Internet Engineering Task Force (IETF)                     J. Hadi Salim
Request for Comments: 5811                             Mojatatu Networks
Category: Standards Track                                       K. Ogawa
ISSN: 2070-1721                                          NTT Corporation
                                                             March 2010


           SCTP-Based Transport Mapping Layer (TML) for the
     Forwarding and Control Element Separation (ForCES) Protocol

Abstract

  This document defines the SCTP-based TML (Transport Mapping Layer)
  for the ForCES (Forwarding and Control Element Separation) protocol.
  It explains the rationale for choosing the SCTP (Stream Control
  Transmission Protocol) and also describes how this TML addresses all
  the requirements required by and the ForCES protocol.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5811.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





Hadi Salim & Ogawa           Standards Track                    [Page 1]

RFC 5811                     ForCES SCTP TML                  March 2010


  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................3
  2. Definitions .....................................................3
  3. Protocol Framework Overview .....................................4
     3.1. The PL .....................................................5
     3.2. The TML ....................................................5
          3.2.1. TML and PL Interfaces ...............................5
          3.2.2. TML Parameterization ................................6
  4. SCTP TML Overview ...............................................7
     4.1. Rationale for Using SCTP for TML ...........................7
     4.2. Meeting TML Requirements ...................................8
          4.2.1. SCTP TML Channels ...................................9
          4.2.2. Satisfying TML Requirements ........................14
  5. SCTP TML Channel Work ..........................................16
  6. IANA Considerations ............................................16
  7. Security Considerations ........................................17
     7.1. IPsec Usage ...............................................17
          7.1.1. SAD and SPD Setup ..................................18
  8. Acknowledgements ...............................................18
  9. References .....................................................19
     9.1. Normative References ......................................19
     9.2. Informative References ....................................20
  Appendix A.  Suggested SCTP TML Channel Work Implementation .......21
    A.1.  SCTP TML Channel Initialization ...........................21
    A.2.  Channel Work Scheduling ...................................21
      A.2.1.  FE Channel Work Scheduling ............................21
      A.2.2.  CE Channel Work Scheduling ............................22
    A.3.  SCTP TML Channel Termination ..............................23
    A.4.  SCTP TML NE-Level Channel Scheduling ......................23
  Appendix B.  Suggested Service Interface ..........................24
    B.1.  TML Bootstrapping .........................................24
    B.2.  TML Shutdown ..............................................26
    B.3.  TML Sending and Receiving .................................27





Hadi Salim & Ogawa           Standards Track                    [Page 2]

RFC 5811                     ForCES SCTP TML                  March 2010


1.  Introduction

  The ForCES (Forwarding and Control Element Separation) working group
  in the IETF defines the architecture and protocol for separation of
  control elements (CEs) and forwarding elements (FEs) in network
  elements (NEs) such as routers.  [RFC3654] and [RFC3746],
  respectively, define architectural and protocol requirements for the
  communication between CEs and FEs.  The ForCES protocol layer
  specification [RFC5810] describes the protocol semantics and
  workings.  The ForCES protocol layer operates on top of an inter-
  connect hiding layer known as the TML.  The relationship is
  illustrated in Figure 1.

  This document defines the SCTP-based TML for the ForCES protocol
  layer.  It also addresses all the requirements for the TML including
  security, reliability, and etc., as defined in [RFC5810].

2.  Definitions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The following definitions are taken from [RFC3654] and [RFC3746]:

  LFB:              Logical Functional Block.  A template that
                    represents a fine-grained, logically separate
                    aspect of FE processing.

  ForCES Protocol:  The protocol used at the Fp reference point in the
                    ForCES Framework in [RFC3746].

  ForCES PL:        ForCES Protocol Layer.  A layer in the ForCES
                    architecture that embodies the ForCES protocol and
                    the state transfer mechanisms as defined in
                    [RFC5810].

  ForCES TML:       ForCES Protocol Transport Mapping Layer.  A layer
                    in the ForCES protocol architecture that
                    specifically addresses the protocol message
                    transportation issues, such as how the protocol
                    messages are mapped to different transport media
                    (like SCTP, IP, TCP, UDP, ATM, Ethernet, etc.), and
                    how to achieve and implement reliability, security,
                    etc.






Hadi Salim & Ogawa           Standards Track                    [Page 3]

RFC 5811                     ForCES SCTP TML                  March 2010


3.  Protocol Framework Overview

  The reader is referred to the Framework document [RFC3746], and in
  particular Sections 3 and 4, for an architectural overview and
  explanation of where and how the ForCES protocol fits in.

  There is some content overlap between the ForCES protocol
  specification [RFC5810] and this section (Section 3) in order to
  provide basic context to the reader of this document.

  The ForCES protocol layering constitutes two pieces, the PL and TML.
  This is depicted in Figure 1.

              +----------------------------------------------+
              |                    CE PL                     |
              +----------------------------------------------+
              |                    CE TML                    |
              +----------------------------------------------+
                                     ^
                                     |
                          ForCES PL  |messages
                                     |
                                     v
              +-----------------------------------------------+
              |                   FE TML                      |
              +-----------------------------------------------+
              |                   FE PL                       |
              +-----------------------------------------------+

              Figure 1: Message Exchange between CE and FE
                     to Establish an NE Association

  The PL is in charge of the ForCES protocol.  Its semantics and
  message layout are defined in [RFC5810].  The TML is necessary to
  connect two ForCES endpoints as shown in Figure 1.

  Both the PL and TML are standardized by the IETF.  While only one PL
  is defined, different TMLs are expected to be standardized.  The TML
  at each of the nodes (CE and FE) is expected to be of the same
  definition in order to inter-operate.

  When transmitting from a ForCES endpoint, the PL delivers its
  messages to the TML.  The TML then delivers the PL message to the
  destination TML(s).

  On reception of a message, the TML delivers the message to its
  destination PL (as described in the ForCES header).




