUERY Query status of connection referenced in this packet

        4: STATUS Reply to QUERY with requested status.

        5: ECHOR Echo Reply

        6: TRASH Discard packet without acknowledgment

        >6: Unused

        Note: Special function packets not pertaining to a particular
        connection [RESET all, ECHO, ECHOR, and TRASH] are normally
        sent using socket zero as described in section 3.2.

     If CD is 01l, this octet contains an as yet undefined REJECT code.

     If CD is 1XX, this octet is undefined.

  4 bits: Length of destination network address in 4 bit units (current
  value is 1)

  4 bits: Destination network address

     1010-1111 are addresses of ARPANET, UCL, CYCLADES, NPL, CADC, and
     EPSS respectively.

  16 bits: Destination TCP address

  8 bits: Padding

  4 bits: length of source network address in 4 bit units (current
  value is 1)

  4 bits: source network address (as for destination address)




Cerf, Dalal & Sunshine                                         [Page 19]

RFC 675              Specification of Internet TCP         December 1974


  16 bits: Source TCP address

  24 bits: Destination port address

  24 bits: Source port address

  16 bits: Checksum (if EOS bit is set)

4.2.2  TRANSMISSION CONTROL BLOCK

  It is highly likely that any implementation will include shared data
  structures among parts of the TCP and some asynchronous means of
  signaling users when letters have been delivered.

  One typical data structure is the Transmission Control Block (TCB)
  which is created and maintained during the lifetime of a given
  connection. The TCB contains the following information (field sizes
  are notional only and may vary from one implementation to another):

     16 bits: Local connection name

     48 bits: Local socket

     48 bits: Foreign socket

     16 bits: Receive window size in octets

     32 bits: Receive left window edge (next sequence number expected)

     16 bits: Receive packet buffer size of TCB (may be less than
     window)

     16 bits: Send window size in octets

     32 bits: Send left window edge (earliest unacknowledged octet)

     32 bits: Next packet sequence number

     16 bits: Send packet buffer size of TCB (may be less than window)

     8 bits: Connection state

        E/C - 1 if TCP has been synchronized at least once (i.e. has
        been established, else O, meaning it is closed; this bit is
        reset after FINS are exchanged and the user has done a CLOSE).
        The bit is not reset if the connection is only desynchronized
        on send or receive or both directions.




Cerf, Dalal & Sunshine                                         [Page 20]

RFC 675              Specification of Internet TCP         December 1974


        SS - SYNCed on send side (if set) else desynchronized

        SR - SYNCed on receive side (if set, else desynchronized)

  16 bits: Special flags

     S1 - SYN sent if set

     S2 - SYN verified if set

     R - SYN received if set

     Y - FIN sent if set

     C - CLOSE from local user received if set

     U - Foreign socket unspecified if set

     SDS - Send side DSN sent if set

     SDV - Send side DSN verified if set

     RDR - Receive side DSN received if set

  Initially, all bits are off [no pun intended] (i.e. SS, SR, E/C, S1,
  S2, R, F, C, SDS, SDV, RDR =0). When R is set, so is SR. When S1 and
  S2 are both set, so is SS. SR is reset when RDR is set. SS is reset
  when both SDS and SDV are set. These bits are used to keep track of
  connection state and to aid in arriving packet processing (e.g. Can
  sequence number be validated? Only if SR is set.).

  16 bits: Retransmission timeout (in eighths of a second#]

  16 bits: Head of Send buffer queue [buffers SENT from user to TCP,
  but not packetized]

  16 bits: Tail of Send buffer queue

  16 bits: Pointer to last octet packetized in partially packetized
  buffer (refers to the buffer at the head of the queue)

  16 bits: Head of Send packet queue

  16 bits: Tail of Send packet queue

  16 bits: Head of Packetized buffer Queue

  16 bits: Tail of Packetized buffer queue



Cerf, Dalal & Sunshine                                         [Page 21]

RFC 675              Specification of Internet TCP         December 1974


  16 bits: Head of Retransmit packet queue

  16 bits: Tail of Retransmit packet queue

  16 bits: Head of Receive buffer queue [queue of buffers given by user
  to RECEIVE letters, but unfilled]

  16 bits: Tail of Receive buffer queue

  16 bits: Head of Receive packet queue

  16 bits: Tail of receive packet queue

  16 bits: Pointer to last contiguous receive packet

  16 bits: Pointer to last octet filled in partly filled buffer

  16 bits: Pointer to next octet to read from partly emptied packet

     [Note: The above two pointers refer to the head of the receive
     buffer and receive packet queues respectively]

  16 bits: Forward TCB pointer

  16 bits: Backward TCB pointer

4.3  CONNECTION MANAGEMENT

4.3.1  INITIAL SEQUENCE NUMBER SELECTION

  The protocol places no restriction on a particular connection being
  used over and over again. New instances of a connection will be
  referred to as incarnations of the connection. The problem that
  arises owing to this is, "how does the TCP identify duplicate packets
  from previous incarnations of the connection?". This problem becomes
  harmfully apparent if the connection is being opened and closed in
  quick succession, or if the connection breaks with loss of memory and
  is then reestablished.

  The essence of the solution [TOML74] is that the initial sequence
  number [ISN] must be chosen so that a particular sequence number can
  never refer to an "o1d" octet, Once the connection is established the
  sequencing mechanism provided by the TCP filters out duplicates.

  For an association to be established or initialized, the two TCP's
  must synchronize on each other's initial sequence numbers. Hence the
  solution requires a suitable mechanism for picking an initial
  sequence number [ISN], and a slightly involved handshake to exchange



Cerf, Dalal & Sunshine                                         [Page 22]

RFC 675              Specification of Internet TCP         December 1974


  the ISN's. A "three way handshake" is necessary because sequence
  numbers are not tied to a global clock in the network, and TCP's may
  have different mechanisms for picking the ISN's. The receiver of the
  first SYN has no way of knowing whether the packet was an old delayed
  one or not, unless it remembers the last sequence number used on the
  connection which is not always possible, and so it must ask the
  sender to verify this SYN.

  The "three way handshake" and the advantages of a "clock-driven"
  scheme are discussed in [TOML74]. More on the subject, and algorithms
  for implementing the clock-driven scheme can be found in [DALA74].

4.3.2 ESTABLISHING A CONNECTION

  The "three way handshake" is essentially a unidirectional attempt to
  establish the connection, i.e. there is an initiator and a responder.
  The TCP's should however be able to establish the connection even if
  a simultaneous attempt is made by both TCP's to establish the
  connection. Simultaneous attempts are treated like "collisions" in
  "Aloha" systems and these conflicts are resolved into unidirectional
  attempts to establish the connection. This scheme was adopted because

     (i) Connections will normally have a passive and an active end,
     and so the mechanism should in most cases be as simple as
     possible.

     (ii) It is easy to implement as special cases do not have to be
     accounted for.

  The example below indicates what a three way handshake between TCP's
  A and B looks like

        A                                                 B

        --> <SEQ x><SYN>                                  -->

        <-- <SEQ y><SYN, ACK x+l>                         <--

        --> <SEQ x+1><ACK y+l><DATA BYTES>                -->

  The receiver of a "SYN" is able to determine whether the "SYN" was
  real (and not an old duplicate) when a positive "ACK" is returned for
  the receiver's "SYN,ACK" in response to the "SYN". The sender of a
  "SYN" gets verification on receipt of a "SYN,ACK" whose "ACK" part
  references the sequence number proposed in the original "SYN" [pun
  intended]. If the TCP is in the state where it is waiting for a
  response to its SYN, but gets a SYN instead, then it always thinks
  this is a collision and goes into the state prior to having sent the



Cerf, Dalal & Sunshine                                         [Page 23]

RFC 675              Specification of Internet TCP         December 1974


  SYN, i.e. it forgets that it had sent a SYN. The TCP will try to
  establish the connection again after some time, unless it has to
  respond to an arriving SYN. Even if the wait times in the two TCPs
  are the same, the varying delays in network transmission will usually
  be adequate to avoid a collision on the next cycle of attempts to
  send SYN.

  When establishing a connection, the state of the TCP is represented
  by 3 bits --

     S1 S2 R

     S1 = 1 -- SYN sent

     S2 = 1 -- My SYN verified

     R = 1 -- SYN received

  Some examples of attempts to establish the connection are now shown.
  The state of the connection is indicated when a change occurs. We
  specifically do not show the cases in which connection
  synchronization is carried out with packets containing both SYN and
  data. We do this to simplify the explanation, but we do not rule out
  an implementation which is capable of dealing with data arriving in
  the first packet (it has to be stored temporarily without
  acknowledgment or delivery to the user until the arriving SYN has
  been verified).

  The "three way handshake" now looks like --

             A                                            B
     ------------                                      ------------
     S1 S2 R                                                S1 S2 R

     0  0 0                                                 0  0 0

            --> <SEQ x><SYN>                           -->

     1  0 0                                                 0  0 1

            <-- <SEQ y><SYN, ACK x+l>                  <--

     1  1 1                                                 1  0 1

            --> <SEQ x+1><ACK y+1>(DATA OCTETS)        -->

     1  1 1                                                 1  1 1




Cerf, Dalal & Sunshine                                         [Page 24]

RFC 675              Specification of Internet TCP         December 1974


  The scenario for a simultaneous attempt to establish the connection
  without the arrival of any delayed duplicates is --

                   A                                     B
           ------------                               ------------
           S1 S2 R                                         S1 S2 R

            0  0 0                                          0  0 0

     (M1)   1  0 0 --> <SEQ x><SYN>                    ...

     (M2)   0  0 0 <-- <SEQ y><SYN)                    <--  1  0 0

     (M1)              B returns no SYN sent           -->  0  0 0

     (M1)   1  0 0 --> <SEQ z><SYN>      *             -->  0  0 1

     (M3)   1  1 1 <-- <SEQ y+1><SYN,ACK z+1>          <--  1  0 1

     (M4)   1  1 1 --> <SEQ z+1><ACK y+1><DATA>        -->  1  1 1

     Note: "..." means that a message does not arrive, but is delayed
     in the network. State changes are upon arrival or upon departure
     of a given message, as the case may be. Packets containing the SYN
     or INT or DSN bits implicitly contain a "dummy" data octet which
     is never delivered to the user, but which causes the packet
     sequence numbers to be incremented by 1 even if no real data is
     sent. This permits the acknowledgment of these controls without
     acknowledging receipt of any data which might also have been
     carried in the packet. A packet containing a FIN bit has a dummy
     octet following the last octet of data (if any) in the packet.

     * Once in state 000 sender selects new ISN z when attempting to
     establish the connection again.

4.3.3 HALF-OPEN CONNECTIONS

  An established connection is said to be a "half-open" connection if
  one of the TCP's has closed the connection at its end without the
  knowledge of the other, or if the two ends of the connection have
  become desynchronized owing to a crash that resulted in loss of
  memory. Such connections will automatically become reset if an
  attempt is made to send data in either direction. However, half-open
  connections are expected to be unusual, and the recovery procedure is
  somewhat involved.






