Internet Engineering Task Force (IETF)                       D. Caviglia
Request for Comments: 5852                                 D. Ceccarelli
Category: Standards Track                                    D. Bramanti
ISSN: 2070-1721                                                 Ericsson
                                                                  D. Li
                                                    Huawei Technologies
                                                            S. Bardalai
                                                        Fujitsu Network
                                                             April 2010


RSVP-TE Signaling Extension for LSP Handover from the Management Plane
      to the Control Plane in a GMPLS-Enabled Transport Network

Abstract

  In a transport network scenario, Data Plane connections controlled by
  either a Generalized Multiprotocol Label Switching (GMPLS) Control
  Plane (Soft Permanent Connections - SPC) or a Management System
  (Permanent Connections - PC) may independently coexist.  The ability
  of transforming an existing PC into an SPC and vice versa -- without
  actually affecting Data Plane traffic being carried over it -- is a
  requirement.  The requirements for the conversion between permanent
  connections and switched connections in a GMPLS Network are defined
  in RFC 5493.

  This memo describes an extension to GMPLS Resource Reservation
  Protocol - Traffic Engineering (RSVP-TE) signaling that enables the
  transfer of connection ownership between the Management and the
  Control Planes.  Such a transfer is referred to as a Handover.  This
  document defines all Handover-related procedures.  This includes the
  handling of failure conditions and subsequent reversion to original
  state.  A basic premise of the extension is that the Handover
  procedures must never impact an already established Data Plane
  connection.
















Caviglia, et al.             Standards Track                    [Page 1]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5852.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.























Caviglia, et al.             Standards Track                    [Page 2]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


Table of Contents

  1. Introduction ....................................................4
     1.1. Dedication .................................................4
  2. Terminology .....................................................4
  3. Motivation ......................................................4
  4. Procedures ......................................................5
     4.1. MP-to-CP Handover: LSP Ownership Transfer from
          Management Plane to Control Plane ..........................6
     4.2. MP-to-CP Handover Procedure Failure Handling ...............7
          4.2.1. MP-to-CP Handover Failure - Path Failure ............8
                 4.2.1.1. MP-to-CP Handover Failure - Path
                          Message and Data Plane Failure .............8
                 4.2.1.2. MP-to-CP Handover Failure - Path
                          Message and Communication Failure ..........8
          4.2.2. MP-to-CP Handover Failure - Resv Error ..............9
                 4.2.2.1. MP-to-CP Handover Failure - Resv
                          Error and Data Plane Failure ...............9
                 4.2.2.2. MP-to-CP Handover Failure - Resv
                          Error and Communication Failure ...........10
                 4.2.2.3. MP-to-CP Handover Failure - Node
                          Graceful Restart ..........................12
     4.3. CP-to-MP Handover: LSP Ownership Transfer from
          Control Plane to Management Plane .........................15
     4.4. CP-to-MP Handover Procedure Failure .......................16
  5. Minimum Information for MP-to-CP Handover ......................17
  6. RSVP Message Formats ...........................................19
  7. Objects Modification ...........................................19
     7.1. Administrative Status Object ..............................19
     7.2. Error Spec Object .........................................19
  8. Compatibility ..................................................20
  9. Security Considerations ........................................20
  10. IANA Considerations ...........................................20
  11. Acknowledgments ...............................................21
  12. Contributors ..................................................21
  13. References ....................................................21
     13.1. Normative References .....................................21
     13.2. Informative References ...................................22













Caviglia, et al.             Standards Track                    [Page 3]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


1.  Introduction

  In a typical traditional transport network scenario, Data Plane (DP)
  connections between two endpoints are controlled by means of a
  Network Management System (NMS) operating within the Management Plane
  (MP).  NMS/MP is the owner of such transport connections, being
  responsible for their setup, teardown, and maintenance.

  The adoption of a Generalized MPLS (GMPLS) [RFC3945] Control Plane
  (CP) in a network that is already in service -- controlled by the NMS
  at the MP level -- introduces the need for a procedure able to
  coordinate a controlled Handover of a Data Plane connection from the
  MP to the CP.

  In addition, the control Handover in the opposite direction, from CP
  to MP should be possible as well.  The procedures described in this
  memo can be applied to a Label Switched Path (LSP) in any DP
  switching technology and any network architecture.

  This memo describes an extension to GMPLS Resource reSerVation
  Protocol - Traffic Engineering (RSVP-TE) [RFC3471] [RFC3473]
  signaling that enables the Handover of connection ownership between
  the Management and the Control Planes.  All Handover-related
  procedures are defined below.  This includes the handling of failure
  conditions and subsequent reversion to original state.  A basic
  premise of the extension is that the Handover procedures must never
  impact the exchange of user data on LSPs that are already established
  in the DP.