Hadi Salim & Ogawa           Standards Track                    [Page 4]

RFC 5811                     ForCES SCTP TML                  March 2010


3.1.  The PL

  The PL is common to all implementations of ForCES and is standardized
  by the IETF [RFC5810].  The PL is responsible for associating an FE
  or CE to an NE.  It is also responsible for tearing down such
  associations.

  An FE may use the PL to asynchronously send packets to the CE.  The
  FE may redirect various control protocol packets (e.g., OSPF, etc.)
  to the CE via the PL (from outside the NE).  Additionally, the FE
  delivers various events that the CE has subscribed to via the PL
  [RFC5812].

  The CE and FE may interact synchronously via the PL.  The CE issues
  status requests to the FE and receives responses via the PL.  The CE
  also configures the components of the associated FE's LFBs using the
  PL [RFC5812].

3.2.  The TML

  The TML is responsible for the transport of the PL messages.
  [RFC5810], Section 5 defines the requirements that need to be met by
  a TML specification.  The SCTP TML specified in this document meets
  all the requirements specified in [RFC5810], Section 5.
  Section 4.2.2 of this document describes how the TML requirements are
  met.

3.2.1.  TML and PL Interfaces

  There are two interfaces to the PL and TML.  The specification of
  these interfaces is out of scope for this document, but the
  interfaces are introduced to show how they fit into the architecture
  and summarize the function provided at the interfaces.  The first
  interface is between the PL and TML and the other is the CE Manager
  (CEM)/FE Manager (FEM) [RFC3746] interface to both the PL and TML.
  Both interfaces are shown in Figure 2.















Hadi Salim & Ogawa           Standards Track                    [Page 5]

RFC 5811                     ForCES SCTP TML                  March 2010


                     +----------------------------+
                     |  +----------------------+  |
                     |  |                      |  |
    +---------+      |  |          PL          |  |
    |         |      |  +----------------------+  |
    |FEM/CEM  |<---->|             ^              |
    |         |      |             |              |
    +---------+      |             |TML API       |
                     |             |              |
                     |             V              |
                     |  +----------------------+  |
                     |  |                      |  |
                     |  |          TML         |  |
                     |  |                      |  |
                     |  +----------------------+  |
                     +----------------------------+

                     Figure 2: The TML-PL Interface

  The CEM/FEM [RFC3746] interface is responsible for bootstrapping and
  parameterization of the TML.  In its most basic form, the CEM/FEM
  interface takes the form of a simple static config file that is read
  on startup in the pre-association phase.

  Appendix B discusses the service interfaces in more detail.

3.2.2.  TML Parameterization

  It is expected that it should be possible to use a configuration
  reference point, such as the FEM or the CEM, to configure the TML.

  Some of the configured parameters may include:

  o  PL ID

  o  Connection Type and associated data.  For example, if a TML uses
     IP/SCTP, then parameters such as SCTP ports and IP addresses need
     to be configured.

  o  Number of transport connections

  o  Connection Capability, such as bandwidth, etc.

  o  Allowed/Supported Connection Quality of Service (QoS) Policy (or
     Congestion Control Policy)






Hadi Salim & Ogawa           Standards Track                    [Page 6]

RFC 5811                     ForCES SCTP TML                  March 2010


4.  SCTP TML Overview

  SCTP [RFC4960] is an end-to-end transport protocol that is equivalent
  to TCP, UDP, or DCCP in many aspects.  With a few exceptions, SCTP
  can do most of what UDP, TCP, or DCCP can achieve.  SCTP as can also
  do most of what a combination of the other transport protocols can
  achieve (e.g., TCP and DCCP or TCP and UDP).

  Like TCP, it provides ordered, reliable, connection-oriented, flow-
  controlled, congestion-controlled data exchange.  Unlike TCP, it does
  not provide byte streaming and instead provides message boundaries.

  Like UDP, it can provide unreliable, unordered data exchange.  Unlike
  UDP, it does not provide multicast support

  Like DCCP, it can provide unreliable, ordered, congestion controlled,
  connection-oriented data exchange.

  SCTP also provides other services that none of the three transport
  protocols mentioned above provide that we found attractive.  These
  include:

  o  Multi-homing

  o  Runtime IP address binding

  o  A range of reliability shades with congestion control

  o  Built-in heartbeats

  o  Multi-streaming

  o  Message boundaries with reliability

  o  Improved SYN DOS protection

  o  Simpler transport events

  o  Simplified replicasting

4.1.  Rationale for Using SCTP for TML

  SCTP has all the features required to provide a robust TML.  As a
  transport that is all-encompassing, it negates the need for having
  multiple transport protocols in order to satisfy the TML requirements
  ([RFC5810], Section 5).  As a result, it allows for simpler coding
  and therefore reduces a lot of the interoperability concerns.




Hadi Salim & Ogawa           Standards Track                    [Page 7]

RFC 5811                     ForCES SCTP TML                  March 2010


  SCTP is also very mature and widely used, making it a good choice for
  ubiquitous deployment.

4.2.  Meeting TML Requirements

                 PL
                 +----------------------+
                 |                      |
                 +-----------+----------+
                             |   TML API
                  TML        |
                 +-----------+----------+
                 |           |          |
                 |    +------+------+   |
                 |    |  TML core   |   |
                 |    +-+----+----+-+   |
                 |      |    |    |     |
                 |    SCTP socket API   |
                 |      |    |    |     |
                 |      |    |    |     |
                 |    +-+----+----+-+   |
                 |    |    SCTP     |   |
                 |    +------+------+   |
                 |           |          |
                 |           |          |
                 |    +------+------+   |
                 |    |      IP     |   |
                 |    +-------------+   |
                 +----------------------+


            Figure 3: The TML-SCTP Interface

  Figure 3 details the interfacing between the PL and SCTP TML and the
  internals of the SCTP TML.  The core of the TML interacts on its
  northbound interface to the PL (utilizing the TML API).  On the
  southbound interface, the TML core interfaces to the SCTP layer
  utilizing the standard socket interface [TSVWG-SCTPSOCKET].  There
  are three SCTP socket connections opened between any two PL endpoints
  (whether FE or CE).