Cerf, Dalal & Sunshine                                         [Page 25]

RFC 675              Specification of Internet TCP         December 1974


  If one end of the connection no longer exists, then any attempt by
  the other user to send any data on it will result in the sender
  receiving the event code "Connection does not exist at foreign TCP".
  Such an error message should indicate to the user process that
  something is wrong and it is expected to CLOSE the connection.

  Assume that two user processes A and B are communicating with one
  another when a crash occurs causing loss of memory to B's TCP.
  Depending on the operating system supporting B's TCP, it is likely
  that some error recovery mechanism exists. When the TCP is up again B
  is likely to start again from the beginning or from a recovery point.
  As a result B will probably try to OPEN the connection again or try
  to SEND on the connection it believes open. In the latter case 1t
  receives the error message "connection not open" from the local TCP.
  In an attempt to establish the connection B's TCP will send a packet
  containing SYN. A's TCP thinks that the connection is already
  established and so will respond with the error "unacceptable SYN (or
  SYN/ACK) arrived at foreign TCP". B's TCP knows that this refers to
  the SYN it just sent out, and so should reset the connection and
  inform the user process of this fact.

  It may happen that B is passive and only wants to receive data. In
  this case A's data will not reach B because the TCP at B thinks the
  connection is not established. As a result A'S TCP will timeout and
  send a QRY to B's TCP. B's TCP will send STATUS saying the connection
  is not synched. A's TCP will treat this as if an implicit CLOSE had
  occurred and tell the user process, A, that the connection is
  closing. A is expected to respond with a CLOSE command to his TCP.
  However, A's TCP does not send a FIN to B's TCP, since it would not
  be accepted anyway on the unsynced connection. Eventually A will try
  to reopen the connection or B will give up and CLOSE. If B CLOSES,
  B's TCP will simply delete the connection since it was not
  established as far as B's TCP is concerned. No message will be sent
  to A'S TCP as a result.

4.3.4  RESYNCHRONIZING A CONNECTION

  Details of resynchronization have not yet been specified since the
  need for this should be infrequent in the initial testing stages.

4.3.5 CLOSING A CONNECTION

  There are essentially three cases:

     a) The user initiates by telling the TCP to CLOSE the connection

     b) The remote TCP initiates by sending a FIN control signal




Cerf, Dalal & Sunshine                                         [Page 26]

RFC 675              Specification of Internet TCP         December 1974


     c) Both users CLOSE simultaneously

  Two bits are used to maintain control over the closing of a
  connection: these are called the "FIN sent" bit [F] and the "USER
  Closed" bit, [C] respectively. The control procedure uses these two
  bits to assure that the connection is properly closed.

  Case 1: Local user initiates the close

     In this case, both the F and C bits are initially zero, but the C
     bit is set immediately upon receipt of the user call "CLOSE." When
     the FIN is sent out by the TCP, the F bit is set. All pending
     RECEIVES are terminated and the user is told that they have been
     prematurely terminated ("connection closing"} without data.
     Similarly, any pending SENDS are terminated with the same
     response, "connection closing."

     Several responses may arrive as the result of sending a FIN. The
     one which is generally expected is a matching FIN. When this is
     received, the TCB CAN BE ELIMINATED. If a "connection does not
     exist at foreign TCP" message comes in response to the FIN, then
     the TCB can likewise be eliminated. If no response is forthcoming,
     or if "Foreign TCP inaccessible" arrives then the resolution is
     moot. One might simply timeout and discard the TCB. Since the
     local user wants to CLOSE anyway, this is probably satisfactory,
     although it will leave a potential "half-open" connection at the
     other side. We deal with half open connections in section 4.3.3.

     When the acknowledging FIN arrives after the connection state bits
     are set (F=1, C=1), then the TCB can be deleted.

  Case 2: TCP receives a FIN from the network

     First of all, a FIN must have a sequence number which lies in the
     valid receive window. If not, it is discarded and the left window
     edge is sent as acknowledgment. If the FIN can be processed, it is
     handled (possibly out of order, since it is taken as an imperative
     to shut down the connection). All pending RECEIVES and SENDS are
     responded to by showing that they were terminated by the other
     side's close request (i.e. "connection closing"). The user is also
     told by an unsolicited event or signal that the connection has
     been closed (in some systems, the user might have to request
     STATUS to get this information). Finally, the TCP sends FIN in
     response.

     Thus, because a FIN arrived, a FIN is sent back, so the F bit is
     set. However, the TCB stays around until the local user does a
     CLOSE in acknowledgment of the unsolicited signal that the



Cerf, Dalal & Sunshine                                         [Page 27]

RFC 675              Specification of Internet TCP         December 1974


     connection has been closed by the other side. Thus, the C bit
     remains unset until this happens. If the C and F bits go from (F=1
     C=O) to (F=l, C=1), then the connection is closed and the TCB can
     be removed.

  Case 3: both users close simultaneously

     If this happens, both connections will be in the (F=1, C=1) state.
     When the FINs arrive, the connections w11i be shut down. If one
     FIN fails to arrive, we have two choices. One is to insist on
     acknowledgments for FINs, in which case the missing one will be
     retransmitted. Another is merely to permit the half-open
     connection to remain (we prefer this solution}. It can timeout
     independently and go away after a while. If an attempt is made to
     reestablish the connection, the initiator will discover the
     existence of the open connection since an "inappropriate SYN
     received" message will be sent by the TCP which holds the "half-
     open" connection. The receiver of this message can tell the other
     TCP to reset the connection. We cannot permit the holder of the
     half-open connection to reset automatically on receipt of the SYN
     since its receipt is not necessarily prima facie evidence of a
     half open connection. (The SYN could be a delayed duplicate.)

4.3.6.  CONNECTION STATE and its relation to USER and INCOMING CONTROL
  REQUESTS

  In order to formalize the action taken by the TCP when it receives
  commands from the User, or Control information from the network, we
  define a connection to be in one of 7 states at any instant. These
  are known as the TCB Major States. Each Major State is simply a
  convenient name for a particular setting or group of settings of the
  state bits, as follows:

     S1 S2  R  U  F  C   #   name

      -  -  -  -  -  -   0   no TCB

      0  0  0 0/1 0  0   1   unsync

      1  0  0  0  0  0   2   SYN sent

      1  0  1 0/1 0  0   3   SYN received

      1  1  1  0  0  0   4   established

      1 0/1 1 0/1 1  1   5   FIN wait

      1  1  1  0  1  0   6   FIN received



Cerf, Dalal & Sunshine                                         [Page 28]

RFC 675              Specification of Internet TCP         December 1974


  The connection moves from state to state as shown below. The
  transition from one state to another will be represented as

     [X, Y]<cause><action>

  which means that there is a transition from state X to state Y owing
  to <cause>. The action taken by the TCP is specified as <action>. We
  use this notation to give the important state transitions, often
  simplifying the cause and action fields to take into account a number
  of situations. Figure 1 illustrates these transitions in traditional
  state diagram form. Section 4.4.6 and section 4.4.7 fully specify the
  effect of all User commands and Control information arriving from the
  network.

     [0,l] <OPEN> <create TCB>

     [1,2] <SEND,INTERRUPT, or collision timeout> <send SYN>

     [1,3] <SYN arrives> <send SYN,ACK>

     [1,0] <CLOSE> <remove TCB>

     [2,1] <SYN arrives (collision)> <set timeout, forget SYNs>

     [2,0] <CLOSE> <remove TCB>

     [2,4] <appropriate SYN,ACK arrives> <send ACK>

     [3,4] <appropriate ACK arrives> <none>

     [3,1] <error arrives or timeout> <(forget SYN)>

     [3,5] <CLOSE> <send FIN>

     [4,5] <CLOSE> <send FIN>

     [4,6] <appropriate FIN arrives> <send FIN, inform user>

     [5,0] <FIN or error arrives, or timeout> <remove TCB>

     [6,0] <CLOSE> <remove TCB>

4.4  STRUCTURE 0F THE TCP

4.4.l  INTRODUCTION [See figure 2.1]

  There are many possible implementations of the TCP. We offer one
  conceptual framework in which to view the various algorithms that



Cerf, Dalal & Sunshine                                         [Page 29]

RFC 675              Specification of Internet TCP         December 1974


  make up the TCP design. In our concept, the TCP is written in two
  parts, an interrupt or signal driven part (consisting of four
  processes), and a reentrant library of subroutines or system calls
  which interface the user process to the TCP. The subroutines
  communicate with the interrupt part through shared data structures
  (TCB's, shared buffer queues etc.). The four processes are the Output
  Packet Handler which sends packets to the packet switch; the
  Packetizer which formats letters into internet packets; the Input
  Packet Handler which processes incoming packets; and the Reassembler
  which builds letters for users.

  The ultimate bottleneck is the pipe through which arriving and
  departing packets must travel. This is the Host/Packet Switch
  interface. The interrupt driven TCP shares among all TCB's its
  limited packet buffer resources for sending and receiving packets.
  From the standpoint of controlling buffer congestion, it appears
  better to TREAT INCOMING PACKETS WITH HIGHER PRIORITY THAN OUTGOING
  PACKETS. That is, packet buffers which can be released by copying
  their contents into user buffers clearly help to reduce congestion.
  Neither the packetizer nor the input packet handler should be allowed
  to take up all available packet buffer space; an analogous problem
  arises in the IMP in the allocation of store and forward, and
  reassembly buffer space. One policy is to permit neither contender
  more than, say, two-thirds of the space. The buffer allocation
  routines can enforce these limits and reject buffer requests as
  needed. Conceptually, the scheduler can monitor the amounts of
  storage dedicated to the input and output routines, and can force
  either to sleep if its buffer allocation exceeds the limit.

  As an example, we can consider what happens when a user executes a
  SEND call to the TCP service routines. The buffer containing the
  letter is placed on a SEND buffer queue associated with the user's
  TCB. A 'packetizer' process is awakened to look through all the TCB's
  for 'packetizing' work. The packetizer will keep a roving pointer
  through the TCB list which enables it to pick up new buffers from the
  TCB queue and packetize them into output buffers. The packetizer
  takes no more than one letter at a time from any single TCB. The
  packetizer attempts to maintain a non-empty queue of output packets
  so that the output handler will not fall idle waiting for the
  packetizing operation. However, since arriving packets compete with
  departing packets, care must be taken to prevent either class from
  occupying all of the shared packet buffer space. Similarly since the
  TCB's all compete for space in service to their connections, neither
  input nor output packet space should be dominated by any one TCB.