1.1.  Dedication

  We would like to dedicate this work to our friend and colleague Dino
  Bramanti, who passed away at the early age of 38.  Dino has been
  involved in this work since its beginning.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Motivation

  The main motivation behind this work is the definition of a simple
  and very low-impact procedure that satisfies the requirements defined
  in [RFC5493].  Such a procedure is aimed at giving the transport
  network operators the chance to hand over the ownership of existing
  LSPs provisioned by NMS from the MP to the CP without disrupting user



Caviglia, et al.             Standards Track                    [Page 4]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  traffic flowing on them.  Handover from the MP to the CP (i.e., when
  existing DP connection ownership and control is passed from the MP to
  the CP) has been defined as a mandatory requirement, while the
  opposite operation, CP-to-MP Handover, has been considered as a nice-
  to-have feature that can be seen as an emergency procedure to disable
  the CP and take manual control of the LSP.  For more details on
  requirements and motivations, please refer to [RFC5493].

4.  Procedures

  The modification defined in this document refers only to the
  ADMIN_STATUS Object, that is, the message flow is left unmodified for
  both LSP setup and deletion.  Moreover, a new Error Value is defined
  to identify the failure of a Handover procedure.

  The following paragraphs give detailed description of the "MP-to-CP
  Handover" and "CP-to-MP Handover" procedures, based on the use of a
  newly defined bit called "H bit".

  Just as when setting up an LSP using the CP [RFC3473], the Path
  message may contain full information about the explicit route
  including the links and labels traversed by the LSP.  This
  information is encoded in the Explicit Route Object (ERO), and must
  be supplied by the MP using details recorded when the LSP was
  provisioned, or collected by the MP by inspecting the nodes along the
  path.

  Alternatively, and also just as when setting up an LSP using the CP
  [RFC3473], the ERO may include less information such that the details
  of the next hop have to be determined by each node along the LSP as
  it processes the Path message.  This approach may be desirable when
  the full information is not available to the MP or cannot be passed
  to the head-end node when initiating the Handover from the MP to the
  CP.

  This section (Section 4) describes the general procedures and
  protocol extensions for MP-to-CP Handover, and it uses the case of a
  fully detailed ERO to describe the mechanism.  Section 5 describes
  how each node behaves in the case of a limited amount of information
  in the ERO.

  Note that when Handover is being performed for a bidirectional LSP
  and the ERO contains full information including labels, the ERO
  SHOULD include both upstream and downstream labels.  Per Section
  5.1.1 of [RFC3473], the labels are indicated on an output basis; this
  means that the labels are used by the upstream node to create the
  LABEL_SET Object and, for bidirectional LSPs, the UPSTREAM_LABEL
  Object used in the outgoing Path message.



Caviglia, et al.             Standards Track                    [Page 5]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


4.1.  MP-to-CP Handover: LSP Ownership Transfer from Management Plane to
     Control Plane

  The MP-to-CP Handover procedure MUST create an RSVP-TE session along
  the path of the LSP to be moved from the MP to the CP, associating it
  with the existing cross-connected resources owned by the MP (e.g.,
  lambdas, time slots, or reserved bandwidth) and at the same time
  transferring their ownership to the CP.

  The operator instructs the ingress node to hand over control of the
  LSP from the MP to the CP.  In this Handover mode, it supplies the
  exact path of the LSP including any resource reservation and label
  information.

  The ingress MUST check that no corresponding Path state exists and
  that corresponding Data Plane state does exist.  If there is an
  error, this MUST be reported to the operator and further protocol
  action MUST NOT be taken.

  The ingress signals the LSP using a Path message with the H bit and R
  bit set in the ADMIN_STATUS Object.  In this mode of Handover, the
  Path message also carries an ERO that includes Label subobjects
  indicating the labels used by the LSP at each hop.  The ingress MUST
  start the Expiration timer (see Section 4.2.1.2 for expiration of
  this timer).  Such a timer SHOULD be configurable per LSP and have a
  default value of 30 seconds.

  Each Label Switching Router (LSR) that receives a Path message with
  the H bit set checks to see whether there is any matching Path state.

  o  If matching Path state is found with the H bit set, this is a Path
     refresh and should be treated accordingly [RFC3473].

  o  If matching Path state is found with the H bit clear, this is an
     error and MUST be treated according to the error case description
     in Section 4.2.1.1.

  o  If no Path state is found, the LSR goes on to check whether there
     is any matching Data Plane state.

  o  If no matching Data Plane state is found (including only partially
     matching Data Plane state), this is an error or a race condition.
     It MUST be handled according to the description in Section
     4.2.1.1.







