Independent Submission                                  V. Dolmatov, Ed.
Request for Comments: 5832                               Cryptocom, Ltd.
Category: Informational                                       March 2010
ISSN: 2070-1721


                          GOST R 34.10-2001:
                     Digital Signature Algorithm

Abstract

  This document is intended to be a source of information about the
  Russian Federal standard for digital signatures (GOST R 34.10-2001),
  which is one of the Russian cryptographic standard algorithms (called
  GOST algorithms).  Recently, Russian cryptography is being used in
  Internet applications, and this document has been created as
  information for developers and users of GOST R 34.10-2001 for digital
  signature generation and verification.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5832.

















Dolmatov                      Informational                     [Page 1]

RFC 5832                    GOST R 34.10-2001                 March 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

  This document may not be modified, and derivative works of it may not
  be created, except to format it for publication as an RFC or to
  translate it into languages other than English.

Table of Contents

  1. Introduction ....................................................3
     1.1. General Information ........................................3
     1.2. The Purpose of GOST R 34.10-2001 ...........................3
  2. Applicability ...................................................4
  3. Definitions and Notations .......................................4
     3.1. Definitions ................................................4
     3.2. Notations ..................................................6
  4. General Statements ..............................................7
  5. Mathematical Conventions ........................................8
     5.1. Mathematical Definitions ...................................9
     5.2. Digital Signature Parameters ..............................10
     5.3. Binary Vectors ............................................11
  6. Main Processes .................................................12
     6.1. Digital Signature Generation Process ......................12
     6.2. Digital Signature Verification ............................13
  7. Test Examples (Appendix to GOST R 34.10-2001) ..................14
     7.1. The Digital Signature Scheme Parameters ...................14
     7.2. Digital Signature Process (Algorithm I) ...................16
     7.3. Verification Process of Digital Signature (Algorithm II) ..17
  8. Security Considerations ........................................19
  9. References .....................................................19
     9.1. Normative References ......................................19
     9.2. Informative References ....................................19
  Appendix A. Extra Terms in the Digital Signature Area .............21
  Appendix B. Contributors ..........................................22








Dolmatov                      Informational                     [Page 2]

RFC 5832                    GOST R 34.10-2001                 March 2010


1.  Introduction

1.1.  General Information

  1. GOST R 34.10-2001 [GOST3410] was developed by the Federal Agency
     for Government Communication and Information under the President
     of the Russian Federation with the participation of the All-Russia
     Scientific and Research Institute of Standardization.

     GOST R 34.10-2001 was submitted by Federal Agency for Government
     Communication and Information at President of the Russian
     Federation.

  2. GOST R 34.10-2001 was accepted and activated by the Act 380-st of
     12.09.2001 issued by the Government Committee of Russia for
     Standards.

  3. GOST R 34.10-2001 was developed in accordance with the terminology
     and concepts of international standards ISO 2382-2:1976 "Data
     processing - Vocabulary - Part 2: Arithmetic and logic
     operations"; ISO/IEC 9796:1991 "Information technology -- Security
     techniques -- Digital signature schemes giving message recovery";
     ISO/IEC 14888 "Information technology - Security techniques -
     Digital signatures with appendix"; and ISO/IEC 10118 "Information
     technology - Security techniques - Hash-functions".

  4. GOST R 34.10-2001 replaces GOST R 34.10-94.

1.2.  The Purpose of GOST R 34.10-2001

  GOST R 34.10-2001 describes the generation and verification processes
  for digital signatures, based on operations with an elliptic curve
  points group, defined over a prime finite field.

  GOST R 34.10-2001 has been developed to replace GOST R 34.10-94.
  Necessity for this development is caused by the need to increase
  digital signature security against unauthorized modification.
  Digital signature security is based on the complexity of discrete
  logarithm calculation in an elliptic curve points group and also on
  the security of the hash function used (according to [GOST3411]).

  Terminologically and conceptually, GOST R 34.10-2001 is in accordance
  with international standards ISO 2382-2 [ISO2382-2], ISO/IEC 9796
  [ISO9796-1991], ISO/IEC 14888 Parts 1-3 [ISO14888-1]-[ISO14888-3],
  and ISO/IEC 10118 Parts 1-4 [ISO10118-1]-[ISO10118-4].