  When a packet is created, it is placed on a FIFO SEND packet queue
  associated with its origin TCB. The packetizer wakes the output
  handler and then continues to packetize a few more buffers, perhaps,



Cerf, Dalal & Sunshine                                         [Page 30]

RFC 675              Specification of Internet TCP         December 1974


  before going to sleep. The output handler is awakened either by a
  'hungry' packet switch or by the packetizer; in either case, it uses
  a roving TCB pointer to select the next TCB for service. The send
  packet queue can be used as a 'work queue' for the output handler.
  After a packet has been sent, but usually before an ACK is returned,
  the output handler moves the packet to a retransmission queue
  associated with each TCB.

  Retransmission timeouts can refer to specific packets and the
  retransmission list can be searched for the specific packet. If an
  ACK is received, the retransmission entry can be removed from the
  retransmit queue. The send packet queue contains only packets waiting
  to be sent for the first time. INTERRUPT requests can remove entries
  in both the send packet queue and the retransmit packet queue.

  Since packets are never in more than one queue at a time, it appears
  possible for INT, FIN or RESET commands to remove packets from the
  receive, send, or retransmit packet queues with the assurance that an
  already issued signal to enter the reassembler, the packetizer or the
  output handler will not be confusing.

  Handling the INTERRUPT and CLOSE functions can however require some
  care to avoid confusing the scheduler, and the various processes. The
  scheduler must maintain status information for the processes. This
  information includes the current TCB being serviced. When an
  INTERRUPT is issued by a local process, the output queue of letters
  associated with the local port reference is to be deleted. The
  packetizer, for example, may however be working at that time on the
  same queue. As usual, simultaneous reading and writing of the TCB
  queue pointers must be inhibited through some sort of semaphore or
  lockout mechanism. When the packetizer wants to serve the next send
  buffer queue, it must lock out all other access to the queue, remove
  the head of the queue (assuming of course that there are enough
  buffers for packetization), advance the head of the queue, and then
  unlock access to the queue.

  If the packetizer keeps only a TCB pointer in a global place called
  CPTCB (current packetizer TCB address), and always uses the address
  in CPTCB to find the TCB in which to examine the send buffer queue,
  then removal of the output buffer queue does not require changes to
  any working storage belonging to the packetizer. Even more important,
  the arrival and processing of a RESET or CLOSE, which clears the
  system of a given TCB, can update the CPTCB pointer, as long as the
  removal does not occur while the packetizer is still working on the
  TCB.






Cerf, Dalal & Sunshine                                         [Page 31]

RFC 675              Specification of Internet TCP         December 1974


  Incoming packets are examined by the input packet handler. Here they
  are checked for valid connection sockets, and acknowledgments are
  processed, causing packets to be removed, possibly, from the SEND or
  RETRANSMIT packet queues as needed. As an example, consider the
  receipt of a valid FIN request on a particular TCB. If a FIN had not
  been sent before (i.e. F bit not set), then a FIN packet is
  constructed and sent after having cleared out the SEND buffer and
  SEND packet queues as well as the RETRANSMIT queue. Otherwise, if the
  F and C bits are both set, all queues are emptied and the TCB is
  returned to free storage.

  Packets which should be reassembled into letters and sent to users
  are queued by the input packet handler, on the receive packet queue,
  for processing by the reassembly process. The reassembler looks at
  its FIFO work queue and tries to move packets into user buffers which
  are queued up in an input buffer queue on each TCB. If a packet has
  arrived out of order, it can be queued for processing in the correct
  sequence. Each time a packet is moved into a user buffer, the left
  window edge of the receiving TCB is moved to the right so that
  outgoing packets can carry the correct ACK information. If the SEND
  buffer queue is empty, then the reassembler creates a packet to carry
  the ACK.

  As packets are moved 1nto buffers and they are filled, the buffers
  are dequeued from the RECEIVE buffer queue and passed to the user.
  The reassembler can also be awakened by the RECEIVE user call should
  it have a non-empty receive packet queue with an empty RECEIVE buffer
  queue. The awakened reassembler goes to work on each TCB, keeping a
  roving pointer, and sleeping if a cycle is made of all TCB's without
  finding any work.

4.4.2  INPUT PACKET HANDLER [See figure 2.2]

  The Input Packet Handler is awakened when a packet arrives from the
  network. It first verifies that the packet is for an existing TCB
  (i.e. the local and foreign socket numbers are matched with those of
  existing TCB's). If this fails, an error message is constructed and
  queued on the send packet queue of a dummy TCB. A signal is also sent
  to the output packet handler. Generally, things to be transmitted
  from the dummy TCB have a default retransmission timeout of zero, and
  will not be retransmitted. (We use the idea of a dummy TCB so that
  all packets containing errors, or RESET can be sent by the output
  packet handler, instead of having the originator of them interface to
  the net. These packets, it will be noticed, do not belong to any
  TCB).






Cerf, Dalal & Sunshine                                         [Page 32]

RFC 675              Specification of Internet TCP         December 1974


  The input packet handler looks out for control or error information
  and acts appropriately. Section 4.4.7 discusses this in greater
  detail, but as an example, if the incoming packet is a RESET request
  of any kind (i.e. all connections from designated TCP or given
  connection), and is believable, then the input packet handler clears
  out the related TCB(s), empties the send and receive packet queues,
  and prepares error returns for outstanding user SEND(s) and
  RECEIVE(s) on each reset TCB. The TCB's are marked unused and
  returned to storage. If the RESET refers to an unknown connection, it
  is ignored.

  Any ACK's contained in incoming packets are used to update the send
  left window edge, and to remove the ACK'ed packets from the TCB
  retransmit packet queue. If the packet being removed was the end of a
  user buffer, then the buffer must be dequeued from the packetized
  buffer queue, and the User informed. The packetizer is also signaled.
  Only one signal, or one for each packet, will have to be sent,
  depending on the scheduling scheme for the processes. See section
  4.4.7 for a detailed discussion.

  The packet sequence number, the current receive window size, and the
  receive left window edge determine whether the packet lies within the
  window or outside of it.

     Let W = window size

        S = size of sequence number space

        L = left window edge

        R = L+W-1 = right window edge

        x = sequence number to be tested

     For any sequence number, x, if

        (R-x) mod S <= W

     then x is within the window.

  A packet should be rejected only if all of it lies outside the
  window. This is easily tested by letting x be, first the packet
  sequence number, and then the sum of packet sequence number and
  packet text length, less one. If the packet lies outside the window,
  and there are no packets waiting to be sent, then the input packet
  handler should construct a dummy ACK and queue it for output on the





Cerf, Dalal & Sunshine                                         [Page 33]

RFC 675              Specification of Internet TCP         December 1974


  send packet queue, and signal the output packet handler. Successfully
  received packets are placed on the receive packet queue in the
  appropriate sequence order, and the reassembler signaled.

  The packet window check can not be made if the associated TCB is not
  in the 'established' state, so care must be taken to check for
  control and TCB state before doing the window check.

4.4.3  REASSEMBLER [See figure 2.3]

  The Reassembler process is activated by both the Input Packet Handler
  and the RECEIVE user call. While the reassembler is asleep, if
  multiple signals arrive, all but one can be discarded. This is
  important as the reassembler does not know the source of the signal.
  This is so in order that "dangling" signals from work in TCB's that
  have subsequently been removed don't confuse it. Each signal simply
  means that there may be work to be done. If the reassembler is awake
  when a signal arrives, it may be necessary to put 1t in a
  "hyperawake" state so that even if the reassembler tries to quit, the
  scheduler will run it one more time.

  When the reassembler is awakened it looks at the receive packet queue
  for each TCB. If there are some packets there then it sees whether
  the RECEIVE buffer queue is empty. If it is then the reassembler
  gives up on this TCB and goes on to the next one, otherwise if the
  first packet matches the left window edge, then the packet can be
  moved into the User's buffer. The reassembler keeps transferring
  packets into the User's buffer until the letter is completely
  transferred, or something causes it to stop. Note that a buffer may
  be partly filled and then a sequence 'hole' is encountered in the
  receive packet queue. The reassembler must mark progress so that the
  buffer can be filled up starting at the right place when the 'hole'
  is filled. Similarly a packet might be only partially emptied when a
  buffer is filled, so progress in the packet must be marked.

  If a letter was successfully transferred to a User buffer then the
  reassembler signals the User that a letter has arrived and dequeues
  the buffer associated with it from the TCB RECEIVE buffer queue. If
  the buffer is filled then the User is signaled and the buffer
  dequeued as before. The event code indicates whether the buffer
  contains all or part of a letter, as described in section 2.4.

  In every case when a packet is delivered to a buffer, the receive
  left window edge is updated, and the packetizer is signaled. This
  updating must take account of the extra octet included in the
  sequencing for certain control functions [SYN, INT, FIN, DSN]. If the
  send packet queue is empty then the reassembler must create a packet
  to carry the ACK, and place it on the send packet queue.



Cerf, Dalal & Sunshine                                         [Page 34]

RFC 675              Specification of Internet TCP         December 1974


  Note that the reassembler never works on a TCB for more than one User
  buffer's worth of time, in order to give all TCB's equal service.

  Scheduling of the reassembler is a big issue, but perhaps running to
  completion will be satisfactory, or else it can be time sliced. In
  the latter case it will continue from where it left off, but a new
  signal may have arrived producing some possible work. This work will
  be processed as part of the old incomplete signal, and so some
  wasteful processing may occur when the reassembler wakes up again.
  This is the general problem of trying to implement a protocol that is
  fundamentally asynchronous, but at least it is immune to harmful
  race-conditions. E.g. if we were to have the reassembler 'remove' the
  signal that caused it to wake up, just before it went to sleep (in
  order that new arriving ones were discarded) then a new signal may
  arrive at a critical time causing 1t not to be recognized; thus
  leaving some work pending, and this may result in a deadlock [see
  previous comments on "hyperawake" state].

4.4.4  PACKETIZER [See figure 2.4]

  The Packetizer process gets work from both the Input Packet Handler
  and the SEND user call. The signal from the SEND user call indicates
  that there is something new to send, while the one from the input
  packet handler indicates that more TCP buffers may be available from
  delivered packets. This latter signal is to prevent deadlocks in
  certain kind of scheduling schemes. We assume the same treatment of
  signals as discussed in section 4.4.3.

  When the packetizer is awakened it looks at the SEND buffer queue for
  each TCB. If there is a new or partial letter awaiting packetization,
  it tries to packetize the letter, TCB buffer and window permitting.
  It packetizes no more than one letter for a TCB before servicing
  another TCB. For every packet produced it signals the output packet
  handler (to prevent deadlock in a time sliced scheduling scheme). If
  a 'run till completion' scheme is used then one signal only need be
  produced, the first time a packet is produced since awakening. If
  packetization is not possible the packetizer goes on to the next TCB.

  If a partial buffer was transferred then the packetizer must mark
  progress in the SEND buffer queue. Completely packetized buffers are
  dequeued from the SEND buffer queue, and placed on a Packetized
  buffer queue, so that the buffer can be returned to the user when an
  ACK for the last bit is received.