Caviglia, et al.             Standards Track                    [Page 6]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  o  If matching Data Plane state is found, the LSR MUST save the Path
     state (including the set H bit), and it MUST forward the Path
     message to the egress.  The LSR MUST retain any MP state
     associated with the LSP at this point.

  An egress LSR MUST act as any other LSR, except that there is no
  downstream node to which to forward the Path message.  If all checks
  are passed, the egress MUST respond with a Resv with the H bit set.

  A transit LSR MUST process each Resv according to the normal rules of
  [RFC3473].

  When an ingress LSR receives a Resv message carrying the H bit set,
  it checks the Expiration timer.

  o  If the timer is not running, the Resv is treated as a refresh and
     no special action is taken [RFC3473].

  o  If the timer is running, the ingress MUST cancel the timer and
     SHOULD notify the operator that the first stage of Handover is
     complete.  The ingress MUST send a Path message that is no
     different from the previous message except that the H bit MUST be
     clear.

  The Path message with the H bit clear will travel the length of the
  LSP and will result in the return of a Resv with the H bit clear
  according to normal processing [RFC3473].  As a result, the H bit
  will be cleared in the stored Path state at each transit LSR and at
  the egress LSR.  Each LSR SHOULD release any associated MP state
  associated with the LSP when it receives the Path message with H bit
  clear, but MAY retain the information according to local policy for
  use in future MP processing.

  When the ingress receives a Resv with the H bit clear, the Handover
  is completed.  The ingress SHOULD notify the operator that the
  Handover is correctly completed.

4.2.  MP-to-CP Handover Procedure Failure Handling

  In the case of MP-to-CP Handover, two different failure scenarios can
  happen: Path Failure and Resv Failure.  Moreover, each failure can be
  due to two different causes: DP Failure or Communication Failure.  In
  any case, the LSP ownership MUST be immediately rolled back to the
  one previous to the Handover procedure.  A section for each
  combination will be analyzed in the following.






Caviglia, et al.             Standards Track                    [Page 7]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


4.2.1.  MP-to-CP Handover Failure - Path Failure

4.2.1.1.  MP-to-CP Handover Failure - Path Message and Data Plane
         Failure

  In the following paragraph, we will analyze the case where the
  Handover procedure fails during the Path message processing.

    |      Path      |                |                |
    |--------------->|      Path      |                |
    |                |---------------X|                |
    |                |    PathErr     |                |
    |    PathErr     |<---------------|                |
    |<---------------|                |                |
    |                |                |                |
  Ingress LER      LSR A            LSR B       Egress LER

                Figure 1: MP2CP - Path Msg and DP Failure

  If an error occurs, the node detecting the error MUST respond to the
  received Path message with a PathErr message, and MUST abort the
  Handover procedure.  The PathErr message SHOULD have the
  Path_State_Removed flag set [RFC3473], but implementations MAY retain
  their local state and wait for Path state timeout as per normal RSVP
  processing.

  Nodes receiving a PathErr message MUST follow standard PathErr
  message processing and the associated DP resources MUST NOT be
  impacted.  If the local CP state indicates that a Handover is in
  progress (based on the H bit in the Path message), the LSR MUST
  revert the LSP ownership to the MP.

4.2.1.2.  MP-to-CP Handover Failure - Path Message and Communication
         Failure

  Other possible scenarios are shown in the following figures and are
  based on the inability to reach a node along the path of the LSP.

  The below scenario postulates the use of a reliable message delivery
  based on the mechanism defined in [RFC2961].











Caviglia, et al.             Standards Track                    [Page 8]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


    |      Path      |                |                |
    |--------------->|      Path      |                |
    |                |---------------X|                |
    |                |---------------X|                |
    |                |      ...       |                |
    |                |---------------X|                |
    |                |                |                |
  Ingress LER      LSR A            LSR B       Egress LER

          Figure 2: MP2CP - Path Msg and Communication Failure
                           (Reliable Delivery)

  The Path message sent from LSR A towards LSR B is lost or does not
  reach the destination for any reason.  As a reliable delivery
  mechanism is implemented, LSR A retransmits the Path message for a
  configurable number of times, and if no ack is received, the Handover
  procedure will be aborted (via the Expiration timer).

  In the next scenario RSVP-TE messages are sent without reliable
  message delivery, that is, no [RFC2961] MessageID procedure is used.

       |      Path      |                |                |
       |--------------->|      Path      |                |
       |                |----------X     |                |
       |                |                |                |
  TIMER EXPIRES         |                |                |
       |   Path Tear    |   Path Tear    |   Path Tear    |
       |--------------->|--------------->|--------------->|
       |                |                |                |
     Ingress LER      LSR A            LSR B       Egress LER

          Figure 3: MP2CP - Path Msg and Communication Failure
                         (No Reliable Delivery)

  If the Resv message is not received before the expiration of the
  Expiration timer, the Handover procedure is aborted as described in
  Section 4.2.1.1.  Please note that any node that has forwarded a Path
  (LSR A), i.e., has installed local path state, will send a PathTear
  when that state is removed (according to [RFC2205]).