  Note: the main part of GOST R 34.10-2001 is supplemented with three
  appendixes:



Dolmatov                      Informational                     [Page 3]

RFC 5832                    GOST R 34.10-2001                 March 2010


     "Extra Terms in the Digital Signature Area" (Appendix A of this
     memo);

     "Test Examples" (Section 7 of this memo);

     "A Bibliography in the Digital Signature Area" (Section 9.2 of
     this memo).

2.  Applicability

  GOST R 34.10-2001 defines an electronic digital signature (or simply
  digital signature) scheme, digital signature generation and
  verification processes for a given message (document), meant for
  transmission via insecure public telecommunication channels in data
  processing systems of different purposes.

  Use of a digital signature based on GOST R 34.10-2001 makes
  transmitted messages more resistant to forgery and loss of integrity,
  in comparison with the digital signature scheme prescribed by the
  previous standard.

  GOST R 34.10-2001 is obligatory to use in the Russian Federation in
  all data processing systems providing public services.

3.  Definitions and Notations

3.1.  Definitions

  The following terms are used in the standard:

  Appendix: Bit string, formed by a digital signature and by the
  arbitrary text field [ISO14888-1].

  Signature key: Element of secret data, specific to the subject and
  used only by this subject during the signature generation process
  [ISO14888-1].

  Verification key: Element of data mathematically linked to the
  signature key data element, used by the verifier during the digital
  signature verification process [ISO14888-1].

  Domain parameter: Element of data that is common for all the subjects
  of the digital signature scheme, known or accessible to all the
  subjects [ISO14888-1].

  Signed message: A set of data elements, which consists of the message
  and the appendix, which is a part of the message.




Dolmatov                      Informational                     [Page 4]

RFC 5832                    GOST R 34.10-2001                 March 2010


  Pseudo-random number sequence: A sequence of numbers, which is
  obtained during some arithmetic (calculation) process, used in a
  specific case instead of a true random number sequence [ISO2382-2].

  Random number sequence: A sequence of numbers none of which can be
  predicted (calculated) using only the preceding numbers of the same
  sequence [ISO2382-2].

  Verification process: A process that uses the signed message, the
  verification key, and the digital signature scheme parameters as
  initial data and that gives the conclusion about digital signature
  validity or invalidity as a result [ISO14888-1].

  Signature generation process: A process that uses the message, the
  signature key, and the digital signature scheme parameters as initial
  data and that generates the digital signature as the result
  [ISO14888-1].

  Witness: Element of data (resulting from the verification process)
  that states to the verifier whether the digital signature is valid or
  invalid [ISO148881-1]).

  Random number: A number chosen from the definite number set in such a
  way that every number from the set can be chosen with equal
  probability [ISO2382-2].

  Message: String of bits of a limited length [ISO9796-1991].

  Hash code: String of bits that is a result of the hash function
  [ISO148881-1].

  Hash function: The function, mapping bit strings onto bit strings of
  fixed length observing the following properties:

     1) it is difficult to calculate the input data, that is the pre-
        image of the given function value;

     2) it is difficult to find another input data that is the pre-
        image of the same function value as is the given input data;

     3) it is difficult to find a pair of different input data,
        producing the same hash function value.

  Note: Property 1 in the context of the digital signature area means
  that it is impossible to recover the initial message using the
  digital signature; property 2 means that it is difficult to find
  another (falsified) message that produces the same digital signature




Dolmatov                      Informational                     [Page 5]

RFC 5832                    GOST R 34.10-2001                 March 2010


  as a given message; property 3 means that it is difficult to find
  some pair of different messages, which both produce the same
  signature.

  (Electronic) Digital signature: String of bits obtained as a result
  of the signature generation process.  This string has an internal
  structure, depending on the specific signature generation mechanism.

  Note: In GOST R 34.10-2001 terms, "Digital signature" and "Electronic
  digital signature" are synonymous to save terminological succession
  to native legal documents currently in force and scientific
  publications.