Hadi Salim & Ogawa           Standards Track                    [Page 8]

RFC 5811                     ForCES SCTP TML                  March 2010


4.2.1.  SCTP TML Channels

                 +--------------------+
                 |                    |
                 |     TML   core     |
                 |                    |
                 +-+-------+--------+-+
                   |       |        |
                   |   Med prio,    |
                   |  Semi-reliable |
                   |    channel     |
                   |       |      Low prio,
                   |       |      Unreliable
                   |       |      channel
                   |       |        |
                   ^       ^        ^
                   |       |        |
                   Y       Y        Y
         High prio,|       |        |
          reliable |       |        |
           channel |       |        |
                   Y       Y        Y
                +-+--------+--------+-+
                |                     |
                |        SCTP         |
                |                     |
                +---------------------+

             Figure 4: The TML-SCTP Channels

  Figure 4 details further the interfacing between the TML core and
  SCTP layers.  There are three channels used to group and prioritize
  the work for different types of ForCES traffic.  Each channel
  constitutes an SCTP socket interface that has different properties.
  It should be noted that all SCTP channels are congestion aware (and
  for that reason that detail is left out of the description of the
  three channels).  SCTP ports 6704, 6705, and 6706 are used for the
  higher-, medium-, and lower-priority channels, respectively.  SCTP
  Payload Protocol ID (PPID) values of 21, 22, and 23 are used for the
  higher-, medium-, and lower-priority channels, respectively.

4.2.1.1.  Justifying Choice of Three Sockets

  SCTP allows up to 64 K streams to be sent over a single socket
  interface.  The authors initially envisioned using a single socket
  for all three channels (mapping a channel to an SCTP stream).  This
  simplifies programming of the TML as well as conserves use of SCTP
  ports.



Hadi Salim & Ogawa           Standards Track                    [Page 9]

RFC 5811                     ForCES SCTP TML                  March 2010


  Further analysis revealed head-of-line blocking issues with this
  initial approach.  Lower-priority packets not needing reliable
  delivery could block higher-priority packets (needing reliable
  delivery) under congestion situations for an indeterminate period of
  time (depending on how many outstanding lower-priority packets are
  pending).  For this reason, we elected to go with mapping each of the
  three channels to a different SCTP socket (instead of a different
  stream within a single socket).

4.2.1.2.  Higher-Priority, Reliable Channel

  The higher-priority (HP) channel uses a standard SCTP reliable socket
  on port 6704.  SCTP PPID 21 is used for all messages on the HP
  channel.  The HP channel is used for CE-solicited messages and their
  responses:

  1.  ForCES configuration messages flowing from CE to FE and responses
      from the FE to CE.

  2.  ForCES query messages flowing from CE to FE and responses from
      the FE to the CE.

  PL priorities 4-7 MUST be used for all PL messages using this
  channel.  The following PL messages MUST use the HP channel for
  transport:

  o  AssociationSetup (default priority: 7)

  o  AssociationSetupResponse (default priority: 7)

  o  AssociationTeardown (default priority: 7)

  o  Config (default priority: 4)

  o  ConfigResponse (default priority: 4)

  o  Query (default priority: 4)

  o  QueryResponse (default priority: 4)

  If PL priorities outside of the specified range priority (4-7), PPID,
  or PL message types other than the above are received on the HP
  channel, then the PL message MUST be dropped.

  Although an implementation may choose different values from the
  defined range (4-7), it is RECOMMENDED that default priorities be
  used.  A response to a ForCES message MUST contain the same priority




Hadi Salim & Ogawa           Standards Track                   [Page 10]

RFC 5811                     ForCES SCTP TML                  March 2010


  as the request.  For example, a config sent by the CE with priority 5
  MUST have a config-response from the FE with priority 5.

4.2.1.3.  Medium-Priority, Semi-Reliable Channel

  The medium-priority (MP) channel uses SCTP-PR on port 6705.  SCTP
  PPID 22 MUST be used for all messages on the MP channel.  Time limits
  on how long a message is valid are set on each outgoing message.
  This channel is used for events from the FE to the CE that are
  obsoleted over time.  Events that are accumulative in nature and are
  recoverable by the CE (by issuing a query to the FE) can tolerate
  lost events and therefore should use this channel.  For example, a
  generated event that carries the value of a counter that is
  monotonically incrementing is fit to use this channel.

  PL priority 3 MUST be used for PL messages on this channel.  The
  following PL messages MUST use the MP channel for transport:

  o  Event Notification (default priority: 3)

  If PL priorities outside of the specified priority, PPID, or PL
  message type other than the above are received on the MP channel,
  then the PL message MUST be dropped.

4.2.1.4.  Lower-Priority, Unreliable Channel

  The lower-priority (LP) channel uses SCTP port 6706.  SCTP PPID 23 is
  used for all messages on the LP channel.  The LP channel also MUST
  use SCTP-PR with lower timeout values than the MP channel.  The
  reason an unreliable channel is used for redirect messages is to
  allow the control protocol at both the CE and its peer-endpoint to
  take charge of how the end-to-end semantics of the said control
  protocol's operations.  For example:

  1.  Some control protocols are reliable in nature, therefore making
      this channel reliable introduces an extra layer of reliability
      that could be harmful.  So any end-to-end retransmits will happen
      remotely.

  2.  Some control protocols may desire having obsolescence of messages
      over retransmissions; making this channel reliable contradicts
      that desire.

  Given ForCES PL heartbeats are traffic sensitive, sending them over
  the LP channel also makes sense.  If the other end is not processing
  other channels, it will eventually get heartbeats; and if it is busy
  processing other channels, heartbeats will be obsoleted locally over
  time (and it does not matter if they did not make it).



Hadi Salim & Ogawa           Standards Track                   [Page 11]

RFC 5811                     ForCES SCTP TML                  March 2010


  PL priorities 1-2 MUST be used for PL messages on this channel.  PL
  messages that MUST use the MP channel for transport are:

  o  PacketRedirect (default priority: 2)

  o  Heartbeat (default priority: 1)

  If PL priorities outside of the specified priority range, PPID, or PL
  message types other than the above are received on the LP channel,
  then the PL message MUST be dropped.

