Internet Engineering Task Force (IETF)                     A. Atlas, Ed.
Request for Comments: 5837                                            BT
Category: Standards Track                                 R. Bonica, Ed.
ISSN: 2070-1721                                         Juniper Networks
                                                      C. Pignataro, Ed.
                                                                N. Shen
                                                          Cisco Systems
                                                             JR. Rivers
                                                             Consultant
                                                             April 2010


       Extending ICMP for Interface and Next-Hop Identification

Abstract

  This memo defines a data structure that can be appended to selected
  ICMP messages.  The ICMP extension defined herein can be used to
  identify any combination of the following: the IP interface upon
  which a datagram arrived, the sub-IP component of an IP interface
  upon which a datagram arrived, the IP interface through which the
  datagram would have been forwarded had it been forwardable, and the
  IP next hop to which the datagram would have been forwarded.

  Devices can use this ICMP extension to identify interfaces and their
  components by any combination of the following: ifIndex, IPv4
  address, IPv6 address, name, and MTU.  ICMP-aware devices can use
  these extensions to identify both numbered and unnumbered interfaces.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5837.









Atlas, et al.                Standards Track                    [Page 1]

RFC 5837                     ICMP Unnumbered                  April 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Conventions Used In This Document  . . . . . . . . . . . . . .  5
  3.  Applications . . . . . . . . . . . . . . . . . . . . . . . . .  5
    3.1.  Application to Traceroute  . . . . . . . . . . . . . . . .  5
    3.2.  Policy and MTU Detection . . . . . . . . . . . . . . . . .  6
  4.  Interface Information Object . . . . . . . . . . . . . . . . .  6
    4.1.  C-Type Meaning in an Interface Information Object  . . . .  7
    4.2.  Interface IP Address Sub-Object  . . . . . . . . . . . . .  9
    4.3.  Interface Name Sub-Object  . . . . . . . . . . . . . . . . 10
    4.4.  Interface Information Object Examples  . . . . . . . . . . 10
    4.5.  Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . 13
  5.  Network Address Translation Considerations . . . . . . . . . . 14
  6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 14
  7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 15
  8.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 16
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 16
    9.1.  Normative References . . . . . . . . . . . . . . . . . . . 16
    9.2.  Informative References . . . . . . . . . . . . . . . . . . 16




Atlas, et al.                Standards Track                    [Page 2]

RFC 5837                     ICMP Unnumbered                  April 2010


1.  Introduction

  IP devices use the Internet Control Message Protocol (ICMPv4
  [RFC0792] and ICMPv6 [RFC4443]) to convey control information.  In
  particular, when an IP device receives a datagram that it cannot
  process, it may send an ICMP message to the datagram's originator.
  Network operators and higher-level protocols use these ICMP messages
  to detect and diagnose network issues.

  In the simplest case, the source address of the ICMP message
  identifies the interface upon which the datagram arrived.  However,
  in many cases, the incoming interface is not identified by the ICMP
  message at all.  Details follow:

  According to [RFC1812], when a router generates an ICMPv4 message,
  the source address of that message MUST be one of the following:

  o  one of the IP addresses associated with the physical interface
     over which the ICMPv4 message is transmitted

  o  if that interface has no IP addresses associated with it, the
     device's router-id or host-id is used instead.

  If all of the following conditions are true, the source address of
  the ICMPv4 message identifies the interface upon which the original
  datagram arrived:

  o  the device sends an ICMPv4 message through the same interface upon
     which the original datagram was received

  o  that interface is numbered

  However, the incoming and outgoing interfaces may be different due to
  an asymmetric return path, which can occur due to asymmetric link
  costs, parallel links, or Equal Cost Multipath (ECMP).

  Similarly, [RFC1122] provides guidance for source address selection
  for multihomed IPv4 hosts.  These recommendations, like those stated
  above, do not always cause the source address of an ICMPv4 message to
  identify the incoming interface.