  When the packetizer packetizes a letter it must see whether it is the
  first piece of data being sent on the connection, in which case it
  must include the SYN bit. Some implementations may not permit data to
  be sent with SYN and others may discard any data received with SYN.



Cerf, Dalal & Sunshine                                         [Page 35]

RFC 675              Specification of Internet TCP         December 1974


  The Packetizer goes to sleep if it finds no more work at any TCB.

4.4.5  OUTPUT PACKET HANDLER [see figure 2.5]

  When activated by the packetizer, or the input packet handler, or
  some of the user call routines, the Output Packet Handler attempts to
  transmit packets on the net (may involve going through some other
  network interface program). It looks at the TCB's in turn,
  transmitting some packets from the send packet queue. These are
  dequeued and put on the retransmit queue along with the time when
  they should be retransmitted.

  All data packets that are transmitted have the latest receive left
  window edge in the ACK field. Error and control messages may have no
  ACK [ACK bit off], or set the ACK field to refer to a received
  packet's sequence number.

  The RETRANSMIT PROCESS:

  This process can either be viewed as a separate process, or as part
  of the output packet handler. Its implementation can vary; it could
  either perform its function, by being woken up at regular intervals,
  or when the retransmission time occurs for every packet put on the
  retransmit queue. In the first case the retransmit queue for each TCB
  is examined to see if there is anything to retransmit. If there is, a
  packet is placed on the send packet queue of the corresponding TCB.
  The output packet handler is also signaled.

  Another "demon" process monitors all user Send buffers and
  retransmittable control messages sent on each connection, but not yet
  acknowledged. If the global retransmission timeout is exceeded for
  any of these, the User is notified and he may choose to continue or
  close the connection. A QUERY packet may also be sent to ascertain
  the state of the connection [this facilitates recovery from half open
  connections as described in section 4.3.3].

4.4.6  USER CALL PROCESSING

  OPEN [See figure 3.1]

     1. If the process calling does not own the specified local socket,
     return with <type 1><ELP 1 "connection illegal for this process">.

     2. If no foreign socket is specified, construct a new TCB and add
     it to the list of existing TCB's. Select a new local connection
     name and return it along with <type 1><OLP 0 "success">. If there
     is no room for the TCB, respond with <type 1><ELT 4 "No room for
     TCB">.



Cerf, Dalal & Sunshine                                         [Page 36]

RFC 675              Specification of Internet TCP         December 1974


     3. If a foreign socket is specified, verify that there is no
     existing TCB with the same <local socket, foreign socket> pair
     (i.e. same connection), otherwise return <type l><ELP 6
     "connection already open">. If there is no TCB space, return as in
     (2), otherwise, create the TCB and link it with the others,
     returning a local connection name with the success event code.

     Note: if a TCB is created, be sure to copy the timeout parameter
     into it, and set the "U" bit to 0 if a foreign socket is
     specified, else set U to 1 (to show unspecified foreign socket).

  SEND [see figure 3.2]

     1. Search for TCB with local connection name specified. If none
     found, return <type 10><ELP 3 "connection not open">

     2. If TCB is found, check foreign socket specification. If not set
     (i.e. U = 1 in TCB), return <type 10><ELT 5 "foreign socket
     unspecified">. If the connection is in the "closing" state (i.e.
     state 5 or 6), return <type 3><ELP 12 "connection closing"> and do
     not process the buffer.

     3. Put the buffer on the Send buffer queue and signal the
     packetizer that there is work to do.

  INTERRUPT [see figure 3.3]

     1. Validate existence of the referenced connection, sending out
     error messages of the form <type 3><ELP 3 "connection not open">
     or <type 3><ELT 5 "foreign socket unspecified"> as appropriate. If
     the local connection refers to a connection not accessible to the
     process interrupting, send <type 3><ELP 1 "connection illegal for
     this process">.

     2. If the connection is in the "closing" state (i.e. states 5 or
     6), return <type 3><ELT 12 "connection closing"> and do not send
     an INT packet to the destination.

     3. Any pending SEND buffers should be returned with <type 10><ELP
     10 "buffer flushed due to interrupt">. An INT packet should be
     created and placed on the output packet queue, and the output
     packet handler should be signaled.

  RECEIVE [See figure 3.4]

     1. If the caller does not have access to the referenced local
     connection name, return <type 20><ELP 1 "connection illegal for
     this process">. And if the connection is not open, return <type



Cerf, Dalal & Sunshine                                         [Page 37]

RFC 675              Specification of Internet TCP         December 1974


     20><ELP 3 "connection not open"). If the connection is in the
     closing state (e.g. a FIN has been received or a user CLOSE is
     being processed), return <type 20><ELP 12 "connection closing">.

     2. Otherwise, put the buffer on the receive buffer queue and
     signal the reassembler that buffer space is available.

  CLOSE [See figure 3.5]

     1. If the connection is not accessible to the caller, return <type
     2><ELP 1 "connection illegal for this process">. If there is no
     such connection respond with <type 2><ELP 3 "connection not
     open">.

     2. If the R bit is 0 (i.e. connection is in state 1 or 2), simply
     remove the TCB.

     3. If the R bit is set and the F bit is set, then remove the TCB.

     4. Otherwise, if the R bit is set, but F is 0 (i.e. states 3 or
     4), return all buffers to the User with <type x><ELP 12
     "connection closing">, clear all output and input packet queues
     for this connection, create a FIN packet, and signal the output
     packet handler. Set the C and F bits to show this action.

  STATUS [See figure 3.6]

     1. If the connection is illegal for the caller to access, send
     <type 30><ELP 1 "connection illegal for this process">.

     2. If the connection does not exist, return <type 30><ELP 3
     "connection not open">.

     3. Otherwise set status information from the TCB and return it via
     <type 30><O-T 0 "status data...">.

4.4.7  NETWORK CONTROL PROCESSING

  The Input Packet Handler examines the header to see if there is any
  control information or error codes present. We do not discuss the
  action taken for various special function codes, as it is often
  implementation dependent, but we describe those that affect the state
  of the connection. After initial screening by the IPC [see section
  4.4.2 and figure 2.2], control and error packets are processed as
  shown in figures 4.l-4.7. [ACK and data processing is done within the
  IPC.]





Cerf, Dalal & Sunshine                                         [Page 38]

RFC 675              Specification of Internet TCP         December 1974


4.4.8  TCP ERROR HANDLING

  Error messages have CD=001 and do not carry user data. Depending on
  the error, zero or more octets of error information will be carried
  in the packet text field. We explicitly assume that this data is
  restricted in length so as to fall below the GATEWAY fragmentation
  threshold (probably 512 bits of data and header). Errors generally
  refer to specific connections, so the source and destination socket
  identifiers are relevant here. The ACK field of an error packet
  contains the sequence number of the packet that caused the error, and
  the ACK bit is off. [RESET and STATUS special functions may use the
  ACK field in the same way.] This allows the receiver of an error
  message to determine which packet caused the error. Error packets are
  not ACK'ed or retransmitted.


4.5.  BUFFER AND WINDOW ALLOCATION

4.5.1  INTRODUCTION

  The TCP manages buffer and window allocation on connections for two
  main purposes: equitably sharing limited TCP buffer space among all
  connections (multiplexing function), and limiting attempts to send
  packets, so that the receiver is not swamped (flow control function).
  For further details on the operation and advantages of the window
  mechanism see CEKA74.

  Good allocation schemes are one of the hardest problems of TCP
  design, and much experimentation must be done to develop efficient
  and effective algorithms. Hence the following suggestions are merely
  initial thoughts. Different implementations are encouraged with the
  hope that results can be compared and better schemes developed.

  Several of the measurements discussed in a later section are aimed at
  providing information on the performance of allocation mechanisms.
  This should aid in determining significant parameters and evaluating
  alternate schemes.

4.5.2 The SEND Side

  The window is determined by the receiver. Currently the sender has no
  control over the SEND window size, and never transmits beyond the
  right window edge. There exists the possibility of specifying two
  more special function codes so that the sender can request the
  receiver to INCREASE or DECREASE the window size, without specifying
  by how much. The receiver, of course, needn't satisfy this request.





Cerf, Dalal & Sunshine                                         [Page 39]

RFC 675              Specification of Internet TCP         December 1974


  Buffers must be allocated for outgoing packets from a TCP buffer
  pool. The TCP may not be willing to allocate a full window's worth of
  buffers, so buffer space for a connection may be less than what the
  window would permit. No deadlocks are possible even if there is
  insufficient buffer or window space for one letter, since the
  receiver will ACK parts of letters as they are put into the user's
  buffer, thus advancing the window and freeing buffers for the
  remainder of the letter.

  It is not mandatory that the TCP buffer outgoing packets until
  acknowledgments for them are received, since it is possible to
  reconstruct them from the actual letters sent by the user.

  However, for purposes of retransmission and processing efficiency it
  is very convenient to do.

4.5.3  The RECEIVE Side

  At the receiving side there are two requirements for buffering:

  (l) Rate Discrepancy:

     If the sender produces data much faster or much slower than the
     receiver consumes it, little buffering is needed to maintain the
     receiver at near maximum rate of operation. Simple queuing
     analysis indicates that when the production and consumption
     (arrival and service) rates are similar in magnitude, more
     buffering is needed to reduce the effect of stochastic or bursty
     arrivals and to keep the receiver busy.

  (2) Disorderly Arrivals:

     When packets arrive out of order, they must be buffered until the
     missing packets arrive so that packets (or letters) are delivered
     in sequence. We do not advocate the philosophy that they be
     discarded, unless they have to be, otherwise a poor effective
     bandwidth may be observed. Path length, packet size, traffic
     level, routing, timeouts, window size, and other factors affect
     the amount by which packets come out of order. This is expected to
     be a major area of investigation.

  The considerations for choosing an appropriate window are as follows:

  Suppose that the receiver knows the sender's retransmission timeout,
  also, that the receiver's acceptance rate is 'U' bits/sec, and the
  window size is 'W' bits. Ignoring line errors and other traffic, the
  sender transmits at a rate between W/K and the maximum line rate (the
  sender can send a window's worth of data each timeout period).



Cerf, Dalal & Sunshine                                         [Page 40]

RFC 675              Specification of Internet TCP         December 1974


  If W/K is greater than U, the difference must be retransmissions
  which is undesirable, so the window should be reduced to W', such
  that W'/K is approximately equal to U. This may mean that the entire
  bandwidth of the transmission channel is not being used, but it is
  the fastest rate at which the receiver is accepting data, and the
  line capacity is free for other users. This is exactly the same case
  where the rates of the sender and receiver were almost equal, and so
  more buffering is needed. Thus we see that line utilization and
  retransmissions can be traded off against buffering.