4.2.1.5.  Scheduling of the Three Channels

  In processing the sending and receiving of the PL messages, the TML
  core uses strict priority work-conserving scheduling, as shown in
  Figure 5.

  This means that the HP messages are always processed first until
  there are no more left.  The LP channel is processed only if channels
  that are a higher priority than itself have no messages left to
  process.  This means that under a congestion situation, a higher-
  priority channel with sufficient messages that occupy the available
  bandwidth would starve lower-priority channel(s).

  The design intent of the SCTP TML is to tie processing
  prioritization, as described in Section 4.2.1.1, and transport
  congestion control to provide implicit node congestion control.  This
  is further detailed in Appendix A.2.

  It should be emphasized that the work scheduling prioritization
  scheme prescribed in this document is receiver-based processing.
  Fully arrived packets on any of the channels are a source of work
  whose output may result in transmitted packets.  However, we have no
  control on the order in which the SCTP/OS/network chooses to send
  transmitted packets across and make them available to the receiver.
  This is a limitation that we try to ameliorate by our choice of
  channel properties, ForCES message grouping, and the tying of CE and
  FE work scheduling.  While that helps us ameliorate some of these
  issues, it does not fully resolve all.

  From a ForCES perspective, we can tolerate some reordering.  For
  example, if an FE transmits a config response (HP) followed by 10000
  OSPF redirect packets (LP) and the CE gets 5 OSPF redirects (LP)
  first before the config response (HP), that is tolerable.  What
  matters is the CE gets to processing the HP message soon (instead of
  sitting in long periods of time processing OSPF packets that would
  have happened if we use a single socket with three streams).  This is




Hadi Salim & Ogawa           Standards Track                   [Page 12]

RFC 5811                     ForCES SCTP TML                  March 2010


  particularly important in order to deal with node overload well, as
  discussed in Section 4.2.2.6.

         SCTP channel            +----------+
         Work available          |   DONE   +---<--<--+
             |                   +---+------+         |
             Y                                        ^
             |         +-->--+         +-->---+       |
     +-->-->-+         |     |         |      |       |
     |       |         |     |         |      |       ^
     |       ^         ^     v         ^      v       |
     ^      / \        |     |         |      |       |
     |     /   \       |     ^         |      ^       ^
     |    / Is  \      |    / \        |     / \      |
     |   / there \     |   /Is \       |    /Is \     |
     ^  / HP work \    ^  /there\      ^   /there\    ^
     |  \    ?    /    | /MP work\     |  /LP work\   |
     |   \       /     | \    ?  /     |  \   ?   /   |
     |    \     /      |  \     /      |   \     /    ^
     |     \   /       ^   \   /       ^    \   /     |
     |      \ /        |    \ /        |     \ /      |
     ^       Y-->-->-->+     Y-->-->-->+      Y->->->-+
     |       |    NO         |    NO          |  NO
     |       |               |                |
     |       Y               Y                Y
     |       | YES           | YES            | YES
     ^       |               |                |
     |       Y               Y                Y
     |  +----+------+    +---|-------+   +----|------+
     |  |- process  |    |- process  |   |- process  |
     |  |  HP work  |    |  MP work  |   | LP work   |
     |  +------+----+    +-----+-----+   +-----+-----+
     |         |               |               |
     ^         Y               Y               Y
     |         |               |               |
     |         Y               Y               Y
     +--<--<---+--<--<----<----+-----<---<-----+

           Figure 5: SCTP TML Strict Priority Scheduling

4.2.1.6.  SCTP TML Parameterization

  The following is a list of parameters needed for booting the TML.  It
  is expected these parameters will be extracted via the FEM/CEM
  interface for each PL ID.

  1.  The IP address(es) or a resolvable DNS/hostname(s) of the CE/FE.




Hadi Salim & Ogawa           Standards Track                   [Page 13]

RFC 5811                     ForCES SCTP TML                  March 2010


  2.  Whether or not to use IPsec.  If IPsec is used, how to
      parameterize the different required ciphers, keys, etc., as
      described in Section 7.1

  3.  The HP SCTP port, as discussed in Section 4.2.1.2.  The default
      HP port value is 6704 (Section 6).

  4.  The MP SCTP port, as discussed in Section 4.2.1.3.  The default
      MP port value is 6705 (Section 6).

  5.  The LP SCTP port, as discussed in Section 4.2.1.4.  The default
      LP port value is 6706 (Section 6).

4.2.2.  Satisfying TML Requirements

  [RFC5810], Section 5 lists requirements that a TML needs to meet.
  This section describes how the SCTP TML satisfies those requirements.

4.2.2.1.  Satisfying Reliability Requirement

  As mentioned earlier, a shade of reliability ranges is possible in
  SCTP.  Therefore, this requirement is met.

4.2.2.2.  Satisfying Congestion Control Requirement

  Congestion control is built into SCTP.  Therefore, this requirement
  is met.

4.2.2.3.  Satisfying Timeliness and Prioritization Requirement

  By using three sockets in conjunction with the partial-reliability
  feature [RFC3758], both timeliness and prioritization requirements
  are addressed.

4.2.2.4.  Satisfying Addressing Requirement

  There are no extra headers required for SCTP to fulfill this
  requirement.  SCTP can be told to replicast packets to multiple
  destinations.  The TML implementation will need to translate PL
  addresses to a variety of unicast IP addresses in order to emulate
  multicast and broadcast PL addresses.

4.2.2.5.  Satisfying High-Availability Requirement

  Transport link resiliency is one of SCTP's strongest points.  Failure
  detection and recovery is built in, as mentioned earlier.