  ICMPv6 is somewhat more flexible.  [RFC4443] states that for
  responses to messages sent to a non-local interface, the source
  address must be chosen as follows:

  o  the Source Address of the ICMPv6 packet MUST be a unicast address
     belonging to the node.  The address SHOULD be chosen according to
     the rules that would be used to select the source address for any



Atlas, et al.                Standards Track                    [Page 3]

RFC 5837                     ICMP Unnumbered                  April 2010


     other packet originated by the node, given the destination address
     of the packet.  However, it MAY be selected in an alternative way
     if this would lead to a more informative choice of address
     reachable from the destination of the ICMPv6 packet.

  When a datagram that cannot be processed arrives on an unnumbered
  interface, neither ICMPv4 nor ICMPv6 is currently capable of
  identifying the incoming interface.  Even when an ICMP message is
  generated such that the ICMP source address identifies the incoming
  interface, the receiver of that ICMP message has no way of knowing if
  this is the case.  ICMP extensions are required to explicitly
  identify the incoming interface.

  Using the extension defined herein, a device can explicitly identify
  the incoming IP interface or its sub-IP components by any combination
  of the following:

  o  ifIndex

  o  IPv4 address

  o  IPv6 address

  o  name

  o  MTU

  The interface name SHOULD be identical to the first 63 octets of the
  ifName, as defined in [RFC2863].  The ifIndex is also defined in
  [RFC2863].

  Using the same extension, an IP device can explicitly identify by the
  above the outgoing interface over which a datagram would have been
  forwarded if that datagram had been deliverable.

  The next-hop IP address, to which the datagram would have been
  forwarded, can also be identified using this same extension.  This
  information can be used for creating a downstream map.  The next-hop
  information may not always be available.  There are corner-cases
  where it doesn't exist and there may be implementations where it is
  not practical to provide this information.  This specification
  provides an encoding for providing the next-hop IP address when it is
  available.

  The extension defined herein uses the ICMP multi-part message
  framework defined in [RFC4884].  The same backward compatibility
  issues that apply to [RFC4884] apply to this extension.




Atlas, et al.                Standards Track                    [Page 4]

RFC 5837                     ICMP Unnumbered                  April 2010


2.   Conventions Used In This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Applications

3.1.  Application to Traceroute

  ICMP extensions defined in this memo provide additional capability to
  traceroute.  An enhanced traceroute application, like older
  implementations, identifies nodes that a datagram visited en route to
  its destination.  It differs from older implementations in that it
  can explicitly identify the following at each node:

  o  the IP interface upon which a datagram arrived

  o  the sub-IP component of an IP interface upon which a datagram
     arrived

  o  the IP interface through which the datagram would have been
     forwarded had it been forwardable

  o  the IP next hop to which the datagram would have been forwarded

  Enhanced traceroute applications can identify the above listed
  entities by:

  o  ifIndex

  o  IPv4 address

  o  IPv6 address

  o  name

  o  MTU

  The ifIndex can be utilized within a management domain to map to an
  actual interface, but it is also valuable in public applications.
  The ifIndex can be used as an opaque token to discern whether or not
  two ICMP messages generated from the same router involve the same
  interface.







Atlas, et al.                Standards Track                    [Page 5]

RFC 5837                     ICMP Unnumbered                  April 2010


3.2.  Policy and MTU Detection

  A general application would be to identify which outgoing interface
  triggered a given function for the original packet.  For example, if
  an access control list (ACL) drops the packet and Dest Unreachable/
  Admin Prohibited denies the packet, being able to identify the
  outgoing interface might be useful.  Another example would be to
  support Path MTU Discovery (PMTUD), since this would allow
  identification of which outgoing interface can't support a given MTU
  size.  For example, knowledge of the problematic interface would
  allow an informed request for reconfiguration of the MTU of that
  interface.

4.  Interface Information Object

  This section defines the Interface Information Object, an ICMP
  extension object with a Class-Num (Object Class Value) of 2 that can
  be appended to the following messages:

  o  ICMPv4 Time Exceeded

  o  ICMPv4 Destination Unreachable

  o  ICMPv4 Parameter Problem

  o  ICMPv6 Time Exceeded

  o  ICMPv6 Destination Unreachable

  For reasons described in [RFC4884], this extension cannot be appended
  to any of the currently defined ICMPv4 or ICMPv6 messages other than
  those listed above.