  If the receiver does not accept data fast enough (by not performing
  sufficient RECEIVES) the sender may continue retransmitting since
  unaccepted data will not be ACK'ed. In this case the receiver should
  reduce the window size to "throttle" the sender and inhibit useless
  retransmissions.

  Receiver window control:

     If the user at the receiving side is not accepting data, the
     window should be reduced to zero. In particular, if all TCP
     incoming packet buffers for a connection are filled with received
     packets, the window must go to zero to prevent retransmissions
     until the user accepts some packets.

     Short term flow control:

     Let F = the number of user receive buffers filled

        B = the total user receive buffers

        W = the long-term or nominal window size

        W' = the window size returned to the sender

     then a possible value for W' is

        W' = W*[1-F/B]**a

     The value of 'a' should be greater than one, in order to shut the
     window faster as buffers run out. The values of W' and F actually
     used could be averages of recent values, in order to get smooth
     control. Note that W' is constantly being recomputed, while the
     value of W, which sets the upper limit of W', only changes slowly
     in response to other factors.

     The value of W can be large (up to half the sequence number space)
     to allow for good throughput on high delay channels. The sender
     needn't allocate W worth of buffer space anyway. The long-term



Cerf, Dalal & Sunshine                                         [Page 41]

RFC 675              Specification of Internet TCP         December 1974


     variation of W to match flow requirements may be a separate
     question

  This short-term mechanism for flow control allows some buffering in
  the two TCP's at either end, (as much as they are willing), and the
  rest in the user process at the send side where the data is being
  created. Hence the cost of buffering to smooth out bursty traffic is
  borne partly by the TCP's, and partly by the user at the send side.
  None of it is borne by the communication subnet.

5.  NETWORK MEASUREMENT PLANS FOR TCP

5.1  USERLEVEL DIAGNOSTICS

  We have in mind a program which will exercise a given TCP, causing it
  to cycle through a number of states; opening, closing, and
  transmitting on a variety of connections. This program will collect
  statistics and will generally try to detect deviation from TCP
  functional specifications. Clearly there will have to be a copy of
  this program both at the local site being tested and some site which
  has a certified TCP. So we will have to produce a specification for
  this user level diagnostic program also.

  There needs to be a master and a slave side to all this so the master
  can tell the slave what's going wrong with the test.

5.2  SINGLE CONNECTION MEASUREMENTS

  Round trip delay times

     Time from moment the packet is sent by the TCP to the time that
     the ACK is received by the TCP.

     Time from the moment the USER issues the SEND to the time that the
     USER gets the successful return code.

        Note: packet size should be used to distinguish from one set of
        round trip times and another.

        Network destination, and current configuration and traffic load
        may also be issues of importance that must be taken into
        account.

        What if the destination TCP decides to queue up ACKs and send a
        single ACK after a while? How does this affect round trip
        statistics?





Cerf, Dalal & Sunshine                                         [Page 42]

RFC 675              Specification of Internet TCP         December 1974


        What about out of order arrivals and the bunched ACK for all of
        them?

        The histogram of round trip times include retransmission times
        and these must be taken into account in the analysis and
        evaluation of the collected data.

        Packet size statistics

     Histogram of packet length in both directions on the full duplex
     connection.

     Histogram of letter size in both directions.

  Measure of disorderly arrival

     Distance from the first octet of arriving packet to the left
     window edge. A histogram of this measure gives an idea of the out
     of order nature of packet arrivals. It will be 0 for packets
     arriving in order.

  Retransmission Histogram

  Effective throughput

     This is the effective rate at which the left edge of the window
     advances. The time interval over which the measure is made is a
     parameter of the measurement experiment. The shorter the interval,
     the more bursty we would expect the measure to be.

     It is possible to measure effective data throughput in both
     directions from one TCP by observing the rate at which the left
     window edge is moving on ACK sent and received for the two
     windows.

     Since throughput is largely dependent upon buffer allocation and
     window size, we must record these values also. Varying window for
     a fixed file transmission might be a good way to discover the
     sensitivity of throughput to window size.

  Output measurement

     The throughput measurement is for data only, but includes
     retransmission. The output rate should include all octets
     transmitted and will give a measure of retransmission overhead.
     Output rate also includes packet format overhead octets as well as
     data.




Cerf, Dalal & Sunshine                                         [Page 43]

RFC 675              Specification of Internet TCP         December 1974


  Utilization

     The effective throughput divided by the output rate gives a
     measure of utilization of the communication connection.

  Window and buffer allocation measurements

     Histogram of letters outstanding, measured at the instant of SEND
     receipt by TCP from user or at instant of arrival of a letter for
     a receiving user.

     Buffers in use on the SEND side upon packet departure into the
     net; buffers in use on the RECEIVE side upon delivery of packet
     into a USER Buffer.

5.3  MULTICONNECTION MEASUREMENTS

  Statistics on User Commands sent to the local TCP

  Statistics of error or success codes returned [histogram of each type
  of error or return response]

  Statistics of control bit use

     Counter for each control bit over all packets emitted by the TCP
     and another for packets accepted

  Count data carrying packets

  Count ACK packets with no data

  Error packets distribution by error type code received from the net
  and sent out into the net

5.4  MEASUREMENT IMPLEMENTATION PHILOSOPHY

  We view the measurement process as something which occurs internal to
  the TCP but which is controllable from outside. A well known socket
  owned by the TCP can be used to accept control which will select one
  or more measurement classes to be collected. The data would be
  periodically sent to a designated foreign socket which would absorb
  the data for later processing, in the manner currently used in the
  ARPANET IMPs. Each measurement class has its own data packet format
  to make the job of parsing and analyzing the data easier.







Cerf, Dalal & Sunshine                                         [Page 44]

RFC 675              Specification of Internet TCP         December 1974


  We would restrict access to TCP measurement control to a few
  designated sites [e.g. NMC, SU-DSL, BBN]. This is easily done by
  setting up listening control connections on partially specified
  foreign sockets.

6.  SCHEDULE OF IMPLEMENTATION

7.  REFERENCES

  1. CEKA74

     V. Cerf and R. Kahn, "A Protocol For Packet Network
     Intercommunication," IEEE Transactions on Communication, vol. C-
     2O, No. 5. May 1974, pp. 637-648.

  2. CERF74

     V. Cerf, "An Assessment of ARPANET Protocols," in Proceedings of
     the Jerusalem Conference on Information Technology, July l974
     [RFC#635, INWG Note # ***].

  3.CESU74

     V. Cerf and C. Sunshine, "Protocols and Gateways for the
     Interconnection of Packet Switching Networks," Proc. of the
     Subconference on Computer Nets, Seventh Hawaii International
     Conference on Systems Science, January 1974.

  4. HEKA70

     F. Heart, R.E. Kahn, et al, "The Interface Message Processor for
     the ARPA Computer Network," AFIPS 1970 SJCC Proceedings, vol. 36,
     Atlantic City, AFIPS Press, New Jersey, pp. 551-567.

  5. POUZ74

     L. Pouzin, "CIGALE, the packet switching machine of the CYCLADES
     computer network," Proceedings of the IFIP74 Congress, Stockholm,
     Sweden.

  6. ROWE74

     L. Roberts and B. Wessler, "Computer Network Development to
     achieve resource sharing," AFIPS 1970, SJCC Proceedings, vol. 36,
     Atlantic City, AFIPS Press, New Jersey, pp. 543-549.






Cerf, Dalal & Sunshine                                         [Page 45]

RFC 675              Specification of Internet TCP         December 1974


  7. POUZ73

     L. Pouzin, "Presentation and major design aspects of the CYCLADES
     Computer Network," Data Networks: Analysis and Design, Third Data
     Communications Symposium, St. Petersburg, Florida, November 1973,
     pp. 80-87.

  8. SCWI71

     R. Scantlebury and P.T. Wilkinson, "The Design of a Switching
     System to allow remote Access to Computer Services by other
     computers and Terminal Devices," Second Symposium on Problems in
     the Optimization of Data Communication Systems Proceedings, Palo
     Alto, California, 0ctober 1971, pp. 160-167.

  9. POST72

     J. Postel, "Official Initial Connection Protocol," Current Network
     Protocols, Network Information Center, Stanford Research
     Institute, Menlo Park, California. January 1972 (NIC 7101).

  10. CACR70

     C.S. Carr, S.D. Crocker, and V.G. Cerf, "Host-Host Communication
     Protocol in the ARPA Network," AFIPS Conference Proceedings, vol.
     36, 1970 SJCC, AFIPS Press, Montvale, N.J.

  11. ZIEL74

     H. Zimmerman and M. Elie, "Transport Protocol. Standard Host-Host
     Protocol for heterogeneous computer networks," INWG#61, April
     1974.

  12. CRHE72

     S. D. Crocker, J. F. Heafner, R. M. Metcalfe and J. B. Postel,
     "Function-oriented protocols for the ARPA Computer Network," AFIPS
     Conference Proceedings, vol. 41, 1972 FJCC, AFIPS Press, Montvale,
     N.J.

  13. DALA74

     Y. Dalal, "More on selecting sequence numbers," INWG Protocol Note
     #4, October 1974.







Cerf, Dalal & Sunshine                                         [Page 46]

RFC 675              Specification of Internet TCP         December 1974


  14. SUNS74

     C. Sunshine, "Issues in communication protocol design -- formal
     correctness." INWG Protocol Note #5, October 1974

  BELS74

     D. Belsnes, "Note on single message communication," INWG Protocol
     Note #3. September 1974.

  16. TOML74

     R. Tomlinson, "Selecting sequence numbers," INWG Protocol Note #2,
     September 1974.

  17. SCHA74

     R. Schantz, "Reconnection Protocol", private communication;
     available from Schantz at BBN.

  18. POUZ74A

     L. Pouzin, "A proposal for interconnecting packet switching
     networks, INWG Note #60, March 1974 [also submitted to EUROCOMP
     74].

  19. DLMG74

     D. Lloyd, M. Galland, and P. T. Kirstein, "Aims and objectives of
     internetwork experiments," to be published as an INWG Experiments
     Note.

  20. MCKE73

     A. McKenzie, "Host-Host Protocol for the ARPANET," NIC # 8246,
     Stanford Research Institute [also in ARPANET Protocols Notebook
     NIC 7104].