Hadi Salim & Ogawa           Standards Track                   [Page 14]

RFC 5811                     ForCES SCTP TML                  March 2010


  o  The SCTP multi-homing feature is used to provide path diversity.
     Should one of the peer IP addresses become unreachable, the others
     are used without needing lower-layer convergence (routing, for
     example) or even the TML becoming aware.

  o  SCTP heartbeats and data transmission thresholds are used on a
     per-peer IP address to detect reachability faults.  The faults
     could be a result of an unreachable address or peer, which may be
     caused by a variety of reasons, like interface, network, or
     endpoint failures.  The cause of the fault is noted.

  o  With the ADDIP feature, one can migrate IP addresses to other
     nodes at runtime.  This is not unlike the Virtual Router
     Redundancy Protocol (VRRP) [RFC5798] use.  This feature is used in
     addition to multi-homing in a planned migration of activity from
     one FE/CE to another.  In such a case, part of the provisioning
     recipe at the CE for replacing an FE involves migrating activity
     of one FE to another.

4.2.2.6.  Satisfying Node Overload Prevention Requirement

  The architecture of this TML defines three separate channels, one per
  socket, to be used within any FE-CE setup.  The work scheduling
  design for processing the TML channels (Section 4.2.1.5) is a strict
  priority.  A fundamental desire of the strict prioritization is to
  ensure that more important processing work always gets node resources
  over less important work.

  When a ForCES node CPU is overwhelmed because the incoming packet
  rate is higher than it can keep up with, the channel queues grow and
  transport congestion subsequently follows.  By virtue of using SCTP,
  the congestion is propagated back to the source of the incoming
  packets and eventually alleviated.

  The HP channel work gets prioritized at the expense of the MP, which
  gets prioritized over LP channels.  The preferential scheduling only
  kicks in when there is node overload regardless of whether there is
  transport congestion.  As a result of the preferential work
  treatment, the ForCES node achieves a robust steady processing
  capacity.  Refer to Appendix A.2 for details on scheduling.

  For an example of how the overload prevention works, consider a
  scenario where an overwhelming amount of redirected packets (from
  outside the NE) coming into the NE may overload the FE while it has
  outstanding config work from the CE.  In such a case, the FE, while
  it is busy processing config requests from the CE, essentially
  ignores processing the redirect packets on the LP channel.  If enough
  redirect packets accumulate, they are dropped either because the LP



Hadi Salim & Ogawa           Standards Track                   [Page 15]

RFC 5811                     ForCES SCTP TML                  March 2010


  channel threshold is exceeded or because they are obsoleted.  If on
  the other hand, the FE has successfully processed the higher-priority
  channels and their related work, then it can proceed and process the
  LP channel.  So as demonstrated in this case, the TML ties transport
  congestion and node overload implicitly together.

4.2.2.7.  Satisfying Encapsulation Requirement

  The SCTP TML sets SCTP PPIDs to identify channels used as described
  in Section 4.2.1.1.

5.  SCTP TML Channel Work

  There are two levels of TML channel work within an NE when a ForCES
  node (CE or FE) is connected to multiple other ForCES nodes:

  1.  NE-level I/O work where a ForCES node (CE or FE) needs to choose
      which of the peer nodes to process.

  2.  Node-level I/O work where a ForCES node, handles the three SCTP
      TML channels separately for each single ForCES endpoint.

  NE-level scheduling definition is left up to the implementation and
  is considered out of scope for this document.  Appendix A.4 briefly
  discusses some constraints about which an implementer needs to worry.

  This document provides suggestions on SCTP channel work
  implementation in Appendix A.

  The FE SHOULD do channel connections to the CE in the order of
  incrementing priorities, i.e., LP socket first, followed by MP, and
  ending with HP socket connection.  The CE, however, MUST NOT assume
  that there is ordering of socket connections from any FE.

6.  IANA Considerations

  Following the policies outlined in "Guidelines for Writing an IANA
  Considerations Section in RFCs" [RFC5226], the following namespaces
  are defined in ForCES SCTP TML.

  o  SCTP port 6704 for the HP channel, 6705 for the MP channel, and
     6706 for the LP channel.

  o  SCTP Payload Protocol ID (PPID) 21 for the HP channel (ForCES-HP),
     22 for the MP channel (ForCES-MP), and 23 for the LP channel
     (ForCES-LP).





Hadi Salim & Ogawa           Standards Track                   [Page 16]

RFC 5811                     ForCES SCTP TML                  March 2010


7.  Security Considerations

  The SCTP TML provides the following security services to the PL:

  o  A mechanism to authenticate ForCES CEs and FEs at the transport
     level in order to prevent the participation of unauthorized CEs
     and unauthorized FEs in the control and data path processing of a
     ForCES NE.

  o  A mechanism to ensure message authentication of PL data and
     headers transferred from the CE to FE (and vice versa) in order to
     prevent the injection of incorrect data into PL messages.

  o  A mechanism to ensure the confidentiality of PL data and headers
     transferred from the CE to FE (and vice versa), in order to
     prevent disclosure of PL information transported via the TML.

  Security choices provided by the TML are made by the operator and
  take effect during the pre-association phase of the ForCES protocol.
  An operator may choose to use all, some or none of the security
  services provided by the TML in a CE-FE connection.

  When operating under a secured environment, or for other operational
  concerns (in some cases performance issues) the operator may turn off
  all the security functions between CE and FE.

  IP Security Protocol (IPsec) [RFC4301] is used to provide needed
  security mechanisms.

  IPsec is an IP-level security scheme transparent to the higher-layer
  applications and therefore can provide security for any transport
  layer protocol.  This gives IPsec the advantage that it can be used
  to secure everything between the CE and FE without expecting the TML
  implementation to be aware of the details.

  The IPsec architecture is designed to provide message integrity and
  message confidentiality outlined in the TML security requirements
  [RFC5810].  Mutual authentication and key exchange protocol are
  provided by Internet Key Exchange (IKE) [RFC2409].

7.1.  IPsec Usage

  A ForCES FE or CE MUST support the following:

  o  Internet Key Exchange (IKE)[RFC2409] with certificates for
     endpoint authentication.

  o  Transport Mode Encapsulating Security Payload (ESP) [RFC4303].



Hadi Salim & Ogawa           Standards Track                   [Page 17]

RFC 5811                     ForCES SCTP TML                  March 2010


  o  HMAC-SHA1-96 [RFC2404] for message integrity protection

  o  AES-CBC with 128-bit keys [RFC3602] for message confidentiality.

  o  Replay protection [RFC4301].