  The extension defined herein MAY be appended to any of the above
  listed messages and SHOULD be appended whenever required to identify
  an unnumbered interface and when local policy or security
  considerations do not supersede this requirement.

  A single ICMP message can contain as few as zero and as many as four
  instances of the Interface Information Object.  It is illegal if it
  contains more than four instances, because that means that an
  interface role is used more than once (see Section 4.5).

  A single instance of the Interface Information Object can provide
  information regarding any one of the following interface roles:

  o  the IP interface upon which a datagram arrived




Atlas, et al.                Standards Track                    [Page 6]

RFC 5837                     ICMP Unnumbered                  April 2010


  o  the sub-IP component of an IP interface upon which a datagram
     arrived

  o  the IP interface through which the datagram would have been
     forwarded had it been forwardable

  o  the IP next hop to which the datagram would have been forwarded

  The following are examples of sub-IP components of IP interfaces upon
  which a datagram might arrive:

  o  Ethernet Link Aggregation Group Member

  o  Multilink PPP bundle member

  o  Multilink frame relay bundle member

  To minimize the number of octets required for this extension, there
  are four different pieces of information that can appear in an
  Interface Information Object.

  1.  The ifIndex of the interface of interest MAY be included.  This
      is the 32-bit ifIndex assigned to the interface by the device as
      specified by the Interfaces Group MIB [RFC2863].

  2.  An IP Address Sub-Object MAY be included if either of the
      following conditions is true: a) the eliciting datagram is IPv4
      and the identified interface has at least one IPv4 address
      associated with it, or b) the eliciting datagram is IPv6 and the
      identified interface has at least one IPv6 address associated
      with it.  The IP Address Sub-Object is described in Section 4.2
      of this memo.

  3.  An Interface Name Sub-Object, containing a string of no more than
      63 octets, MAY be included.  That string, as specified in
      Section 4.3, is the interface name and SHOULD be the MIB-II
      ifName [RFC2863], but MAY be some other human-meaningful name of
      the interface.

  4.  A 32-bit unsigned integer reflecting the MTU MAY be included.

4.1.  C-Type Meaning in an Interface Information Object

  For this object, the C-Type [RFC4884] is used to indicate both the
  role of the interface and the information that is included.  This is
  illustrated in Figure 1.





Atlas, et al.                Standards Track                    [Page 7]

RFC 5837                     ICMP Unnumbered                  April 2010


  Bit     0       1       2       3       4       5       6       7
      +-------+-------+-------+-------+-------+-------+-------+-------+
      | Interface Role| Rsvd1 | Rsvd2 |ifIndex| IPAddr|  name |  MTU  |
      +-------+-------+-------+-------+-------+-------+-------+-------+

          Figure 1: C-Type for the Interface Information Object

  The following are bit-field definitions for C-Type:

  Interface Role (bits 0-1): These bits indicates the role of the
  interface being identified.  The enumerated values are given below:

     Value 0:  This object describes the IP interface upon which a
               datagram arrived

     Value 1:  This object describes the sub-IP component of an IP
               interface upon which a datagram arrived

     Value 2:  This object describes the IP interface through which the
               datagram would have been forwarded had it been
               forwardable

     Value 3:  This object describes the IP next hop to which the
               datagram would have been forwarded

  Reserved 1 (bit 2): This bit is reserved for future use and MUST be
  set to 0 and MUST be ignored on receipt.

  Reserved 2 (bit 3): This bit is reserved for future use and MUST be
  set to 0 and MUST be ignored on receipt.

  ifIndex (bit 4) : When set, the 32-bit ifIndex of the interface is
  included.  When clear, the ifIndex is not included.

  IP Addr (bit 5) : When set, an IP Address Sub-Object is present.
  When clear, an IP Address Sub-Object is not present.  The IP Address
  Sub-Object is described in Section 4.2 of this memo.

  Interface Name (bit 6): When set, an Interface Name Sub-Object is
  included.  When clear, it is not included.  The Name Sub-Object is
  described in Section 4.3 of this memo.