3.2.  Notations

  In GOST R 34.10-2001, the following notations are used:

  V256 - set of all binary vectors of a 256-bit length

  V_all - set of all binary vectors of an arbitrary finite length

  Z - set of all integers

  p - prime number, p > 3

  GF(p) - finite prime field represented by a set of integers
          {0, 1, ..., p - 1}

  b (mod p) - minimal non-negative number, congruent to b modulo p

  M - user's message, M belongs to V_all

  (H1 || H2 ) - concatenation of two binary vectors

  a,b - elliptic curve coefficients

  m - points of the elliptic curve group order

  q - subgroup order of group of points of the elliptic curve

  O - zero point of the elliptic curve

  P - elliptic curve point of order q

  d - integer - a signature key

  Q - elliptic curve point - a verification key




Dolmatov                      Informational                     [Page 6]

RFC 5832                    GOST R 34.10-2001                 March 2010


  ^ - the power operator

  /= - non-equality

  sqrt - square root

  zeta - digital signature for the message M

4.  General Statements

  A commonly accepted digital signature scheme (model) (see Section 6
  of [ISO/IEC14888-1]) consists of three processes:

     - generation of a pair of keys (for signature generation and for
       signature verification);

     - signature generation;

     - signature verification.

  In GOST R 34.10-2001, a process for generating a pair of keys (for
  signature and verification) is not defined.  Characteristics and ways
  of the process realization are defined by involved subjects, who
  determine corresponding parameters by their agreement.

  The digital signature mechanism is defined by the realization of two
  main processes (see Section 7):

     - signature generation (see Section 6.1) and

     - signature verification (see Section 6.2).

  The digital signature is meant for the authentication of the
  signatory of the electronic message.  Besides, digital signature
  usage gives an opportunity to provide the following properties during
  signed message transmission:

     - realization of control of the transmitted signed message
       integrity,

     - proof of the authorship of the signatory of the message,

     - protection of the message against possible forgery.

  A schematic representation of the signed message is shown in
  Figure 1.





Dolmatov                      Informational                     [Page 7]

RFC 5832                    GOST R 34.10-2001                 March 2010


                                  appendix
                                     |
                     +-------------------------------+
                     |                               |
     +-----------+   +------------------------+- - - +
     | message M |---| digital signature zeta | text |
     +-----------+   +------------------------+- - - +

                      Figure 1: Signed message scheme

  The field "digital signature" is supplemented by the field "text"
  (see Figure 1), that can contain, for example, identifiers of the
  signatory of the message and/or time label.

  The digital signature scheme determined in GOST R 34.10-2001 must be
  implemented using operations of the elliptic curve points group,
  defined over a finite prime field, and also with the use of hash
  function.

  The cryptographic security of the digital signature scheme is based
  on the complexity of solving the problem of the calculation of the
  discrete logarithm in the elliptic curve points group and also on the
  security of the hash function used.  The hash function calculation
  algorithm is determined in [GOST3411].

  The digital signature scheme parameters needed for signature
  generation and verification are determined in Section 5.2.

  GOST R 34.10-2001 does not determine the process of generating
  parameters needed for the digital signature scheme.  Possible sets of
  these parameters are defined, for example, in [RFC4357].

  The digital signature represented as a binary vector of a 512-bit
  length must be calculated using a definite set of rules, as stated in
  Section 6.1.

  The digital signature of the received message is accepted or denied
  in accordance with the set of rules, as stated in Section 6.2.

5.  Mathematical Conventions

  To define a digital signature scheme, it is necessary to describe
  basic mathematical objects used in the signature generation and
  verification processes.  This section lays out basic mathematical
  definitions and requirements for the parameters of the digital
  signature scheme.





Dolmatov                      Informational                     [Page 8]

RFC 5832                    GOST R 34.10-2001                 March 2010


5.1.  Mathematical Definitions

  Suppose a prime number p > 3 is given.  Then, an elliptic curve E,
  defined over a finite prime field GF(p), is the set of number pairs
  (x,y), x, y belong to Fp, satisfying the identity:

  y^2 = x^3 + a*x + b (mod p),                                      (1)

  where a, b belong to GF(p) and 4*a^3 + 27*b^2 is not congruent to
  zero modulo p.