  A compliant implementation SHOULD provide operational means for
  configuring the CE and FE to negotiate other cipher suites and even
  use manual keying.

7.1.1.  SAD and SPD Setup

  To minimize the operational configuration, it is RECOMMENDED that
  only the IANA-issued SCTP protocol number (132) be used as a selector
  in the Security Policy Database (SPD) for ForCES.  In such a case,
  only a single SPD and SAD entry is needed.

  Setup MAY alternatively extend the above policy so that it uses the
  three SCTP TML port numbers as SPD selectors.  But as noted above,
  this choice will require an increased number of SPD entries.

  In scenarios where multiple IP addresses are used within a single
  association, and there is desire to configure different policies on a
  per-IP address, then following [RFC3554] is RECOMMENDED.

8.  Acknowledgements

  The authors would like to thank Joel Halpern, Michael Tuxen, Randy
  Stewart, Evangelos Haleplidis, Chuanhuang Li, Lars Eggert, Avshalom
  Houri, Adrian Farrel, Juergen Quittek, Magnus Westerlund, and Pasi
  Eronen for engaging us in discussions that have made this document
  better.

  Ross Callon was an excellent manager who persevered in providing us
  guidance and Joel Halpern was an excellent document shepherd without
  whom this document would have taken longer to publish.















Hadi Salim & Ogawa           Standards Track                   [Page 18]

RFC 5811                     ForCES SCTP TML                  March 2010


9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2404]  Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
             ESP and AH", RFC 2404, November 1998.

  [RFC2409]  Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  [RFC3554]  Bellovin, S., Ioannidis, J., Keromytis, A., and R.
             Stewart, "On the Use of Stream Control Transmission
             Protocol (SCTP) with IPsec", RFC 3554, July 2003.

  [RFC3602]  Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
             Algorithm and Its Use with IPsec", RFC 3602,
             September 2003.

  [RFC3758]  Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
             Conrad, "Stream Control Transmission Protocol (SCTP)
             Partial Reliability Extension", RFC 3758, May 2004.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, December 2005.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, December 2005.

  [RFC4960]  Stewart, R., "Stream Control Transmission Protocol",
             RFC 4960, September 2007.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5810]  Doria, A., Ed., Hadi Salim, J., Ed., HAAS, R., Ed.,
             Khosravi, H., Ed., Wang, W., Ed., Dong, L., Gopal, R., and
             J. Halpern, "Forwarding and Control Element Separation
             (ForCES) Protocol Specification", RFC 5810, March 2010.









Hadi Salim & Ogawa           Standards Track                   [Page 19]

RFC 5811                     ForCES SCTP TML                  March 2010


9.2.  Informative References

  [RFC3654]  Khosravi, H. and T. Anderson, "Requirements for Separation
             of IP Control and Forwarding", RFC 3654, November 2003.

  [RFC3746]  Yang, L., Dantu, R., Anderson, T., and R. Gopal,
             "Forwarding and Control Element Separation (ForCES)
             Framework", RFC 3746, April 2004.

  [RFC5812]  Halpern, J. and J. Hadi Salim, "Forwarding and Control
             Element Separation (ForCES) Forwarding Element Model",
             RFC 5812, March 2010.

  [RFC5798]  Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP)
             Version 3 for IPv4 and IPv6", RFC 5798, March 2010.

  [TSVWG-SCTPSOCKET]
             Stewart, R., Poon, K., Tuexen, M., Yasevich, V., and P.
             Lei, "Sockets API Extensions for Stream Control
             Transmission Protocol (SCTP)", Work in Progress,
             March 2010.






























Hadi Salim & Ogawa           Standards Track                   [Page 20]

RFC 5811                     ForCES SCTP TML                  March 2010


Appendix A.  Suggested SCTP TML Channel Work Implementation

  As mentioned in Section 5, there are two levels of TML channel work
  within an NE when a ForCES node (CE or FE) is connected to multiple
  other ForCES nodes:

  1.  NE-level I/O work where a ForCES node (CE or FE) needs to choose
      which of the peer nodes to process.

  2.  Node-level I/O work where a ForCES node, handles the three SCTP
      TML channels separately for each single ForCES endpoint.

  NE-level scheduling definition is left up to the implementation and
  is considered out of scope for this document.  Appendix A.4 briefly
  discusses some constraints about which an implementer needs to worry.

  This document, and in particular Appendix A.1, Appendix A.2, and
  Appendix A.3 discuss details of node-level I/O work.

A.1.  SCTP TML Channel Initialization

  As discussed in Section 5, it is recommended that the FE SHOULD do
  socket connections to the CE in the order of incrementing priorities,
  i.e., LP socket first, followed by MP, and ending with HP socket
  connection.  The CE, however, MUST NOT assume that there is ordering
  of socket connections from any FE.  Appendix B.1 has more details on
  the expected initialization of SCTP channel work.

A.2.  Channel Work Scheduling

  This section provides high-level details of the scheduling view of
  the SCTP TML core (Section 4.2.1).  A practical scheduler
  implementation takes care of many little details (such as timers,
  work quanta, etc.) not described in this document.  It is left to the
  implementer to take care of those details.

  The CE(s) and FE(s) are coupled together in the principles of the
  scheduling scheme described here to tie together node overload with
  transport congestion.  The design intent is to provide the highest
  possible robust work throughput for the NE under any network or
  processing congestion.

A.2.1.  FE Channel Work Scheduling

  The FE scheduling, in priority order, needs to I/O process:

  1.  The HP channel I/O in the following priority order:




Hadi Salim & Ogawa           Standards Track                   [Page 21]

RFC 5811                     ForCES SCTP TML                  March 2010


      1.  Transmitting back to the CE any outstanding result of
          executed work via the HP channel transmit path.

      2.  Taking new incoming work from the CE that creates ForCES work
          to be executed by the FE.

  2.  ForCES events that result in transmission of unsolicited ForCES
      packets to the CE via the MP channel.

  3.  Incoming Redirect work in the form of control packets that come
      from the CE via LP channel.  After redirect processing, these
      packets get sent out on external (to the NE) interface.