  MTU (bit 7): When set, a 32-bit integer representing the MTU is
  present.  When clear, this 32-bit integer is not present.

  The information included does not self-identify, so this
  specification defines a specific ordering for sending the information
  that must be followed.



Atlas, et al.                Standards Track                    [Page 8]

RFC 5837                     ICMP Unnumbered                  April 2010


  If bit 4 (ifIndex) is set, then the 32-bit ifIndex MUST be sent
  first.  If bit 5 (IP Address) is set, an IP Address Sub-Object MUST
  be sent next.  If bit 6 (Name) is set, an Interface Name Sub-Object
  MUST be sent next.  If bit 7 is set, an MTU MUST be sent next.  The
  information order is thus: ifIndex, IP Address Sub-Object, Interface
  Name Sub-Object, and MTU.  Any or all pieces of information may be
  present or absent, as indicated by the C-Type.  Any data that follows
  these optional pieces of information MUST be ignored.

  It is valid (though pointless until additional bits are assigned by
  IANA) to receive an Interface Information Object where bits 4, 5, 6,
  and 7 are all 0; this MUST NOT generate a warning or error.

4.2.  Interface IP Address Sub-Object

  Figure 2 depicts the Interface Address Sub-Object:

                     0                            31
                    +-------+-------+-------+-------+
                    |      AFI      |    Reserved   |
                    +-------+-------+-------+-------+
                    |         IP Address   ....

                 Figure 2: Interface Address Sub-Object

  The IP Address Sub-Object contains the following fields:

  o  Address Family Identifier (AFI): This 16-bit bit field identifies
     the type of address represented by the IP Address field.  It also
     determines the length of that field and the length of the entire
     sub-object.  Values for this field represent a subset of values
     found in the IANA registry of Address Family Numbers (available
     from <http://www.iana.org>).  Valid values are 1 (representing a
     32-bit IPv4 address) and 2 (representing a 128-bit IPv6 address).

  o  Reserved: This 16-bit field MUST be set to zero and ignored upon
     receipt.

  o  IP Address: This variable-length field represents an IP address
     associated with the identified interface.

  If the eliciting datagram was IPv4, the IP Interface Sub-Object MUST
  represent an IPv4 address.  Likewise, if the eliciting datagram was
  IPv6, the IP Interface Sub-Object MUST represent an IPv6 address.







Atlas, et al.                Standards Track                    [Page 9]

RFC 5837                     ICMP Unnumbered                  April 2010


4.3.  Interface Name Sub-Object

  Figure 3 depicts the Interface Name Sub-Object:

       octet    0        1                                   63
            +--------+-----------................-----------------+
            | length |   interface name octets 1-63               |
            +--------+-----------................-----------------+

                   Figure 3: Interface Name Sub-Object

  The Interface Name Sub-Object MUST have a length that is a multiple
  of 4 octets and MUST NOT exceed 64 octets.

  The Length field represents the length of the Interface Name Sub-
  Object, including the length and the interface name in octets.  The
  maximum valid length is 64 octets.  The length is constrained to
  ensure there is space for the start of the original packet and
  additional information.

  The second field contains the human-readable interface name.  The
  interface name SHOULD be the full MIB-II ifName [RFC2863], if less
  than 64 octets, or the first 63 octets of the ifName, if the ifName
  is longer.  The interface name MAY be some other human-meaningful
  name of the interface.  It is useful to provide the ifName for cross-
  correlation with other MIB information and for human-reader
  familiarity.  The interface name MUST be padded with ASCII NULL
  characters if the object would not otherwise terminate on a 4-octet
  boundary.

  The interface name MUST be represented in the UTF-8 charset [RFC3629]
  using the Default Language [RFC2277].

4.4.  Interface Information Object Examples

  Figure 4 shows a full ICMPv4 Time Exceeded message, including the
  Interface Information Object, which must be preceded by an ICMP
  Extension Structure Header and an ICMP Object Header.  Both are
  defined in [RFC4884].

  Although examples show an Interface Name Sub-Object of length 64,
  this is only for illustration and depicts the maximum allowable
  length.