4.2.2.  MP-to-CP Handover Failure - Resv Error

4.2.2.1.  MP-to-CP Handover Failure - Resv Error and Data Plane Failure

  In the case of a failure occurrence during the Resv message
  processing (in case there has been any change in the Data Plane
  during the signaling), the node MUST send a PathErr message [RFC2205]
  in the upstream direction.  The PathErr message is constructed and



Caviglia, et al.             Standards Track                    [Page 9]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  processed as defined above in Section 4.2.1.1.  The failure detection
  node MUST also send a PathTear message downstream.  The PathTear
  message is constructed and processed as defined above in
  Section 4.2.1.1.

    |      Path      |      Path      |      Path      |
    |--------------->|--------------->|--------------->|
    |                |                |      Resv      |
    |                |      Resv      |<---------------|
    |                |X---------------|                |
    |    PathErr     |    PathTear    |    PathTear    |
    |<---------------|--------------->|--------------->|
    |                |                |                |
  Ingress LER      LSR A            LSR B       Egress LER

               Figure 4: MP2CP - Resv Error and DP Failure

  In the case shown in Figure 4, the failure occurs in LSR A.  A
  PathTear message is sent towards B and a PathErr message (with
  ErrorCode set to "Handover Procedure Failure") is sent in the
  upstream direction.  The PathErr and PathTear messages remove the
  Path state established by the Path messages along the nodes of the
  LSP and abort the Handover procedure.

  Please note that the failure occurred after the Handover procedure
  was successfully completed in LSR B, but Handover state will still be
  maintained locally as, per Section 4.1, a Path message with the H bit
  clear will have not yet been sent or received.  A node that receives
  a PathTear when it has Path state with the H bit set MUST remove Path
  state, but MUST NOT change Data Plane state.  It MUST return LSP
  ownership to the MP.

4.2.2.2.  MP-to-CP Handover Failure - Resv Error and Communication
         Failure

  When a Resv message cannot reach one or more of the upstream nodes,
  the procedure is quite similar to the one previously seen about the
  Path message.  Even in this case, it is possible to distinguish two
  different scenarios.












Caviglia, et al.             Standards Track                   [Page 10]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  In the first scenario we consider the utilization of a reliable
  message delivery based on the mechanism defined in [RFC2961].  After
  a correct forwarding of the Path message along the nodes of the LSP,
  the Egress LSR sends a Resv message in the opposite direction.  It
  might happen that the Resv message does not reach the ingress Label
  Edge Router (LER) or an LSR, say LSR A.  LSR B MUST send a Resv
  message again for a configurable number of times and then, if the
  delivery does not succeed, the adoption procedure will be aborted
  (via the Expiration timer).


    |      Path      |      Path      |      Path      |
    |--------------->|--------------->|--------------->|
    |                |                |      Resv      |
    |                |      Resv      |<---------------|
    |                |      X---------|                |
    |                |      X---------|                |
    |                |      ...       |                |
    |                |      X---------|                |
    |                |                |                |
  Ingress
        LSR A            LSR B       Egress LER

         Figure 5: MP2CP - Resv Error and Communication Failure
                           (Reliable Delivery)

  Considering that the Resv message did not manage to reach LSR A, it
  is highly probable that the PathErr would fail too.  Due to this
  fact, the Expiration timer is used on the ingress LER after sending
  the path and on LSR A after forwarding it.  When the timer expires,
  if no Resv or PathErr message is received, the Handover procedure is
  aborted as described in Section 4.2.1.1 and the LSP ownership is
  returned to the Management Plane.

  Figure 6, on the other hand, shows the scenario in which no reliable
  delivery mechanism is implemented.















Caviglia, et al.             Standards Track                   [Page 11]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


          |      Path      |      Path      |      Path      |
          |--------------->|--------------->|--------------->|
          |                |                |      Resv      |
          |                |      Resv      |<---------------|
          |                |      X---------|                |
  TIMER EXPIRES            |                |                |
          |   Path Tear    |   Path Tear    |   Path Tear    |
          |--------------->|--------------->|--------------->|
          |                |                |                |
     Ingress LER      LSR A            LSR B       Egress LER

         Figure 6: MP2CP - Resv Error and Communication Failure
                         (No Reliable Delivery)

  If no Resv message is received before the Expiration timer expires,
  the ingress LER follows the same procedure defined in Section 4.1.