  An invariant of the elliptic curve is the value J(E), satisfying the
  equality:

                  4*a^3
  J(E) = 1728 * ------------ (mod p)                                (2)
                4*a^3+27*b^2

  Elliptic curve E coefficients a,b are defined in the following way
  using the invariant J(E):

  | a=3*k (mod p)
  |                              J(E)
  | b=2*k (mod p), where k = ----------- (mod p), J(E) /= 0 or 1728 (3)
                             1728 - J(E)

  The pairs (x,y) satisfying the identity (1) are called the elliptic
  curve E points; x and y are called x- and y-coordinates of the point,
  correspondingly.

  We will denote elliptic curve points as Q(x,y) or just Q.  Two
  elliptic curve points are equal if their x- and y-coordinates are
  equal.

  On the set of all elliptic curve E points, we will define the
  addition operation, denoted by "+".  For two arbitrary elliptic curve
  E points Q1 (x1, y1) and Q2 (x2, y2), we will consider several
  variants.

  Suppose coordinates of points Q1 and Q2 satisfy the condition x1 /=
  x2.  In this case, their sum is defined as a point Q3 (x3,y3), with
  coordinates defined by congruencies:

  | x3=lambda^2-x1-x2 (mod p),                  y1-y2
  |                              where lambda= ------- (mod p).     (4)
  | y3=lambda*(x1-x3)-y1 (mod p),               x1-x2





Dolmatov                      Informational                     [Page 9]

RFC 5832                    GOST R 34.10-2001                 March 2010


  If x1 = x2 and y1 = y2 /= 0, then we will define point Q3 coordinates
  in the following way:

  | x3=lambda^2-x1*2 (mod p),                    3*x1^2+a
  |                               where lambda= --------- (mod p)   (5)
  | y3=lambda*(x1-x3)-y1 (mod p),                 y1*2

  If x1 = x2 and y1 = - y2 (mod p), then the sum of points Q1 and Q2 is
  called a zero point O, without determination of its x- and y-
  coordinates.  In this case, point Q2 is called a negative of point
  Q1.  For the zero point, the equalities hold:

  O+Q=Q+O=Q,                                                        (6)

  where Q is an arbitrary point of elliptic curve E.

  A set of all points of elliptic curve E, including zero point, forms
  a finite abelian (commutative) group of order m regarding the
  introduced addition operation.  For m, the following inequalities
  hold:

  p + 1 - 2*sqrt(p) =< m =< p + 1 + 2*sqrt(p).                      (7)

  The point Q is called a point of multiplicity k, or just a multiple
  point of the elliptic curve E, if for some point P the following
  equality holds:

  Q = P + ... + P = k*P.                                            (8)
      -----+-----
           k

5.2.  Digital Signature Parameters

  The digital signature parameters are:

     - prime number p is an elliptic curve modulus, satisfying the
       inequality p > 2^255.  The upper bound for this number must be
       determined for the specific realization of the digital signature
       scheme;

     - elliptic curve E, defined by its invariant J(E) or by
       coefficients a, b belonging to GF(p).

     - integer m is an elliptic curve E points group order;

     - prime number q is an order of a cyclic subgroup of the elliptic
       curve E points group, which satisfies the following conditions:




Dolmatov                      Informational                    [Page 10]

RFC 5832                    GOST R 34.10-2001                 March 2010


  | m = nq, n belongs to Z , n>=1
  |                                                                 (9)
  | 2^254 < q < 2^256

     - point P /= O of an elliptic curve E, with coordinates (x_p,
       y_p), satisfying the equality q*P=O.

     - hash function h(.):V_all -> V256, which maps the messages
       represented as binary vectors of arbitrary finite length onto
       binary vectors of a 256-bit length.  The hash function is
       determined in [GOST3411].

  Every user of the digital signature scheme must have its personal
  keys:

     - signature key, which is an integer d, satisfying the inequality
       0 < d < q;

     - verification key, which is an elliptic curve point Q with
       coordinates (x_q, y_q), satisfying the equality d*P=Q.

  The previously introduced digital signature parameters must satisfy
  the following requirements:

     - it is necessary that the condition p^t/= 1 (mod q ) holds for
       all integers t = 1, 2, ... B where B satisfies the inequality B
       >= 31;

     - it is necessary that the inequality m /= p holds;

     - the curve invariant must satisfy the condition J(E) /= 0, 1728.