Atlas, et al.                Standards Track                   [Page 10]

RFC 5837                     ICMP Unnumbered                  April 2010


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Code      |          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     unused    |    Length     |          unused               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      Internet Header + leading octets of original datagram    |
    |                                                               |
    |                           //                                  |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Ver=2 |      (Reserved)       |           Checksum            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Length            |Class-Num=2 | C-Type=00001010b |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Interface ifIndex                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Interface Name Sub-Object, 32-bit word 1       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...                                                             ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Interface Name Sub-Object, 32-bit word 16      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 4: ICMPv4 Time Exceeded Message with Interface Information
                                 Object

  Figure 5 depicts an Interface Information Object representing an
  incoming interface identified by ifIndex and Name.

           Class-Num = 2
           C-Type = 00001010b   // Indicates incoming interface
           Length = 72 (4 + 4 + 64)

              0              1              2              3
      +--------------+--------------+--------------+--------------+
      |                    Interface ifIndex                      |
      +--------------+--------------+--------------+--------------+
      |    Length    |      Name, word 1                          |
      +--------------+--------------+--------------+--------------+
     ...                                                         ...
      +--------------+--------------+--------------+--------------+
      |                     Name, word 16                         |
      +--------------+--------------+--------------+--------------+

            Figure 5: Incoming Interface: By ifIndex and Name




Atlas, et al.                Standards Track                   [Page 11]

RFC 5837                     ICMP Unnumbered                  April 2010


  Figure 6 depicts an Interface Information Object representing an
  incoming interface identified by ifIndex, IPv4 Address, and Name.

           Class-Num = 2
           C-Type = 00001110b   // Indicates incoming interface
           Length = 80 (4 + 4 + 8 + 64)

              0              1              2              3
      +--------------+--------------+--------------+--------------+
      |                    Interface ifIndex                      |
      +--------------+--------------+--------------+--------------+
      |             AFI             |          Reserved           |
      +--------------+--------------+--------------+--------------+
      |                    IPv4 address                           |
      +--------------+--------------+--------------+--------------+
      |    Length    |      Name, word 1                          |
      +--------------+--------------+--------------+--------------+
     ...                                                         ...
      +--------------+--------------+--------------+--------------+
      |                     Name, word 16                         |
      +--------------+--------------+--------------+--------------+

    Figure 6: Incoming Interface: by ifIndex, IPv4 Address, and Name

  Figure 7 depicts an Interface Information Object representing an
  incoming interface identified by ifIndex and IPv6 Address.

          Class-Num = 2
          C-Type = 00001100b   // Indicates incoming interface
          Length = 28 (4 + 4 + 20)

             0              1              2              3
      +--------------+--------------+--------------+--------------+
      |                    Interface ifIndex                      |
      +--------------+--------------+--------------+--------------+
      |             AFI             |          Reserved           |
      +--------------+--------------+--------------+--------------+
      |                    IPv6 address, 32-bit word 1            |
      +--------------+--------------+--------------+--------------+
      |                    IPv6 address, 32-bit word 2            |
      +--------------+--------------+--------------+--------------+
      |                    IPv6 address, 32-bit word 3            |
      +--------------+--------------+--------------+--------------+
      |                    IPv6 address, 32-bit word 4            |
      +--------------+--------------+--------------+--------------+

        Figure 7: Incoming Interface: By ifIndex and IPv6 Address




Atlas, et al.                Standards Track                   [Page 12]

RFC 5837                     ICMP Unnumbered                  April 2010


  Figure 8 depicts an Interface Information Object representing an
  outgoing interface identified by ifIndex and Name.

         Class-Num = 2
         C-Type = 10001010b   // Indicates outgoing interface
         Length = 72 (4 + 4 + 64)

              0              1              2              3
      +--------------+--------------+--------------+--------------+
      |                    Interface ifIndex                      |
      +--------------+--------------+--------------+--------------+
      |    Length    |      Name, word 1                          |
      +--------------+--------------+--------------+--------------+
     ...                                                         ...
      +--------------+--------------+--------------+--------------+
      |                     Name, word 16                         |
      +--------------+--------------+--------------+--------------+

            Figure 8: Outgoing Interface: By ifIndex and Name

4.5.  Usage

  Multiple Interface Information Objects MAY be included within a
  single ICMP message, provided that each Interface Information Object
  specifies a unique role.  A single ICMP message MUST NOT contain two
  Interface Information Objects that specify the same role.

  ifIndex, MTU, and name information MAY be included whenever it is
  available; more than one instance of each of these three information
  elements MUST NOT be included per Interface Information Object.