4.2.2.3.  MP-to-CP Handover Failure - Node Graceful Restart

  If node restart and graceful restart are enabled, then one of the
  following scenarios will happen.

  Case I - Finite Restart Time

  In this case, the Restart Time (see [RFC3473]) is finite, i.e., not a
  value of 0xffffffff.  In the sequence diagram below, assume LSR A
  restarts.  If the ingress LER does not receive the Resv message in
  time, it MUST abort the Handover process by generating a PathTear
  message downstream.  Also, if LSR A does not complete the restart
  process within the restart time interval, then LSR B MUST start
  tearing down all LSPs between LSR A and LSR B and this includes the
  LSP that is being used to carry out the Handover of MP resources to
  the CP.  LSP B MUST generate a PathTear message downstream and a
  PathErr message upstream.  Both LSR B and the egress LER MUST NOT
  release the DP resources because, in both nodes, the H bit is set in
  the local Path state.















Caviglia, et al.             Standards Track                   [Page 12]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


    |      Path      |      Path      |      Path      |
    |--------------->|--------------->|--------------->|
    |                |                |      Resv      |
    |                |      Resv      |<---------------|
    |                X      X---------|                |
    |   PathTear                      |                |
    |-------X                   Restart Timer          |
    |                              Expires             |
    |                     PathErr     |    PathTear    |
    |                        X--------|--------------->|
    |                                 |                |
    |                X                |                |
    |                |                |                |
  Ingress LER      LSR A            LSR B       Egress LER

            Figure 7: MP2CP - Node Graceful Restart - Case I

  Case II - Infinite Restart Time

  In this case, the Restart Time (see [RFC3473]) indicates that the
  restart of the sender's Control Plane may occur over an indeterminate
  interval, i.e., is 0xffffffff.  The sequence is quite similar to the
  previous one.  In this sequence, the restart timer will not expire in
  LSR B since it is run infinitely.  Instead, after LSR A restarts, LSR
  B MUST start the recovery timer.  The recovery timer will expire
  since there will be no Path message with the RECOVERY LABEL received
  from LSR A given the ingress node had already removed the local Path
  state after it aborts the Handover process.  Thus, LSR B MUST tear
  down the specific LSP that is being used to convert the MP resources
  to CP by generating a PathTear message downstream and PathErr message
  upstream.  Similarly to the previous case, both LSR B and the egress
  LER MUST NOT release the DP resources because the H bit is set in the
  local Path state.


















Caviglia, et al.             Standards Track                   [Page 13]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


    |      Path      |      Path      |      Path      |
    |--------------->|--------------->|--------------->|
    |                |                |      Resv      |
    |                |      Resv      |<---------------|
    |                X      X---------|                |
    |   PathTear                      |                |
    |-------X                         |                |
    |                                 |                |
    |                X                |                |
    |                |                |                |
    |                |          Recovery Timer         |
    |                |             Expires             |
    |    PathErr     |    PathErr     |    PathTear    |
    |<---------------|<---------------|--------------->|
    |                |                |                |
  Ingress LER      LSR A            LSR B       Egress LER

            Figure 8: MP2CP - Node Graceful Restart - Case II

  Case III

  In this case, the ingress LER does not abort the Handover process.
  When LSR A restarts, the ingress LER detects the restart and MUST
  re-generate the Path message with the H bit set in order to restart
  the Handover.

  When LSR B receives the Path message, it sees the H-bit set on the
  message and also sees that it has the H-bit set in its own state and
  that it has sent the Resv.  But it is also aware that LSR A has
  restarted and could have sent a Path message with a RECOVERY LABEL
  object.  LSR B may attempt to resume the Handover process or may
  abort the Handover.  This choice is made according to local policy.

  If resuming the Handover, LSR B MUST treat the received Path message
  as a retransmission, and MUST retransmit its Resv.  If aborting
  Handover, LSR B MUST return a PathErr and MUST send a PathTear
  downstream.  In both cases, LSR B MUST NOT modify the DP state.














Caviglia, et al.             Standards Track                   [Page 14]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


    |      Path      |      Path      |      Path      |
    |--------------->|--------------->|--------------->|
    |                |                |      Resv      |
    |                |      Resv      |<---------------|
    |                X      X---------|                |
    |                                 |                |
    |                X                |                |
    |                |                |                |
    |      Path      |      Path      |                |
    |--------------->|--------------->|                |
    |    PathErr     |    PathErr     |    PathTear    |
    |<---------------|<---------------|--------------->|
    |                |                |                |
  Ingress LER      LSR A            LSR B       Egress LER

           Figure 9: MP2CP - Node Graceful Restart - Case III

4.3.  CP-to-MP Handover: LSP Ownership Transfer from Control Plane to
     Management Plane

  Let's now consider the case of LSP ownership transfer from Control
  Plane to Management Plane.  Also in this section, we will analyze the
  Handover procedure success and failure.