  21. BELS74A

     D. Belsnes, "Flow control in packet switching networks," INWG Note
     #63, October 1974.









Cerf, Dalal & Sunshine                                         [Page 47]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 1: TCB Major States

                             0-no TCB
     \____________________________________________________________/
                      OPEN    |    A   CLOSE           CLOSE    A
                   ---------- |    | ----------      ---------- |
                   set up TCB |    | remove TCB      remove TCB |
                              |    |                            |
                              |    |       collision retry,     |
       SYN arrives          __V____|__       SEND, INTER        |
      -------------        / S1=0     \    ----------------     |
      send SYN, ACK       |  S2=0 F=0  |       send SYN         |
    ______________________|  R=0  C=0  |_____________________   |
   |                      |  U=0/1     |                     |  |
   |                      |            |   SYN arrives       |  |
   |      error,timeout   |   1-OPEN   |   -----------       |  |
   |      -------------    \__________/    collision;        |  |
   |        clear TCB         A    A       set timeout       |  |
   |     _____________________|    |_____________________    |  |
 __V____|__                                             _|___V__|_
/ S1=1     \                                           / S1=1     \
|  S2=0 F=0  |                                         |  S2=0 F=0  |
|  R=1  C=0  |                       SYN, ACK arrives  |  R=0  C=0  |
|  U=0/1     |  ACK arrives          ----------------  |  U=0       |
|            |  -----------              send ACK      |            |
| 3-SYN rcvd |_________________       _________________| 2-SYN sent |
\__________/                  |     |                  \__________/
   |                        __V_____V__
   |                       / S1=1      \
   |  CLOSE               |  S2=1 F=0   |
   | --------             |  R=1  C=0   |     FIN arrives
   | send FIN             |  U=0        | -------------------
   |                      |             | tell user, send FIN
   |      ________________|4-established|______________________
   |     |    CLOSE        \___________/                       |
   |     |   -------                                           |
 __V_____V_  send FIN                                   _______V__
/ S1=1     \                                           / S1=1     \
| S2=0/1 F=1 |     timeout or                          |  S2=1 F=1  |
|  R=1   C=1 | FIN, error, arrives            CLOSE    |  R=1  C=0  |
|  U=0/1     | -------------------          ---------- |  U=0       |
|            |     remove TCB               remove TCB |            |
| 5-FIN wait |_____________________       _____________| 6-FIN rcvd |
\__________/                      |     |              \__________/
                                  |     |
      ____________________________V_____V_______________________
     /                                                          \
                                 0-no TCB



Cerf, Dalal & Sunshine                                         [Page 48]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.1: Structure of the TCP




     |       _____________            _______________       |
     |      |             |          |               |      |
     |      |             |          | INPUT PACKET  |<---->|
     |      | REASSEMBLER |          |    HANDLER    |      |
     |      |_____________|          |_______________|      |
     |             |_______________          |              |
     |                             |         |              |
     |       _________             |         |              |
     |      |         |          __V_________V____          |  NETWORK
     |<=====| SYSTEM  |         |                 |         |    or
     |      |  CALLS  |<========|       TCB's     |<========|   some
USERS |=====>|   or    |         |        and      |         |  NETWORK
     |      |  USER   |========>|ASSOCIATED QUEUES|========>| INTERFACE
     |<---->|INTERFACE|         |_________________|         |  PROGRAM
     |      |_________|            A         A              |
     |                             |         |              |
     |               ______________|         |              |
     |       _______|_____            _______|_______       |
     |      |             |          |               |      |
     |      | PACKETIZER  |          | OUTPUT PACKET |      |
     |      |             |          |    HANDLER    |<---->|
     |      |_____________|          |_______________|      |
     |                                                      |






    =======> Logical or physical flow of data (packets/letters)

    -------> "Interaction"

    NOTE:    The signalling of processes by others is not shown












Cerf, Dalal & Sunshine                                         [Page 49]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.2a:                               ________
Address Check                             / Begin  \
                                         \________/
                                              |
                                             _V_
                                          .'     '.
                                        .' packet  '.
                                      .'   foreign   '.
                 ___________________.'  socket matches '.
                |                no  '.  a TCB local  .'
                |                      '.   socket  .'
                |                        '.   ?   .'
                |                          '.___.'
                |                             | yes
                |                            _V_
                |                         .'     '.
                |                       .' packet  '.           ___
                |                     .'local socket '.        /   \
                |                   .'  matches fully  '.____\| YES |
                |                    '. specified TCB .'     / \___/
                |                      '.fgn socket .'
                |                        '.   ?   .'
               _V_                         '.___.'
            .'     '.                         | no
          .'   SYN,  '.                      _V_
        .'FIN,INT,DSN, '.                 .'     '.
 _____.'or text length>0 './_____       .' matches '.
|  no  '.   or QUERY    .' \     |    .'partly spec. '.
|        '.           .'         |___.'  or unspec. TCB '.
|          '.   ?   .'            no  '.     foreign   .'
|            '.___.'                  '.   socket  .'
|               | yes                   '.   ?   .'
|     __________V_________                 '.___.'
|    |                    |                   | yes
|    |   Create error 7   |                  _V_
|    | packet. Signal OPH |               .'     '.
|    |____________________|             .' packet  '.
|               |               ______.' has SYN set '.
|           ____V____          |   no  '.           .'
|          |         |         |         '.   ?   .'
|_________\| discard |/________|          '.___.'
          /|_________|\                      |
                |                           _V_
               _V_                         /   \
              /   \                       | YES |
             | NO  |                       \___/
              \___/




Cerf, Dalal & Sunshine                                         [Page 50]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.2b-1:                         _______
Input Packet Handler                  / Begin \
                                     \_______/
                                         |
________________________________________\|/_________________________
|                              A         /|\                         |
|                              |          |                          |
|                              |         _V_                         |
|                              |       .'   '.          _______      |
|                              |     .' input '.       | go to |     |
|                              |   .'  packet   '.____\| sleep |     |
|                              |    '.available.'  no /|_______|     |
|                              |      '.__?__.'                      |
|                              |          | yes                      |
|                              |         _V_                         |
|                              |       .'   '.                       |
|   .->SPECIAL FUNCT. Fig 4.7  |     .'address'.                     |
|   | .->ERR Fig 4.5,4.6       |___.' check OK  '.                   |
|   | | .->SYN Fig 4.1,4.2      no  '.    ?    .'                    |
|   | | | .->INT Fig 4.3              '._____.'                      |
|   | | | | .->FIN Fig 4.4                | yes              ________|_
|   | | | | |                            _V_                | discard  |
|  _|_|_|_|_|___________               .'   '.              |(or queue)|
|  |                    |            .' error '.            |__________|
|<-| Control Processing |/_________.'or control '.                   A
  |____________________|\     yes  '.    ?    .'                    |
       |                             '._____.'                      |
       | (INT with data)                 | no                       |
       |                                 |                          |
       V                                _V_                         |
     to "X"                           .'   '.              .        |
 in Fig 2.2b-2                      .'(estab)'.          .' '.      |
                             _____.' R=S1=S2=1 '.----->.'seq.#'.--->|
                            | yes  '.    ?    .'  no    '.OK .'  no |
                            |        '._____.'            '.'       |
                            |                              | yes    |
                            |    _______________           |        |
                            |   | Set S2=1, U=0 |          V        |
                            |   | Notify user   |         .'.       |
                            |<--| with event 2  |       .'ACK'.     |
                            |   | if U was 1    |<-----'.  OK .'--->'
                            |   |_______________|  yes   '. .'   no
                            |                              '
                            V
                          to "Y"
                      in Fig 2.2b-2





Cerf, Dalal & Sunshine                                         [Page 51]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.2b-2: Input Packet Handler (continued)

                           "Y"
                            |
          .'.              _V_
        .'txt'.          .'   '.        ______________________________
      .'lgth>0 '.      .'within '.     |Use ACK to advance send window|
,<----'. or DSN  .'<---'. window  .'--->|Release ACK'ed packets from   |
|  no   '.  ?  .'   no   '.  ?  .'  yes |retransmit or send queues. If |
|         '._.'            '._.'        |any packet had EB bit set     |
|           | yes                       |remove buffer from Packetized |
|   ________V____________________       |buffer queue and inform user  |
|  |Create ACK packet. Put on    |      |(success). Signal Packetizer. |
|<-|Send packet queue. Signal OPH|      |______________________________|
|  |_____________________________|                      |
|                                                       |
|          _____________________________________________|
|         |
|         |
|         |                      "X"
|         |                       |
|        _V_                     _V_              _____________________
|      .'   '.                 .'TCB'.           |Put packet on        |
|    .' text  '.   yes       .'Receive'.   yes   |Receive packet queue |
|  .' length>0  '.-------->.'  buffer   '.------>|in the right order.  |
|   '. or DSN  .'   A       '.available.'        |Signal Reassembler.  |
|     '.  ?  .'     |         '.  ?  .'          |_____________________|
|       '._.'       |           '._.'                           |
|         | no      |             | no                          |
|         |         |            _V_                            |
|________\|         |          .'   '.                          |
        /|         |        .' seq # '.         ________       |
         |         |      .' of packet '.  yes |Discard |      |
         |         |     '.  highest so .'---->|packet  |----->|
         |         |       '.   far   .'       |________|      |
         |         |         '.  ?  .'                         |
         |         |           '._.'                           |
         |         |             | no                          |
         |         |      _______V______________               |
         |         |     |Discard packet with   |              |
         |         |_____|highest seq. no from  |              |
         |               |Receive packet queue. |              |
         |               |______________________|              |
         |                                                     |
         |_____________________________________________________|
                                 |
                                 V
                     to "Begin" in Fig 2.2b-1



Cerf, Dalal & Sunshine                                         [Page 52]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.3-1: Reassembler

      _______
     / Begin \
     \_______/
         |
         |
         |<----------------------------------------------.
         |                      _____                    | yes
   ______V_____               .'     '.                 _|_
  |Get ready   |            .' Receive '.   yes       .'any'.
  |for next TCB|--------->.'Packet Queue '.-------->.' more  '.
  |____________|     A     '.  empty ?  .'     A     '.work?.'
                     |       '._______.'       |       '._.'
                     |            | no         |         | no
  "R"------>---------'          __V__          |     ____V____
                              .' is  '.        |    |  Go to  |
                            .' packet  '.      |    |  Sleep  |
 .--<----------------------'.DSN with no.'     |    |_________|
 |                     yes   '. data? .'       |
 |                             '.___.'         |
 |                                | no         |
 |                              __V__          |
 |                            .'     '.        |
 |                          .' Receive '.  yes |
 |                        .'Buffer Queue '.--->|
 |                         '.  empty ?  .'     |
 |  ________________         '._______.'       |
 | |Copy from packet|             | no         |<-------------"S"
 | |to buffer until |           __V__          |
 | |one is exhausted|         .'First'.        |
 | |Update receive  | yes   .' packet  '.   no |
 | |window.         |<----.'matches Recv '.--->'
 | |________________|      '.left window.'
 |         |                 '. edge ?.'
 |       __V__                 '.___.'
 |     .'Send '.
 |   .' Packet  '.   yes  _____________________________
 | .' Queue empty '.---->|Create ACK packet containing |
 |  '.     ?     .'      |new window. Signal OPH.      |
 |    '._______.'        |_____________________________|
 |      no |                            |
 |         |                            |
 |         '--------------------------->|
 |                                      |
 V                                      V
to "T"                                 to "U"
in Fig 2.3-2                        in Fig 2.3-2