  A single instance of IP Address information MAY be included in an
  Interface Information Object under the following circumstances:

  o  if the eliciting datagram is IPv4 and an IPv4 address is
     associated with the identified interface.  In this case, if an IP
     Address Sub-Object is included, it must specify an IPv4 address.

  o  if the eliciting datagram is IPv6 and an IPv6 address is
     associated with the identified interface.  In this case, if an IP
     Address Sub-Object is included, it must specify an IPv6 address.

  In all other circumstances, IP address information MUST NOT be
  included.

  An ICMP message that does not conform to these rules and contains
  multiple instances of the same information is considered illegal;
  specifically, an ICMP message containing more than one Interface



Atlas, et al.                Standards Track                   [Page 13]

RFC 5837                     ICMP Unnumbered                  April 2010


  Information Object with the same role, as well as an ICMP message
  containing a duplicate information element in a given role are
  considered illegal.  If such an illegal ICMP message is received, it
  MUST be silently discarded.

5.  Network Address Translation Considerations

  [RFC5508] encourages Traditional IP Network Address Translators
  (Traditional NATs; see [RFC3022]) to support ICMP extension objects.
  This document defines an ICMP extension that includes IP addresses
  and therefore contains realm-specific information, and consequently
  describes possible NAT behaviors in the presence of these extensions.

  NAT devices MUST NOT translate or overwrite the ICMP extensions
  described herein.  That is, they MUST either remove the extension
  entirely or pass it unchanged.

  It is conceivable that a NAT device might translate an ICMP header
  without translating the extension defined herein.  In this case, the
  ICMP message might contain two instances of the same address, one
  translated and the other untranslated.  Therefore, application
  developers should not assume addresses in the extension are of the
  same realm as the addresses in the datagram's header.

  It also is conceivable that a NAT device might translate an ICMPv4
  message into ICMPv6 or vice versa.  If that were to occur,
  applications might receive ICMPv6 messages that contain IP Address
  Sub-Objects that specify IPv4 addresses.  Likewise, applications
  might receive ICMPv4 messages that contain IP Address Sub-Objects
  that specify IPv6 addresses.

6.  Security Considerations

  This extension can provide the user of traceroute with additional
  network information that is not currently available.  Implementations
  SHOULD provide configuration switches that suppress the generation of
  this extension based upon role (i.e., incoming interface, outgoing
  interface, sub-IP data).  Implementations SHOULD also provide
  configuration switches that conceal various types of information
  (e.g., ifIndex, interface name).

  It may be desirable to provide this information to a particular
  network's operators and not to others.  If such policy controls are
  desirable, then an implementation could determine what sub-objects to
  include based upon the destination IP address of the ICMP message
  that will contain the sub-objects.  The implementation of policy
  controls could also be based upon the mechanisms described in
  [TRACEROUTE-EXT] for those limited cases supported.



Atlas, et al.                Standards Track                   [Page 14]

RFC 5837                     ICMP Unnumbered                  April 2010


  For instance, the IP address may be included for all potential
  recipients.  The ifIndex and interface name could be included as well
  if the destination IP address is a management address of the network
  that has administrative control of the router.

  Another example use case would be where the detailed information in
  these extensions may be provided to ICMP destinations within the
  local administrative domain, but only traditional information is
  provided to 'external' or untrusted ICMP destinations.

  The intended field of use for the extensions defined in this document
  is administrative debugging and troubleshooting.  The extensions
  herein defined supply additional information in ICMP responses.
  These mechanisms are not intended to be used in non-debugging
  applications.

  This document does not specify an authentication mechanism for the
  extension that it defines.  Application developers should be aware
  that ICMP messages and their contents are easily spoofed.