  The scenario is still a DP connection between two nodes acting as
  ingress and egress for a LSP, but in this case, the CP has the
  ownership and control of the LSP.  The CP-to-MP Handover procedure
  MUST delete the existing RSVP-TE session information and MUST NOT
  affect the cross-connected resources, but just move their ownership
  to the MP.

  In other words, after LSP ownership transfer from CP to MP, the LSP
  is no longer under the control of RSVP-TE, which is no more able to
  "see" the LSP itself.  The CP-to-MP Handover procedure MUST be a
  standard LSP deletion procedure as described in Section 7.2.1 of
  [RFC3473].  The procedure is initiated at the ingress node of the LSP
  by an MP entity.  The ingress node and MP exchange the relevant
  information for this task and then propagate it over CP by means of
  RSVP-TE tear down signaling as described below.

  The ingress node MUST send a Path message in the downstream direction
  with Handover and Reflect bits set in the ADMIN_STATUS Object.  No
  action is taken over the DP and transit LSRs must forward such
  message towards the egress node.  All of the nodes MUST keep track of
  the procedure storing the H bit in their local Path and Resv states.
  Then, every node waits for the H bit to be received within the
  related Resv message.  After the Resv message is received by the
  ingress LER, it MUST send a PathTear message in order to clear the



Caviglia, et al.             Standards Track                   [Page 15]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  whole LSP information recorded on the RSVP-TE data structures of the
  nodes.  Downstream nodes processing a PathTear message that follows a
  Path message with the H bit set, MUST NOT remove any associated Data
  Plane state.  In other words, a normal LSP tear down signaling is
  exchanged between nodes traversed by the LSP, but the H bit set in
  the Path message indicates that no DP action has to correspond to CP
  signaling.

4.4.  CP-to-MP Handover Procedure Failure

  Failures during CP-to-MP Handover procedure MUST NOT result in the
  removal of any associated Data Plane state.  To that end, when a Resv
  message containing an ADMIN_STATUS Object with the H bit not received
  during the period of time described in Section 7.2.2. of [RFC3473]
  different processing is required.  While the H bit is set in the Path
  state, a node MUST NOT send a PathTear when a failure is detected.
  Instead, the failure is reported upstream using a PathErr.  The only
  node that can send a PathTear is the ingress node, and it can only do
  this as a step in the procedures specified in this document.  This
  applies to both MP-to-CP and CP-to-MP Handover.  The ingress node MAY
  choose to report the failure in the CP-to-MP Handover procedure via
  the MP.

  The CP-to-MP Handover procedure can also fail due to two causes:
  PathTear lost or node down.  In the former case, if the LSP is not
  under MP control after the Expiration timer elapses, a manual
  intervention from the network operator is requested, while in the
  latter case, different scenarios may happen:

  - CASE I - Path message and node down

          |      Path      |      Path      X                |
          |--------------->|--------------X                  |
          |                |                                 |
          |                |                X                |
          |                |                |                |
          |                |                |                |
     Ingress LER      LSR A            LSR B       Egress LER

             Figure 10: Case I - Path Message and Node Down

  Per [RFC3473], Section 7.2.2, the ingress node should wait for a
  configurable amount of time (30 seconds by default) and then send a
  PathTear message.  In this case, the normal deletion procedure MUST







Caviglia, et al.             Standards Track                   [Page 16]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  NOT be followed.  When the Expiration timer elapses, a manual
  intervention from network operator is requested and normal, i.e.,
  pre-CP-to-MP Handover, LSP processing continues.

  - CASE II - Resv message and node down

          |      Path      |      Path      |      Path      |
          |--------------->|--------------->|--------------->|
          |                |                |      Resv      |
          |                |      Resv      |<---------------|
          |                X      X---------|                |
          |                                 |                |
          |                X                |                |
          |                |                |                |
     Ingress LER      LSR A            LSR B       Egress LER

             Figure 11: Case II - Resv Message and Node Down

  The procedure to be followed is the same depicted in CASE I.  The
  network operator can ask for the automatic CP-to-MP procedure again
  after the failed node comes back up.  Per [RFC3473], section 7.2, the
  nodes will forward the new Path and Resv messages correctly.

  - CASE III - PathTear message and node down



          |      Path      |      Path      |      Path      |
          |--------------->|--------------->|--------------->|
          |      Resv      |      Resv      |      Resv      |
          |<---------------|<---------------|<---------------|
          |    PathTear    |                |                |
          |--------------->|    PathTear    X                |
          |                |------------X                    |
          |                |                X                |
          |                |                |                |
     Ingress LER      LSR A            LSR B       Egress LER

          Figure 12: Case III - PathTear Message and Node Down

  This scenario can be managed as a normal PathTear lost described
  above in this section.