5.3.  Binary Vectors

  To determine the digital signature generation and verification
  processes, it is necessary to map the set of integers onto the set of
  binary vectors of a 256-bit length.

  Consider the following binary vector of a 256-bit length where low-
  order bits are placed on the right, and high-order ones are placed on
  the left:

  H = (alpha[255], ... , alpha[0]), H belongs to V256              (10)

  where alpha[i], i = 0, ... , 255 are equal to 1 or to 0.  We will say
  that the number alpha belonging to Z is mapped onto the binary vector
  h, if the equality holds:




Dolmatov                      Informational                    [Page 11]

RFC 5832                    GOST R 34.10-2001                 March 2010


  alpha = alpha[0]*2^0 + alpha[1]*2^1 + ... + alpha[255]*2^255     (11)

  For two binary vectors H1 and H2, which correspond to integers alpha
  and beta, we define a concatenation (union) operation in the
  following way.  If:

     H1 = (alpha[255], ... , alpha[0]),
                                                                 (12)
     H2 = (beta[255], ..., beta[0]),

  then their union is

     H1||H2 = (alpha[255], ... , alpha[0], beta[255], ..., beta[0])
                                                                 (13)
  that is a binary vector of 512-bit length, consisting of coefficients
  of the vectors H1 and H2.

  On the other hand, the introduced formulae define a way to divide a
  binary vector H of 512-bit length into two binary vectors of 256-bit
  length, where H is the concatenation of the two.

6.  Main Processes

  In this section, the digital signature generation and verification
  processes of user's message are defined.

  For the realization of the processes, it is necessary that all users
  know the digital signature scheme parameters, which satisfy the
  requirements of Section 5.2.

  Besides, every user must have the signature key d and the
  verification key Q(x[q], y[q]), which also must satisfy the
  requirements of Section 5.2.

6.1.  Digital Signature Generation Process

  It is necessary to perform the following actions (steps) according to
  Algorithm I to obtain the digital signature for the message M
  belonging to V_all:

  Step 1 - calculate the message hash code M: H = h(M).            (14)

  Step 2 - calculate an integer alpha, binary representation of which
  is the vector H, and determine e = alpha (mod q ).               (15)

  If e = 0, then assign e = 1.





Dolmatov                      Informational                    [Page 12]

RFC 5832                    GOST R 34.10-2001                 March 2010


  Step 3 - generate a random (pseudorandom) integer k, satisfying the
  inequality:

  0 < k < q.                                                       (16)

  Step 4 - calculate the elliptic curve point C = k*P and determine if:

  r = x_C (mod q),                                                 (17)

  where x_C is x-coordinate of the point C.  If r = 0, return to
  step 3.

  Step 5 - calculate the value:

  s = (r*d + k*e) (mod q).                                         (18)

  If s = 0, return to step 3.

  Step 6 - calculate the binary vectors R and S, corresponding to r
  and s, and determine the digital signature zeta = (R || S) as a
  concatenation of these two binary vectors.

  The initial data of this process are the signature key d and the
  message M to be signed.  The output result is the digital signature
  zeta.

6.2.  Digital Signature Verification

  To verify digital signatures for the received message M belonging to
  V_all, it is necessary to perform the following actions (steps)
  according to Algorithm II:

  Step 1 - calculate the integers r and s using the received signature
  zeta.  If the inequalities 0 < r < q, 0 < s < q hold, go to the next
  step.  Otherwise, the signature is invalid.

  Step 2 - calculate the hash code of the received message M:

  H = h(M).                                                        (19)

  Step 3 - calculate the integer alpha, the binary representation of
  which is the vector H, and determine if:

  e = alpha (mod q).                                               (20)

  If e = 0, then assign e = 1.

  Step 4 - calculate the value v = e^(-1) (mod q).                 (21)



Dolmatov                      Informational                    [Page 13]

RFC 5832                    GOST R 34.10-2001                 March 2010


  Step 5 - calculate the values:

  z1 =  s*v (mod q), z2 = -r*v (mod q).                            (22)

  Step 6 - calculate the elliptic curve point C = z1*P + z2*Q and
  determine if:

  R = x_C (mod q),                                                 (23)

  where x_C is x-coordinate of the point.

  Step 7 - if the equality R = r holds, then the signature is accepted.
  Otherwise, the signature is invalid.