Cerf, Dalal & Sunshine                                         [Page 53]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.3-2:  Reassembler (continued)




    "T"                                "U"
     |                                  |
     |                                  |           _____________
  ___V____           ___              __V__        |Mark progress|
 |process |  yes   .'   '.    yes   .'whole'.  no  |in packet.   |
 |  DSN   |<-----.'  DSN  '.<-----.' packet  '.--->|Return buffer|--->.
 |________|       '. set?.'        '.copied?.'     |to user.     |    |
     |              '._.'            '.___.'       |_____________|    |
     |                | no                                            |
     '--------------->|                                               |
                      |                                               |
                    __V__              __________________________     |
                  .' EOL '.  yes      |Return buffer to user.    |    |
                 '.  set? .'--------->|Return packet to free     |--->|
                   '.___.'            |storage. Signal Packetizer|    |
                   no |               |__________________________|    |
                      |                   A                           |
                    __V__                 |                           |
                  .' full'.               |                           |
                 '. buffer.'--------------'                           |
                   '.___.'   yes                                      |
                      | no                                            |
                      |                                               |
   ___________________V__________________                             |
  |Mark progress in buffer. Return packet|                            |
  |to free storage. Signal Packetizer.   |                   ,--------'
  |______________________________________|                   |
                      |                                      |
                      |                                      |
                      V                                      V
             to "R" in Fig 2.3-1                    to "S" in Fig 2.3-1















Cerf, Dalal & Sunshine                                         [Page 54]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.4: Packetizer

   _______               ________________________
  / Begin \____________\| Get ready for next TCB |/___________________
  \_______/            /|________________________|\                   |
                                     |                                |
                                   __V__               _____          |
                                 .'Send '.           .' any '.        |
                           no  .' Buffer  '.  yes  .'  more   '.  yes |
                .-------------'.   Queue   .'---->'.   work    .'-----'
                |               '.empty? .'   A     '.   ?   .'
    ____________V____________     '.___.'     |       '.___.'
   |Pick packet size depend- |                |          | no
,-->|ing on send buffer, TCB  |                |    ______V______
|   |buffer space, window, etc|                |   | go to sleep |
|   |_________________________|                |   |_____________|
|                |                             |
|              __V__                           |
|            .'Send '.                         |
|          .' window  '.  no                   |
|         '.has room ? .'--------------------->|
|           '._______.'                        |
|                | yes                         |
|              __V__                           |
|            .' TCB '.                         |
|          .' buffer  '.   no                  |
|        .'space avail- '.---------------------'
|         '.  able ?   .'                   A
|           '._______.'                     |
|                | yes                      |
|   _____________V____________     _________|_______     ____________
|  |Copy from Send buffer to  |   |Move buffer from |   |Set EOL bit |
|  |packet until packet full. |   |Send queue to    |<--|in packet   |
|  |Put packet on Send packet |   |packetized queue |   |header      |
|  |queue. Signal OPH.        |   |_________________|   |____________|
|  |__________________________|             A                  A
|                |                          | no               |
|              __V__                      __|__                |
|            .'whole'.                  .' EOL '.              |
|          .'  Send   '.  yes         .' set in  '.  yes       |
|         '.  buffer   .'----------->'.   Send    .'-----------'
|           '.copied?.'                '.buffer?.'
|             '.___.'                    '.___.'
|                | no
|   _____________V__________
|  |Note in TCB where in    |
--|Send buffer we stopped. |
  |________________________|



Cerf, Dalal & Sunshine                                         [Page 55]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.5a:
Output Packet Handler
                                       _______
                                      / Begin \
                                      \_______/
                                          |
                                          |<--------------------------.
                              ____________V___________                |
                             | Get ready for next TCB |               |
                             |________________________|               |
                                     |                                |
,------------------------------------>|                                |
|                                   __V__               _____          |
|               _____             .'Send '.           .' any '.        |
|        yes  .' ACK '.     no  .' Buffer  '.  yes  .'  more   '.  yes |
|      .-----'.bit set.'<------'.   Queue   .'---->'.   work    .'-----'
|      |       '.___.'           '.empty? .'    A    '.   ?   .'
|      |       no |________        '.___.'      |      '.___.'
|      |                   |__________          |         | no
|  ____V__________________            |         |         |
| |Put latest receive left|   ________v______   |   ______V______
| |window edge in ACK.    |->|Transmit packet|  |  | go to sleep |
| |_______________________|  |_______________|  |  |_____________|
|                                     |         |
|     ________________              __V__       |
|    |Return packet to|           .'pckt '.     |_________________
|    |buffer pool as  |    no   .'seq # to '.                     |
|    |it has been     |<------.'rgt of Send  '.                   |
|    |ACKed           |        '.left window.'                    |
|    |________________|          '.  edge .'                      |
|             |                    '.___.'                        |
|             |                       | yes                       |
|             |        _______________V________________           |
|             |       |Move packet to retransmit queue;|          |
|             |       |set new retrans. time for it.   |          |
|             |       |________________________________|          |
|             |                       |                           |
|             '---------------------->|                           |
|                                   __V__                         |
|                            no   .'Time '.   yes                 |
-------------------------------.'to switch'.---------------------'
                                '.TCB's? .'
                                  '.___.'








Cerf, Dalal & Sunshine                                         [Page 56]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 2.5b:
Retransmit Process

                               _______
                              / Begin \
                              \_______/
                                  |
                                  |<----------------------------------.
                      ____________V___________                        |
                     | Get ready for next TCB |                       |
                     |________________________|                       |
                                  |                                   |
.-------------------------------->|                                   |
|                               __V__                                 |
|                             .' Any '.                _____          |
|                           .'packet's '.            .' any '.        |
|                         .'retrans. time'.  no    .'  more   '.  yes |
|                        '. has occurred  .'----->'.   work    .'-----'
|                          '.  for this .'          '.   ?   .'
|                            '. TCB ? .'              '.___.'
|                              '.___.'                   |
|                                 | yes                  | no
|                                 |                ______V______
|                         ________V________       | go to sleep |
|                        |Move packet to   |      |_____________|
'------------------------|Send Packet      |
                         |queue. Signal OPH|
                         |_________________|























Cerf, Dalal & Sunshine                                         [Page 57]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 3.1:
OPEN
                                _______
                               / Begin \
                               \_______/
                                   |
                                 __V__
                               .'User '.          _______
                             .'permitted'.   no  |       |
                           .'  access to  '.---->|error 1|------------.
                            '.this local .'      |_______|            |
                              '.socket?.'                             |
                                '.___.'                               |
                                   | yes                              |
                                 __V__                                |
                               .' fgn '.                              |
                        yes  .' socket  '.  no                        |
                      .-----'. specified .'----.                      |
                      |       '.   ?   .'      |                      |
                    __V__       '.___.'      __V__         _______    |
  _______         .'conn-'.                .'space'.  no  |       |   |
 |       |  yes .' ection  '.             '.for TCB.'---->|error 4|-->|
,-|error 6|<----'.  already  .'              '.___.'       |_______|   |
| |_______|       '.exists?.'                   | yes                  |
|                   '.___.'                     |                      |
|                      | no                 ____V__________            |
|   _______          __V__                 |Create TCB. Set|           |
|  |       |   no  .'space'.               |S1=S2=R=F=C=1  |           |
|<-|error 4|<-----'.for TCB.'              |Set U=1        |           |
|  |_______|        '.___.'                |_______________|           |
|                      | yes                       |                   |
|                      |                           |                   |
|             _________V__________                 |                   |
|            |Create TCB. Set U=0 |                |                   |
|            |Set S1=S2=R=F=C=1   |                |                   |
|            |____________________|                |                   |
|                      |                           |                   |
|                      '-------------.-------------'                   |
|                                    |                                 |
|               _____________________V__________________               |
|              |Return local connection name and Success|              |
|              |________________________________________|              |
|                                    |                                 |
----------------------------------->|<--------------------------------'
                                ____V___
                               / Return \
                               \________/




Cerf, Dalal & Sunshine                                         [Page 58]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 3.2:
SEND
                  _______
                 / Begin \
                 \_______/
                     |
                   __V__
                 .'conn-'.
               .' ection  '.               _________
             .'  legal for  '.  no        |         |
            '. this process  .'---------->| error 1 |-----------.
              '.     ?     .'             |_________|           |
                '._______.'                                     |
                     | yes                                      |
                   __V__                                        |
                 .'conn-'.                 _________            |
               .' ection  '.   no         |         |           |
             .'    open     '.----------->| error 3 |---------->|
              '.     ?     .'             |_________|           |
                '._______.'                                     |
                     | yes                                      |
                   __V__                                        |
                 .' fgn '.                 _________            |
               .' socket  '.  no          |         |           |
              '. specified .'------------>| error 5 |---------->|
                '.(U=0)? .'               |_________|           |
                  '.___.'                                       |
                     | yes                                      |
                   __V__                                        |
                 .'conn-'.                 _________            |
               .' ection  '.  yes         |         |           |
              '. closing ? .'------------>| error 12|---------->|
                '.(F,C=1).'               |_________|           |
                  '.___.'                                       |
                     | no                                       |
 ____________________V________________________________          |
|Put buffer on Send Buffer queue and signal Packetizer|         |
|_____________________________________________________|         |
                     |                                          |
                     |<-----------------------------------------'
                 ____V___
                / Return \
                \________/








Cerf, Dalal & Sunshine                                         [Page 59]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 3.3:
INTERRUPT


                  _______
                 / Begin \
                 \_______/
                     |
                     |
                     V


               Same as SEND


                     |                                          |
                     |                                          |
 ____________________V_________________________                 |
|Return any pending Send buffers with code 10. |                |
|Create INT packet on outgoing packet queue.   |                |
|Signal Output Packet Handler.                 |                |
|______________________________________________|                |
                     |                                          |
                     |<-----------------------------------------'
                 ____V___
                / Return \
                \________/
























Cerf, Dalal & Sunshine                                         [Page 60]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 3.4:
RECEIVE
                  _______
                 / Begin \
                 \_______/
                     |
                   __V__
                 .'conn-'.
               .' ection  '.               _________
             .'  legal for  '.  no        |         |
            '. this process  .'---------->| error 1 |-----------.
              '.     ?     .'             |_________|           |
                '._______.'                                     |
                     | yes                                      |
                    _V_                                         |
                  .'   '.                                       |
                .'       '.                                     |
              .'connection '.                                   |
            .'     state     '.                                 |
           :___________________:                   _________    |
              |      |      |                     |         |   |
          1-4 |  5,6 |    0 '-------------------->| error 3 |-->|
              |      '---------------------.      |_________|   |
    __________V__________                  |                    |
   |Put buffer on Receive|                 |       _________    |
   |Buffer queue. Signal |                 |      |         |   |
   |Reassembler          |                 '----->| error 12|-->|
   |_____________________|                        |_________|   |
              |                                                 |
              |<------------------------------------------------'
          ____V___
         / Return \
         \________/


