5.  Minimum Information for MP-to-CP Handover

  As described in Section 4, it is also possible for the ERO to contain
  less than the full set of path information for the LSP being handed
  over.  This arises when only a minimal set of information is handed



Caviglia, et al.             Standards Track                   [Page 17]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  to the CP by the MP at the LSP's head-end.  Instead of collecting all
  of the LSP information (including the labels) and formatting it into
  an ERO, as described in Section 4, it is possible to start with a
  minimum amount of information.  The full ERO method and the
  partial/no ERO method are not mutually exclusive; support of both
  methods is required.

  At the ingress node, the information needed to specify the LSP is the
  outgoing interface ID, upstream label, and downstream label of this
  interface and egress node ID.  The remaining information about an
  existing LSP can then be collected hop by hop, as the signaling is
  going on, by looking up the cross-connection table in the DP at each
  node along the LSP path.

  Starting from the information available at the ingress LER about the
  outgoing interface ID of that ingress node, the incoming interface ID
  of the next hop can be found by looking up the link resource table/
  database in the LER itself.

  The Path message is hence built with the LABEL_SET Object ([RFC3473])
  and the UPSTREAM_LABEL Object ([RFC3473]), where the upstream label
  and downstream label of ingress outgoing interface of the LSP are
  included in these two objects.  In addition to the above mentioned
  objects, the Path message MUST include the ADMIN_STATUS Object with
  the H bit set, as already defined in previous chapters for the
  detailed ERO-based way of proceeding.  Such a Handover Path is sent
  to the incoming interface of the next hop.  When this Path message
  reaches the second node along the LSP, the information about incoming
  interface ID and the upstream and downstream labels of this interface
  is extracted from it, and it is used to find next hop outgoing
  interface ID and the upstream/downstream labels by looking up the DP
  cross-connection table.

  After having determined, in this way, the parameters describing the
  LSPs next hop, the outgoing Path message to be sent is built
  replacing the LABEL_SET Object and UPSTREAM_LABEL Object content with
  the looked-up values of upstream and downstream labels.

  By repeating this procedure for each transit node along the LSP, it
  is possible to make the Handover Path message reach the egress node,
  exactly following the LSP that is in place over DP.  The ERO MAY, in
  this case, be included in the Path message as an optional object, and
  MAY be filled with the LSP-relevant information down to either the
  port level with the interface ID or the label level with upstream and
  downstream labels.  The ERO can be used to check the consistency of
  resource in the DP down to the port level or label level at each
  intermediate node along the LSP.




Caviglia, et al.             Standards Track                   [Page 18]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  Where the DP path continues beyond the egress, by indicating the
  Egress label at the head-end of an LSP, the traffic can be directed
  to the right destination.  The GMPLS signaling procedure for egress
  control is described in [RFC4003]

6.  RSVP Message Formats

  This memo does not introduce any modification in RSVP messages object
  composition.

7.  Objects Modification

  The modifications required concern two RSVP objects: the ADMIN_STATUS
  and ERROR_SPEC Objects.

7.1.  Administrative Status Object

  This memo introduces a new flag into the ADMIN_STATUS Object.  The
  ADMIN_STATUS Object is defined in [RFC3473].  This document uses the
  H bit of the ADMIN_STATUS Object.  The bit is bit number 25.

7.2.  Error Spec Object

  It is possible that a failure, such as the loss of the Data
  Communication Network (DCN) connection or the restart of a node,
  occurs during the LSP ownership handing over.  In this case, the LSP
  Handover procedure is interrupted, the ownership of the LSP must
  remain with the ownership prior to the initiation of the Handover
  procedure.  It is important that the transaction failure not affect
  the DP.  The LSP is kept in place and no traffic hit occurs.

  The failure is signaled by a PathErr message in the upstream
  direction and PathTear messages in the downstream direction.  The
  PathErr messages include an ERROR_SPEC Object specifying the causes
  of the failure.

  This memo introduces a new Error Code (with different Error Values)
  into the ERROR_SPEC Object, defined in [RFC2205].

  The defined Error Code is "Handover Procedure Failure", and its value
  is 35.  For this Error Code, the following Error Value sub-codes are
  defined:

     1 = Cross-connection mismatch

     2 = Other failure





Caviglia, et al.             Standards Track                   [Page 19]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


8.  Compatibility

  The main requirement for the Handover procedure to work is that all
  nodes along the path MUST support the extension defined in this
  document.  This requirement translates to an administrative
  requirement as it is not enforced at the protocol level.  As defined,
  non-supporting nodes will simply propagate the H bit without setting
  local state.  This may result in an impact on data traffic during the
  Handover procedure.