  The input data of the process are the signed message M, the digital
  signature zeta, and the verification key Q.  The output result is the
  witness of the signature validity or invalidity.

7.  Test Examples (Appendix to GOST R 34.10-2001)

  This section is included in GOST R 34.10-2001 as a reference appendix
  but is not officially mentioned as a part of the standard.

  The values given here for the parameters p, a, b, m, q, P, the
  signature key d, and the verification key Q are recommended only for
  testing the correctness of actual realizations of the algorithms
  described in GOST R 34.10-2001.

  All numerical values are introduced in decimal and hexadecimal
  notations.  The numbers beginning with 0x are in hexadecimal
  notation.  The symbol "\\" denotes a hyphenation of a number to the
  next line.  For example, the notation:

     12345\\
     67890

     0x499602D2

  represents 1234567890 in decimal and hexadecimal number systems,
  respectively.

7.1.  The Digital Signature Scheme Parameters

  The following parameters must be used for the digital signature
  generation and verification (see Section 5.2).






Dolmatov                      Informational                    [Page 14]

RFC 5832                    GOST R 34.10-2001                 March 2010


7.1.1.  Elliptic Curve Modulus

  The following value is assigned to parameter p in this example:

  p= 57896044618658097711785492504343953926\\
  634992332820282019728792003956564821041

  p = 0x8000000000000000000000000000\\
  000000000000000000000000000000000431

7.1.2.  Elliptic Curve Coefficients

  Parameters a and b take the following values in this example:

  a = 7
  a = 0x7

  b = 43308876546767276905765904595650931995\\
  942111794451039583252968842033849580414

  b = 0x5FBFF498AA938CE739B8E022FBAFEF40563\\
  F6E6A3472FC2A514C0CE9DAE23B7E

7.1.3.  Elliptic Curve Points Group Order

  Parameter m takes the following value in this example:

  m = 5789604461865809771178549250434395392\\
  7082934583725450622380973592137631069619

  m = 0x80000000000000000000000000000\\
  00150FE8A1892976154C59CFC193ACCF5B3

7.1.4.  Order of Cyclic Subgroup of Elliptic Curve Points Group

  Parameter q takes the following value in this example:

  q = 5789604461865809771178549250434395392\\
  7082934583725450622380973592137631069619

  q = 0x80000000000000000000000000000001\\
  50FE8A1892976154C59CFC193ACCF5B3









Dolmatov                      Informational                    [Page 15]

RFC 5832                    GOST R 34.10-2001                 March 2010


7.1.5.  Elliptic Curve Point Coordinates

  Point P coordinates take the following values in this example:

  x_p = 2
  x_p = 0x2

  y_p = 40189740565390375033354494229370597\\
  75635739389905545080690979365213431566280

  y_p = 0x8E2A8A0E65147D4BD6316030E16D19\\
  C85C97F0A9CA267122B96ABBCEA7E8FC8

7.1.6.  Signature Key

  It is supposed, in this example, that the user has the following
  signature key d:

  d = 554411960653632461263556241303241831\\
  96576709222340016572108097750006097525544

  d = 0x7A929ADE789BB9BE10ED359DD39A72C\\
  11B60961F49397EEE1D19CE9891EC3B28

7.1.7.  Verification Key

  It is supposed, in this example, that the user has the verification
  key Q with the following coordinate values:

  x_q = 57520216126176808443631405023338071\\
  176630104906313632182896741342206604859403

  x_q = 0x7F2B49E270DB6D90D8595BEC458B5\\
  0C58585BA1D4E9B788F6689DBD8E56FD80B

  y_q = 17614944419213781543809391949654080\\
  031942662045363639260709847859438286763994

  y_q = 0x26F1B489D6701DD185C8413A977B3\\
  CBBAF64D1C593D26627DFFB101A87FF77DA

7.2.  Digital Signature Process (Algorithm I)

  Suppose that after steps 1-3, according to Algorithm I (Section 6.1),
  are performed, the following numerical values are obtained:

  e = 2079889367447645201713406156150827013\\
  0637142515379653289952617252661468872421



Dolmatov                      Informational                    [Page 16]