7.  IANA Considerations

  IANA has reserved 2 for the Interface Information Object from the
  ICMP Extension Object Classes registry available from
  <http://www.iana.org>.

  From the Interface Information Object's C-Type, IANA has reserved
  values as follows:

  o  Bit 0-1: Interface Role field

  o  Bit 2: Unallocated - allocatable with Standards Action

  o  Bit 3: Unallocated - allocatable with Standards Action

  o  Bit 4: ifIndex included

  o  Bit 5: IP Address Sub-Object included

  o  Bit 6: Name Sub-Object included

  o  Bit 7: MTU included

  IANA has reserved the following values for Interface Role:

  o  Value 0: Incoming IP Interface

  o  Value 1: Sub-IP Component of Incoming IP Interface



Atlas, et al.                Standards Track                   [Page 15]

RFC 5837                     ICMP Unnumbered                  April 2010


  o  Value 2: Outgoing IP Interface

  o  Value 3: IP Next Hop

8.  Acknowledgments

  The authors would like to thank Sasha Vainshtein, Enke Chen, and Joe
  Touch for their comments and suggestions.  They would also like to
  thank Dr. Ali Assefi.

9.  References

9.1.  Normative References

  [RFC0792]         Postel, J., "Internet Control Message Protocol",
                    STD 5, RFC 792, September 1981.

  [RFC2119]         Bradner, S., "Key words for use in RFCs to Indicate
                    Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2863]         McCloghrie, K. and F. Kastenholz, "The Interfaces
                    Group MIB", RFC 2863, June 2000.

  [RFC3629]         Yergeau, F., "UTF-8, a transformation format of ISO
                    10646", STD 63, RFC 3629, November 2003.

  [RFC4443]         Conta, A., Deering, S., and M. Gupta, "Internet
                    Control Message Protocol (ICMPv6) for the Internet
                    Protocol Version 6 (IPv6) Specification", RFC 4443,
                    March 2006.

  [RFC4884]         Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
                    "Extended ICMP to Support Multi-Part Messages",
                    RFC 4884, April 2007.

9.2.  Informative References

  [RFC1122]         Braden, R., "Requirements for Internet Hosts -
                    Communication Layers", STD 3, RFC 1122,
                    October 1989.

  [RFC1812]         Baker, F., "Requirements for IP Version 4 Routers",
                    RFC 1812, June 1995.

  [RFC2277]         Alvestrand, H., "IETF Policy on Character Sets and
                    Languages", BCP 18, RFC 2277, January 1998.





Atlas, et al.                Standards Track                   [Page 16]

RFC 5837                     ICMP Unnumbered                  April 2010


  [RFC3022]         Srisuresh, P. and K. Egevang, "Traditional IP
                    Network Address Translator (Traditional NAT)",
                    RFC 3022, January 2001.

  [RFC5508]         Srisuresh, P., Ford, B., Sivakumar, S., and S.
                    Guha, "NAT Behavioral Requirements for ICMP",
                    BCP 148, RFC 5508, April 2009.

  [TRACEROUTE-EXT]  Shen, N., Pignataro, C., Asati, R., and E. Chen,
                    "UDP Traceroute Message Extension", Work in
                    Progress, June 2008.








































Atlas, et al.                Standards Track                   [Page 17]

RFC 5837                     ICMP Unnumbered                  April 2010


Authors' Addresses

  Alia K. Atlas (editor)
  BT

  EMail: [email protected]


  Ronald P. Bonica (editor)
  Juniper Networks
  2251 Corporate Park Drive
  Herndon, VA  20171
  USA

  EMail: [email protected]


  Carlos Pignataro (editor)
  Cisco Systems
  7200-12 Kit Creek Road
  PO Box 14987
  Research Triangle Park, NC  27709
  USA

  EMail: [email protected]


  Naiming Shen
  Cisco Systems
  225 West Tasman Drive
  San Jose, CA  95134
  USA

  EMail: [email protected]


  JR. Rivers
  Consultant

  EMail: [email protected]











Atlas, et al.                Standards Track                   [Page 18]