  4.  Incoming Redirect work in the form of control packets that come
      from other NEs via external (to the NE) interfaces.  After some
      processing, such packets are sent to the CE.

  It is worth emphasizing, at this point again, that the SCTP TML
  processes the channel work in strict priority.  For example, as long
  as there are messages to send to the CE on the HP channel, they will
  be processed first until there are no more left before processing the
  next priority work (which is to read new messages on the HP channel
  incoming from the CE).

A.2.2.  CE Channel Work Scheduling

  The CE scheduling, in priority order, needs to deal with:

  1.  The HP channel I/O in the following priority order:

      1.  Process incoming responses to requests of work it made to the
          FE(s).

      2.  Transmit any outstanding HP work it needs the FE(s) to
          complete.

  2.  Incoming ForCES events from the FE(s) via the MP channel.

  3.  Outgoing Redirect work in the form of control packets that get
      sent from the CE via LP channel destined to external (to the NE)
      interface on FE(s).

  4.  Incoming Redirect work in the form of control packets that come
      from other NEs via external interfaces (to the NE) on the FE(s).

  It is worth repeating, for emphasis, that the SCTP TML processes the
  channel work in strict priority.  For example, if there are messages
  incoming from an FE on the HP channel, they will be processed first



Hadi Salim & Ogawa           Standards Track                   [Page 22]

RFC 5811                     ForCES SCTP TML                  March 2010


  until there are no more left before processing the next priority
  work, which is to transmit any outstanding HP channel messages going
  to the FE.

A.3.  SCTP TML Channel Termination

  Appendix B.2 describes a controlled disassociation of the FE from the
  NE.

  It is also possible for connectivity to be lost between the FE and CE
  on one or more sockets.  In cases where SCTP multi-homing features
  are used for path availability, the disconnection of a socket will
  only occur if all paths are unreachable; otherwise, SCTP will ensure
  reachability.  In the situation of a total connectivity loss of even
  one SCTP socket, it is recommended that the FE and CE SHOULD assume a
  state equivalent to ForCES Association Teardown being issued and
  follow the sequence described in Appendix B.2.

  A CE could also disconnect sockets to an FE to indicate an "emergency
  teardown".  The "emergency teardown" may be necessary in cases when a
  CE needs to disconnect an FE but knows that an FE is busy processing
  a lot of outstanding commands (some of which the FE hasn't gotten
  around to processing, yet).  By virtue of the CE closing the
  connections, the FE will immediately be asynchronously notified and
  will not have to process any outstanding commands from the CE.

A.4.  SCTP TML NE-Level Channel Scheduling

  In handling NE-level I/O work, an implementation needs to worry about
  being both fair and robust across peer ForCES nodes.

  Fairness is desired so that each peer node makes progress across the
  NE.  For the sake of illustration, consider two FEs connected to a
  CE; whereas one FE has a few HP messages that need to be processed by
  the CE, another may have infinite HP messages.  The scheduling scheme
  may decide to use a quota scheduling system to ensure that the second
  FE does not hog the CE cycles.

  Robustness is desired so that the NE does not succumb to a Denial-of-
  Service (DoS) attack from hostile entities and always achieves a
  maximum stable workload processing level.  For the sake of
  illustration, consider again two FEs connected to a CE.  Consider FE1
  as having a large number of HP and MP messages and FE2 having a large
  number of MP and LP messages.  The scheduling scheme needs to ensure
  that while FE1 always gets its messages processed, at some point we
  allow FE2 messages to be processed.  A promotion and preemption-based
  scheduling could be used by the CE to resolve this issue.




Hadi Salim & Ogawa           Standards Track                   [Page 23]

RFC 5811                     ForCES SCTP TML                  March 2010


Appendix B.  Suggested Service Interface

  This section outlines a high-level service interface between FEM/CEM
  and TML, the PL and TML, and between local and remote TMLs.  The
  intent of this interface discussion is to provide general guidelines.
  The implementer is expected to care of details and even follow a
  different approach if needed.

  The theory of operation for the PL-TML service is as follows:

  1.  The PL starts up and bootstraps the TML.  The end result of a
      successful TML bootstrap is that the CE TML and the FE TML
      connect to each other at the transport level.

  2.  Transmission and reception of the PL messages commences after a
      successful TML bootstrap.  The PL uses send and receive PL-TML
      interfaces to communicate to its peers.  The TML is agnostic to
      the nature of the messages being sent or received.  The first
      message exchanges that happen are to establish ForCES
      association.  Subsequent messages may be either unsolicited
      events from the FE PL, control message redirects to/from the CE
      to/from FE, or configuration from the CE to the FE, and their
      responses flowing from the FE to the CE.

  3.  The PL does a shutdown of the TML after terminating ForCES
      association.

B.1.  TML Bootstrapping

  Figure 6 illustrates a flow for the TML bootstrapped by the PL.

  When the PL starts up (possibly after some internal initialization),
  it boots up the TML.  The TML first interacts with the FEM/CEM and
  acquires the necessary TML parameterization (Section 4.2.1.6).  Next,
  the TML uses the information it retrieved from the FEM/CEM interface
  to initialize itself.

  The TML on the FE proceeds to connect the three channels to the CE.
  The socket interface is used for each of the channels.  The TML
  continues to re-try the connections to the CE until all three
  channels are connected.  It is advisable that the number of
  connection retry attempts and the time between each retry is also
  configurable via the FEM.  On failure to connect one or more
  channels, and after the configured number of retry thresholds is
  exceeded, the TML will return an appropriate failure indicator to the
  PL.  On success (as shown in Figure 6), a success indication is
  presented to the PL.