RFC 5832                    GOST R 34.10-2001                 March 2010


  e = 0x2DFBC1B372D89A1188C09C52E0EE\\
  C61FCE52032AB1022E8E67ECE6672B043EE5

  k = 538541376773484637314038411479966192\\
  41504003434302020712960838528893196233395

  k = 0x77105C9B20BCD3122823C8CF6FCC\\
  7B956DE33814E95B7FE64FED924594DCEAB3

  And the multiple point C = k * P has the coordinates:

  x_C = 297009809158179528743712049839382569\\
  90422752107994319651632687982059210933395

  x_C = 0x41AA28D2F1AB148280CD9ED56FED\\
  A41974053554A42767B83AD043FD39DC0493

  y[C] = 328425352786846634770946653225170845\\
  06804721032454543268132854556539274060910

  y[C] = 0x489C375A9941A3049E33B34361DD\\
  204172AD98C3E5916DE27695D22A61FAE46E

  Parameter r = x_C(mod q) takes the value:

  r = 297009809158179528743712049839382569\\
  90422752107994319651632687982059210933395

  r = 0x41AA28D2F1AB148280CD9ED56FED\\
  A41974053554A42767B83AD043FD39DC0493

  Parameter s = (r*d + k*e)(mod q) takes the value:

  s = 57497340027008465417892531001914703\\
  8455227042649098563933718999175515839552

  s = 0x1456C64BA4642A1653C235A98A602\\
  49BCD6D3F746B631DF928014F6C5BF9C40

7.3.  Verification Process of Digital Signature (Algorithm II)

  Suppose that after steps 1-3, according to Algorithm II (Section
  6.2), are performed, the following numerical value is obtained:

  e = 2079889367447645201713406156150827013\\
  0637142515379653289952617252661468872421





Dolmatov                      Informational                    [Page 17]

RFC 5832                    GOST R 34.10-2001                 March 2010


  e = 0x2DFBC1B372D89A1188C09C52E0EE\\
  C61FCE52032AB1022E8E67ECE6672B043EE5

  And the parameter v = e^(-1) (mod q) takes the value:

  v = 176866836059344686773017138249002685\\
  62746883080675496715288036572431145718978

  v = 0x271A4EE429F84EBC423E388964555BB\\
  29D3BA53C7BF945E5FAC8F381706354C2

  The parameters z1 = s*v(mod q) and z2 = -r*v(mod q) take the values:

  z1 = 376991675009019385568410572935126561\\
  08841345190491942619304532412743720999759

  z1 = 0x5358F8FFB38F7C09ABC782A2DF2A\\
  3927DA4077D07205F763682F3A76C9019B4F

  z2 = 141719984273434721125159179695007657\\
  6924665583897286211449993265333367109221

  z2 = 0x3221B4FBBF6D101074EC14AFAC2D4F7\\
  EFAC4CF9FEC1ED11BAE336D27D527665

  The point C = z1*P + z2*Q has the coordinates:

  x_C = 2970098091581795287437120498393825699\\
  0422752107994319651632687982059210933395

  x_C = 0x41AA28D2F1AB148280CD9ED56FED\\
  A41974053554A42767B83AD043FD39DC0493

  y[C] = 3284253527868466347709466532251708450\\
  6804721032454543268132854556539274060910

  y[C] = 0x489C375A9941A3049E33B34361DD\\
  204172AD98C3E5916DE27695D22A61FAE46E

  Then the parameter R = x_C (mod q) takes the value:

  R = 2970098091581795287437120498393825699\\
  0422752107994319651632687982059210933395

  R = 0x41AA28D2F1AB148280CD9ED56FED\\
  A41974053554A42767B83AD043FD39DC0493

  Since the equality R = r holds, the digital signature is accepted.



Dolmatov                      Informational                    [Page 18]

RFC 5832                    GOST R 34.10-2001                 March 2010


8.  Security Considerations

  This entire document is about security considerations.

  Current cryptographic resistance of GOST R 34.10-2001 digital
  signature algorithm is estimated as 2^128 operations of multiple
  elliptic curve point computations on prime modulus of order 2^256.