9.  Security Considerations

  The procedures described in this document rely completely on RSVP-TE
  messages and mechanism.  The use of the H bit being set in the
  ADMIN_STATUS Object basically informs the receiving entity that no
  operations are to be done over the DP as a consequence of such
  special signaling flow.  Using specially flagged signaling messages,
  we want to limit the function of setup and teardown messages to the
  CP, making them ineffective over related DP resource usage.

  However, the Handover procedures allow the Control Plane to be used
  to take an LSP out of the control of the Management Plane.  This
  could cause considerable disruption and could introduce a new
  security concern.  As a consequence, the use of GMPLS security
  techniques is more important.  For RSVP-TE security, please refer to
  [RFC3473], for the GMPLS security framework, please refer to
  [sec-fwk].

10.  IANA Considerations

  IANA manages the bit allocations for the ADMIN_STATUS Object
  ([RFC3473]).  This document requires the allocation of the Handover
  bit: the H bit.  IANA has allocated a bit for this purpose.

  Bit Number  Hex Value    Name                               Reference
  ----------  -----------  ---------------------------------  ---------
  25          0x00000040   Handover (H)                       [RFC5852]


  IANA has also allocated a new Error Code:

    35  Handover failure

        This Error Code has the following globally defined Error
        Value sub-codes:

            1 =  Cross-connection mismatch
            2 =  Other failure



Caviglia, et al.             Standards Track                   [Page 20]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


11.  Acknowledgments

  We wish to thank Adrian Farrel, Lou Berger, Alan Elder, and Ben
  Campbell for their assistance and precious advice to prepare this
  document for publication.  We also wish to thank Nicola Ciulli
  (Nextworks) who contributed to the initial stage of this document.

12.  Contributors

  Shan Zhu
  Fujitsu Network Communications Inc.
  2801 Telecom Parkway,
  Richardson, TX 75082
  USA
  EMail: [email protected]
  Tel: +1-972-479-2041

  Igor Bryskin
  ADVA Optical Networking Inc
  7926 Jones Branch Drive, Suite 615
  McLean, VA 22102
  USA
  EMail: [email protected]

  Francesco Fondelli
  Ericsson
  Via Negrone 1A
  Genova - 16145
  Italy
  EMail: [email protected]

  Lou Berger
  LabN Consulting, LLC
  Phone: +1 301 468 9228
  EMail: [email protected]

13.  References

13.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2205]  Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
             Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
             Functional Specification", RFC 2205, September 1997.





Caviglia, et al.             Standards Track                   [Page 21]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


  [RFC2961]  Berger, L., Gan, D., Swallow, G., Pan, P., Tommasi, F.,
             and S. Molendini, "RSVP Refresh Overhead Reduction
             Extensions", RFC 2961, April 2001.

  [RFC3471]  Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Functional Description", RFC 3471,
             January 2003.

  [RFC3473]  Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Resource ReserVation Protocol-Traffic
             Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

  [RFC3945]  Mannie, E., "Generalized Multi-Protocol Label Switching
             (GMPLS) Architecture", RFC 3945, October 2004.

  [RFC4003]  Berger, L., "GMPLS Signaling Procedure for Egress
             Control", RFC 4003, February 2005.

13.2.  Informative References

  [RFC5493]  Caviglia, D., Bramanti, D., Li, D., and D. McDysan,
             "Requirements for the Conversion between Permanent
             Connections and Switched Connections in a Generalized
             Multiprotocol Label Switching (GMPLS) Network", RFC 5493,
             April 2009.

  [sec-fwk]  Fang, L. and M. Behringer, "Security Framework for MPLS
             and GMPLS Networks", Work in Progress, March 2010.























Caviglia, et al.             Standards Track                   [Page 22]

RFC 5852           RSVP-TE Ext for MP2CP LSP Handover         April 2010


Authors' Addresses

  Diego Caviglia
  Ericsson
  Via A. Negrone 1A
  Genova - Sestri Ponente  16153
  Italy

  EMail: [email protected]


  Daniele Ceccarelli
  Ericsson
  Via A. Negrone 1A
  Genova - Sestri Ponente  16153
  Italy

  EMail: [email protected]


  Dino Bramanti
  Ericsson


  Dan Li
  Huawei Technologies
  F3-5-B R&D Center, Huawei Base
  Shenzhen  518129
  P.R. China

  EMail: [email protected]


  Snigdho Bardalai
  Fujitsu Network
  2801 Telecom Parkway
  Richardson, TX  75082
  USA

  EMail: [email protected]











Caviglia, et al.             Standards Track                   [Page 23]