Cerf, Dalal & Sunshine                                         [Page 61]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 3.5:
CLOSE
                  _______
                 / Begin \
                 \_______/
                     |
                   __V__
                 .'conn-'.
               .' ection  '.               _________
             .'  legal for  '.  no        |         |
            '. this process  .'---------->| error 1 |-----------.
              '.     ?     .'             |_________|           |
                '._______.'                                     |
                     | yes                                      |
                    _V_                                         |
                  .'   '.                                       |
                .'       '.                                     |
              .'connection '.                                   |
            .'     state     '.                                 |
           :___________________:                   _________    |
           5|   |3,4  |1,2,6  |0                  |         |   |
            |   |     |       '------------------>| error 3 |-->|
,------------'   |     '-------------------.       |_________|   |
|  ______________V______________________   |                     |
| |Return all buffers to user with error|  |     ___________     |
| |12; clear all packet queues, create  |  |    |Remove TCB |    |
| |FIN packet, signal Output Packet     |  '--->|Return     |--->|
| |Handler, set C=F=1                   |       |Success    |    |
| |_____________________________________|       |___________|    |
|                      |                                         |
--------------------->|<----------------------------------------'
                  ____V___
                 / Return \
                 \________/

















Cerf, Dalal & Sunshine                                         [Page 62]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 3.6:
STATUS
                  _______
                 / Begin \
                 \_______/
                     |
                   __V__
                 .'conn-'.
               .' ection  '.               _________
             .'  legal for  '.  no        |         |
            '. this process  .'---------->| error 1 |-----------.
              '.     ?     .'             |_________|           |
                '._______.'                                     |
                     | yes                                      |
                   __V__                   __________           |
                 .'conn-'.                |Return    |          |
               .' ection  '.  no          |state=0 or|          |
              '.   open ?  .'------------>|error 3   |--------->|
                '._______.'               |__________|          |
                     | yes                                      |
          ___________V___________                               |
         |Fill in reply from TCB.|                              |
         |Return Success to user.|                              |
         |_______________________|                              |
                     |                                          |
                     |<-----------------------------------------'
                 ____V___
                / Return \
                \________/






















Cerf, Dalal & Sunshine                                         [Page 63]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.1:
SYN (no ACK)
                             _______
                            / Begin \
                            \_______/
                                |
                               _V_
                             .'   '.
                           .'       '.
                         .' S1, S2, R '.
                       .'       ?       '.
                      :___________________: 1,1,1        _________
__________             |     |     |     | (states 4-6) |         |
|Treat as a|      1,0,1 |     |     |     '------------->| error 6 |-->.
|duplicate.|<-----------'     |     |                    |_________|   |
|Retransmit|                  |     | 1.0,0                            |
|SYN, ACK  |            0,0,0 |     | (Syn sent)   ________________    |
|__________|      (listening) |     '------------>|Collision: Clear|   |
    |                        |                   |S1, set timeout,|   |
    |   _____________________V________________   |remove SYN from |-->|
    |  |Set R=S1=1. If U=1 set foreign socket |  |retransmit queue|   |
    |  |in TCB to match packet local socket.  |  |________________|   |
    |  |Send SYN, ACK. Signal OPH. Fill in TCB|                       |
    |  |with send window, receive sequence #. |                       |
    |  |______________________________________|                       |
    |                        |                                        |
    |                        |                                        |
    '----------------------->|<---------------------------------------'
                          ___V__
                         / Done \
                         \______/




















Cerf, Dalal & Sunshine                                         [Page 64]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.2:
SYN,ACK

                       _______
                      / Begin \
                      \_______/
                          |
                        __V__
                      .'     '.
                    .' State 2 '.  no
                   '.S1=1;S2=R=0.'----------------.
                     '.   ?   .'                  |
                       '.___.'                    |
                          | yes                   |
                        __V__              _______V______
                      .' ACK '.   no      |              |
                    .' correct '.-------->| send error 6 |
                     '.   ?   .'          |______________|
                       '.___.'                    |
                          | yes                   |
                 _________V_________              |
                |Set S2=R=1. Process|             |
                |ACK. Send ACK.     |             |
                |___________________|             |
                          |                       |
                          |<----------------------'
                       ___V__
                      / Done \
                      \______/






















Cerf, Dalal & Sunshine                                         [Page 65]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.3:
INT (from net)
                  _______       ____________
                 / Begin \____\|Process ACK |
                 \_______/    /|(may set S2)|------.
                               |____________|      |
                                                   |
                                                 __V__
                       ____________            .' in  '.
                      | Discard    |     no  .' state 4 '.
             .<-------| (or queue) |<-------'. S1=S2=R=1 .'
             |        |____________|          '. F=0 ? .'
             |                                  '.___.'
             |                                     | yes
             |                                   __V__
             |         ____________            .'     '.
             |        | ACK and    |     no  .' within  '.
             |<-------| discard    |<-------'.  window   .'
             |        |____________|          '.   ?   .'
             |                                  '.___.'
             |                                     | yes
             |         ____________________________V_______________
             |        |Move Receive Left window edge to sequence   |
             |        |number of INT. Return event 10 with any     |
             |        |pending Receive buffers. Ruturn event 11 to |
             |        |user. Send ACK for INT.                     |
             |        |____________________________________________|
             |                                     |
             |                                   __V__
             |                 see       yes   .'data '.
             |              Figure<----------.' in this '.
             |                 2.2            '.packet?.'
             |                                  '.___.'
             |                                     | no
             '------------------------------------>|
                                                ___V__
                                               / Done \
                                               \______/













Cerf, Dalal & Sunshine                                         [Page 66]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.4:
FIN
                _______       ____________
               / Begin \____\|Process ACK |
               \_______/    /|(may set S2)|------.
                             |____________|      |
                                                 |
                                               __V__
                                             .'     '.
                                       no  .'S1=S2=R=1'.
                           .--------------'.  (estab-  .'
                           |                '.lished).'
                           |                  '.___.'
                           |                     | yes
                           |                   __V__
                     ______V_____            .'     '.
                    |            |     no  .' within  '.
  .-----------------| discard    |<-------'.  window   .'
  |                 |____________|          '.   ?   .'
  |                                           '.___.'
  |                                              | yes
  |                                            __V__
  |                             (state 4) 0  .'F bit'.  1 (state 5)
  |                            .------------'. value .'------------.
  |                            |              '.___.'              |
  |   _________________________V________                           |
  |  |Return all user buffers (event 12)|     _____________________V__
  |  |Clear all packet queues. Send FIN |    |Return success to User's|
  |  |packet. Set F=1. Inform user      |    |CLOSE.  Remove TCB.     |
  |  |"connection closing" (event 12)   |    |________________________|
  |  |__________________________________|                 |
  |                  |                                    |
  '----------------->|<-----------------------------------'
                  ___V__
                 / Done \
                 \______/















Cerf, Dalal & Sunshine                                         [Page 67]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.5:
Error 6 (bad SYN)


               _______
              / Begin \
              \_______/
                  |
                  |
                __V__
              .'     '.
            .'refers to'.
          .'current pckt?'.                      _________
        .'(ACK matches seq '.  no               |         |
       '.  # of packet on   .'----------------->| discard |-----------.
         '.retrans or send.'                    |_________|           |
           '.  queues?) .'                                            |
             '._______.'                                              |
                  | yes                                               |
                  |                                                   |
                 _V_                                                  |
               .'   '.   1 (state 3)                                  |
             .' value '.--------------------------------.             |
              '. of R.'  bad SYN,ACK                    |             |
                '._.'                                   |             |
                  |                                     |             |
                  | 0 (state 2)                         |             |
                  | bad SYN                             |             |
__________________V__________________            _______V______       |
|Other side is established. Send RESET|          |Clear S1, R   |      |
|(put error packet's seq. # in ACK    |          |Remove SYN,ACK|      |
|field. Return all user buffers with  |          |from retrans  |      |
|code 14. Inform user with event 14   |          |queue.        |      |
|_____________________________________|          |______________|      |
                  |                                     |             |
                  |                                     V             |
                  |<--------------------------------------------------'
               ___V__
              / Done \
              \______/











Cerf, Dalal & Sunshine                                         [Page 68]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.6:
Error 7,8


                  _______
                 / Begin \
                 \_______/
                     |
                   __V__
                 .'     '.
               .'refers to'.                     _________
             .'   current   '.  no              |         |
            '. packet (check .'---------------->| discard |-----------.
              '.   ACK)?   .'         A         |_________|           |
                '._______.'           |                               |
                     | yes            |                               |
                    _V_               |                               |
                  .'   '.             |                               |
                .'       '.           |                               |
              .'connection '.         |                               |
            .'     state     '.       |                               |
           :___________________:      |                               |
          4|   5|   3|   2|   6|      |                               |
   .-------'    |    |    |    '------'                               |
   |            |    |    '-----------------------------.             |
   |            |    '-------------.                    |             |
   |            |                  |                    |             |
___V___     ____V_______     ______V_______     ________V_________    |
|Pass to|   |Remove TCB. |   |Clear S1, R.  |   |Discard. SYN will |   |
|user   |   |Return      |   |Remove SYN,ACK|   |be retrans to     |   |
|_______|   |success to  |   |from transmit |   |avoid receiver    |   |
   |       |user's CLOSE|   |queue (go to  |   |having to queue it|   |
   |       |____________|   |state 1).     |   |__________________|   |
   |            |           |______________|            |             |
   |            V                  |                    V             |
   '------------------------------>|<---------------------------------'
                                ___V__
                               / Done \
                               \______/












Cerf, Dalal & Sunshine                                         [Page 69]

RFC 675              Specification of Internet TCP         December 1974


FIGURE 4.7:
RESET
                               _______
                              / Begin \
                              \_______/
                                  |
                                __V__
                          no  .'Reset'.  yes
                .------------'. All ? .'------------------.
                |              '.___.'                    |
                |                                _________V_________
                |                               |Clear all TCB's for|
                |                               |foreign TCP. Inform|
                |                               |users with event 14|
                |                               |___________________|
              __V__                                       |
            .' Is  '.             _________               |
          .'  RESET  '.   no     |         |              |
        .'believable ? '.------->| discard |------------->|
         '.(check ACK .'         |_________|              |
           '.field) .'                                    |
             '.___.'                                      |
                | yes                                     |
________________V________________                         |
|Clear all queues for this TCB.   |                        |
|Return event 14 for user buffers.|                        |
|Inform User with event 14.       |                        |
|_________________________________|                        |
                |                                         |
                |<----------------------------------------'
             ___V__
            / Done \
            \______/










      [ This RFC was put into machine readable form for entry ]
      [ into the online RFC archives by Alex McKenzie with    ]
      [ support from GTE, formerly BBN Corp.           2/2000 ]





Cerf, Dalal & Sunshine                                         [Page 70]