9.  References

9.1.  Normative References

  [GOST3410]       "Information technology.  Cryptographic data
                   security.  Signature and verification processes of
                   [electronic] digital signature.", GOST R 34.10-2001,
                   Gosudarstvennyi Standard of Russian Federation,
                   Government Committee of Russia for Standards, 2001.
                   (In Russian)

  [GOST3411]       "Information technology.  Cryptographic Data
                   Security.  Hashing function.", GOST R 34.10-94,
                   Gosudarstvennyi Standard of Russian Federation,
                   Government Committee of Russia for Standards, 1994.
                   (In Russian)

  [RFC4357]        Popov, V., Kurepkin, I., and S. Leontiev,
                   "Additional Cryptographic Algorithms for Use with
                   GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001,
                   and GOST R 34.11-94 Algorithms", RFC 4357, January
                   2006.

9.2.  Informative References

  [ISO2382-2]      ISO 2382-2 (1976), "Data processing - Vocabulary -
                   Part 2: Arithmetic and logic operations".

  [ISO9796-1991]   ISO/IEC 9796:1991, "Information technology --
                   Security techniques -- Digital signature schemes
                   giving message recovery."

  [ISO14888-1]     ISO/IEC 14888-1 (1998), "Information technology -
                   Security techniques - Digital signatures with
                   appendix - Part 1: General".

  [ISO14888-2]     ISO/IEC 14888-2 (1999), "Information technology -
                   Security techniques - Digital signatures with
                   appendix - Part 2: Identity-based mechanisms".




Dolmatov                      Informational                    [Page 19]

RFC 5832                    GOST R 34.10-2001                 March 2010


  [ISO14888-3]     ISO/IEC 14888-3 (1998), "Information technology -
                   Security techniques - Digital signatures with
                   appendix - Part 3: Certificate-based mechanisms".

  [ISO10118-1]     ISO/IEC 10118-1 (2000), "Information technology -
                   Security techniques - Hash-functions - Part 1:
                   General".

  [ISO10118-2]     ISO/IEC 10118-2 (2000), "Information technology -
                   Security techniques - Hash-functions - Part 2: Hash-
                   functions using an n-bit block cipher algorithm".

  [ISO10118-3]     ISO/IEC 10118-3 (2004), "Information technology -
                   Security techniques - Hash-functions - Part 3:
                   Dedicated hash-functions".

  [ISO10118-4]     ISO/IEC 10118-4 (1998), "Information technology -
                   Security techniques - Hash-functions - Part 4: Hash-
                   functions using modular arithmetic".
































Dolmatov                      Informational                    [Page 20]

RFC 5832                    GOST R 34.10-2001                 March 2010


Appendix A.  Extra Terms in the Digital Signature Area

  The appendix gives extra international terms applied in the
  considered and allied areas.

  1. Padding: Extending a data string with extra bits [ISO10118-1].

  2. Identification data: A list of data elements, including specific
     object identifier, that belongs to the object and is used for its
     denotation [ISO14888-1].

  3. Signature equation: An equation, defined by the digital signature
     function [ISO14888-1].

  4. Verification function: A verification process function, defined by
     the verification key, which outputs a witness of the signature
     authenticity [ISO14888-1].

  5. Signature function: A function within a signature generation
     process, defined by the signature key and by the digital signature
     scheme parameters.  This function inputs a part of initial data
     and, probably, a pseudo-random number sequence generator
     (randomizer), and outputs the second part of the digital
     signature.



























Dolmatov                      Informational                    [Page 21]

RFC 5832                    GOST R 34.10-2001                 March 2010


Appendix B.  Contributors

  Dmitry Kabelev
  Cryptocom, Ltd.
  14 Kedrova St., Bldg. 2
  Moscow, 117218
  Russian Federation

  EMail: [email protected]


  Igor Ustinov
  Cryptocom, Ltd.
  14 Kedrova St., Bldg. 2
  Moscow, 117218
  Russian Federation

  EMail: [email protected]


  Sergey Vyshensky
  Moscow State University
  Leninskie gory, 1
  Moscow, 119991
  Russian Federation

  EMail: [email protected]

Author's Address

  Vasily Dolmatov, Ed.
  Cryptocom, Ltd.
  14 Kedrova St., Bldg. 2
  Moscow, 117218
  Russian Federation

  EMail: [email protected]














Dolmatov                      Informational                    [Page 22]