Hadi Salim & Ogawa           Standards Track                   [Page 24]

RFC 5811                     ForCES SCTP TML                  March 2010


  FE PL      FE TML           FEM  CEM        CE TML              CE PL
    |            |             |    |            |                    |
    |            |             |    |            |      Bootup        |
    |            |             |    |            |<-------------------|
    |  Bootup    |             |    |            |                    |
    |----------->|             |    |get CEM info|                    |
    |            |get FEM info |    |<-----------|                    |
    |            |------------>|    ~            ~                    |
    |            ~             ~    |----------->|                    |
    |            |<------------|                 |                    |
    |            |                               |-initialize TML     |
    |            |                               |-create the 3 chans.|
    |            |                               | to listen to FEs   |
    |            |                               |                    |
    |            |-initialize TML                |Bootup success      |
    |            |-create the 3 chans. locally   |------------------->|
    |            |-connect 3 chans. remotely     |                    |
    |            |------------------------------>|                    |
    |            ~                               ~ - FE TML connected ~
    |            ~                               ~ - FE TML info init ~
    |            | channels connected            |                    |
    |            |<------------------------------|                    |
    | Bootup     |                               |                    |
    | succeeded  |                               |                    |
    |<-----------|                               |                    |
    |            |                               |                    |

                    Figure 6: SCTP TML Bootstrapping

  On the CE, things are slightly different.  After initializing from
  the CEM, the TML on the CE side proceeds to initialize the three
  channels to listen to remote connections from the FEs.  The success
  or failure indication is passed on to the CE PL (in the same manner
  as was done in the FE).

  Post bootup, the CE TML waits for connections from the FEs.  Upon a
  successful connection by an FE, the CE TML level keeps track of the
  transport-level details of the FE.  Note, at this stage only
  transport-level connection has been established; ForCES-level
  association follows using send/receive PL-TML interfaces (refer to
  Appendix B.3 and Figure 8).










Hadi Salim & Ogawa           Standards Track                   [Page 25]

RFC 5811                     ForCES SCTP TML                  March 2010


B.2.  TML Shutdown

  Figure 7 shows an example of an FE shutting down the TML.  It is
  assumed at this point that the ForCES Association Teardown has been
  issued by the CE.  It should also be noted that different
  implementations may have different procedures for cleaning up state,
  etc.

  When the FE PL issues a shutdown to its TML for a specific PL ID, the
  TML releases all the channel connections to the CE.  This is achieved
  by closing the sockets used to communicate to the CE.  This results
  in the stack sending a SCTP shutdown, which is received on the CE.

  FE PL      FE TML                      CE TML              CE PL
    |            |                         |                    |
    |  Shutdown  |                         |                    |
    |----------->|                         |                    |
    |            |-disconnect 3 chans.     |                    |
    |            |-SCTP level shutdown     |                    |
    |            |------------------------>|                    |
    |            |                         |                    |
    |            |                         |TML detects shutdown|
    |            |                         |-FE TML info cleanup|
    |            |                         |-optionally tell PL |
    |            |                         |------------------->|
    |            |                         |                    |
    |            |- clean up any state of  |                    |
    |            |-channels disconnected   |                    |
    |            |<------------------------|                    |
    |            |-SCTP shutdown ACK       |                    |
    |            |                         |                    |
    | Shutdown   |                         |                    |
    | succeeded  |                         |                    |
    |<-----------|                         |                    |
    |            |                         |                    |

                       Figure 7: FE Shutting Down

  On the CE side, a TML disconnection would result in possible cleanup
  of the FE state.  Optionally, depending on the implementation, there
  may be need to inform the PL about the TML disconnection.  The CE-
  stack-level SCTP sends an acknowledgement to the FE TML in response
  to the earlier SCTP shutdown.








Hadi Salim & Ogawa           Standards Track                   [Page 26]

RFC 5811                     ForCES SCTP TML                  March 2010


B.3.  TML Sending and Receiving

  The TML should be agnostic to the content of the PL messages, or
  their operations.  The PL should provide enough information to the
  TML for it to assign an appropriate priority and loss behavior to the
  message.  Figure 8 shows an example of a message exchange originated
  at the FE and sent to the CE (such as a ForCES association message),
  which illustrates all the necessary service interfaces for sending
  and receiving.

  When the FE PL sends a message to the TML, the TML is expected to
  pick one of HP/MP/LP channels and send out the ForCES message.

  FE PL       FE TML           CE TML                CE PL
     |            |              |                      |
     |PL send     |              |                      |
     |----------->|              |                      |
     |            |              |                      |
     |            |              |                      |
     |            |-pick channel |                      |
     |            |-TML  Send    |                      |
     |            |------------->|                      |
     |            |              |                      |
     |            |              |-TML Receive on chan. |
     |            |              |- mux to PL/PL recv   |
     |            |              |--------------------->|
     |            |              |                      ~
     |            |              |                      ~ PL Process
     |            |              |                      ~
     |            |              |  PL send             |
     |            |              |<---------------------|
     |            |              |-pick chan to send on |
     |            |              |-TML send             |
     |            |<-------------|                      |
     |            |-TML Receive  |                      |
     |            |-mux to PL    |                      |
     | PL Recv    |              |                      |
     |<---------- |              |                      |
     |            |              |                      |

                      Figure 8: Send and Recv Flow

  When the CE TML receives the ForCES message on the channel on which
  it was sent, it demultiplexes the message to the CE PL.







Hadi Salim & Ogawa           Standards Track                   [Page 27]

RFC 5811                     ForCES SCTP TML                  March 2010


  The CE PL, after some processing (in this example, dealing with the
  FE's association), sends the TML the response.  As in the case of FE
  PL, the CE TML picks the channel to send on before sending.

  The processing of the ForCES message upon arrival at the FE TML and
  delivery to the FE PL is similar to the CE side equivalent as shown
  above in Appendix B.3.

Authors' Addresses

  Jamal Hadi Salim
  Mojatatu Networks
  Ottawa, Ontario
  Canada

  EMail: [email protected]


  Kentaro Ogawa
  NTT Corporation
  3-9-11 Midori-cho
  Musashino-shi, Tokyo  180-8585
  Japan

  EMail: [email protected]


























Hadi Salim & Ogawa           Standards Track                   [Page 28]