Internet Engineering Task Force (IETF)                       R. Aggarwal
Request for Comments: 5786                                   K. Kompella
Updates: 3630                                           Juniper Networks
Category: Standards Track                                     March 2010
ISSN: 2070-1721


                Advertising a Router's Local Addresses
             in OSPF Traffic Engineering (TE) Extensions

Abstract

  OSPF Traffic Engineering (TE) extensions are used to advertise TE
  Link State Advertisements (LSAs) containing information about TE-
  enabled links.  The only addresses belonging to a router that are
  advertised in TE LSAs are the local addresses corresponding to TE-
  enabled links, and the local address corresponding to the Router ID.

  In order to allow other routers in a network to compute Multiprotocol
  Label Switching (MPLS) Traffic Engineered Label Switched Paths (TE
  LSPs) to a given router's local addresses, those addresses must also
  be advertised by OSPF TE.

  This document describes procedures that enhance OSPF TE to advertise
  a router's local addresses.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5786.












Aggarwal & Kompella          Standards Track                    [Page 1]

RFC 5786         Advertising a Local Router's Addresses       March 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................3
     1.1. Motivation .................................................3
  2. Specification of Requirements ...................................3
  3. Rejected Potential Solution .....................................4
  4. Solution ........................................................4
     4.1. Node Attribute TLV .........................................4
     4.2. Operation ..................................................5
  5. Security Considerations .........................................6
  6. IANA Considerations .............................................6
  7. Acknowledgements ................................................6
  8. References ......................................................7
     8.1. Normative References .......................................7
     8.2. Informative References .....................................7









Aggarwal & Kompella          Standards Track                    [Page 2]

RFC 5786         Advertising a Local Router's Addresses       March 2010


1.  Introduction

1.1.  Motivation

  In some cases, it is desirable to set up constrained shortest path
  first (CSPF) computed Multiprotocol Label Switching (MPLS) Traffic
  Engineered Label Switched Paths (TE LSPs) to local addresses of a
  router that are not currently advertised in the TE LSAs, i.e.,
  loopback and non-TE interface addresses.

  For instance, in a network carrying VPN and non-VPN traffic, it is
  often desirable to use different MPLS TE LSPs for the VPN traffic and
  the non-VPN traffic.  In this case, one loopback address may be used
  as the BGP next-hop for VPN traffic while another may be used as the
  BGP next-hop for non-VPN traffic.  It is also possible that different
  BGP sessions are used for VPN and non-VPN services.  Hence, two
  separate MPLS TE LSPs are desirable -- one to each loopback address.

  However, current routers in an OSPF network can only use CSPF to
  compute MPLS TE LSPs to the router ID or the local addresses of a
  remote router's TE-enabled links.  This restriction arises because
  OSPF TE extensions [RFC3630, RFC5329] only advertise the router ID
  and the local addresses of TE-enabled links of a given router.  Other
  routers in the network can populate their traffic engineering
  database (TED) with these local addresses belonging to the
  advertising router.  However, they cannot populate the TED with the
  advertising router's other local addresses, i.e., loopback and non-TE
  interface addresses.  OSPFv2 stub links in the router LSA [RFC2328]
  provide stub reachability information to the router but are not
  sufficient to learn all the local addresses of a router.  In
  particular for a subnetted point-to-point (P2P) interface the stub,
  link ID is the subnet address.  While for a non-subnetted interface,
  the stub link ID is the neighbor address.  Intra-prefix LSAs in
  OSPFv3 [RFC5340] are also not sufficient to learn the local
  addresses.

  For the above reasons, this document defines an enhancement to OSPF
  TE extensions to advertise the local addresses of a node.

2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].







Aggarwal & Kompella          Standards Track                    [Page 3]

RFC 5786         Advertising a Local Router's Addresses       March 2010


3.  Rejected Potential Solution

  A potential solution would be to advertise a TE link TLV for each
  local address, possibly with a new link type.  However, this is
  inefficient since the only meaningful information is the address.
  Furthermore, this would require implementations to process these TE
  link TLVs differently from others; for example, the TE metric is
  normally considered a mandatory sub-TLV, but would have no meaning
  for a local address.

4.  Solution

  The solution is to advertise the local addresses of a router in a new
  OSPF TE LSA Node Attribute TLV.  It is anticipated that the Node
  Attribute TLV will also prove more generally useful.

4.1.  Node Attribute TLV

  The Node Attribute TLV carries the attributes associated with a
  router.  The TLV type is 5 and the length is variable.  It contains
  one or more sub-TLVs.  This document defines the following sub-TLVs:

     1.  Node IPv4 Local Address sub-TLV
     2.  Node IPv6 Local Address sub-TLV

  The Node IPv4 Local Address sub-TLV has a type of 1 and contains one
  or more local IPv4 addresses.  It has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              1                |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Prefix Len 1  |          IPv4 Prefix 1                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Prefix 1 cont. |                                               :
     +-+-+-+-+-+-+-+-+                                               ~
     :                               .                               :
     ~                               .               +-+-+-+-+-+-+-+-+
     :                               .               | Prefix Len n  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          IPv4 Prefix n                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Each local IPv4 address is encoded as a <Prefix Length, Prefix>
  tuple.  Prefix Length is encoded in 1 byte.  It is the number of bits
  in the Address and can be at most 32.  Prefix is an IPv4 address
  prefix and is encoded in 4 bytes with zero bits as necessary.



Aggarwal & Kompella          Standards Track                    [Page 4]

RFC 5786         Advertising a Local Router's Addresses       March 2010


  The Node IPv4 Local Address sub-TLV length is in octets.  It is the
  sum of the lengths of all n IPv4 Address encodings in the sub-TLV,
  where n is the number of local addresses included in the sub-TLV.

  The Node IPv6 Local Address sub-TLV has a type of 2 and contains one
  or more local IPv6 addresses.  It has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              2                |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Prefix Len 1  | Prefix 1 Opt. | IPv6 Prefix 1                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   IPv6 Prefix 1 cont.                                         :
     :                               .                               ~
     ~                               .
     :                               .
     :                               +-+-+-+-+-++-+-+-+-+-++-+-+-+-+-+
     :                               | Prefix Len n  | Prefix n Opt. |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         IPv6  Prefix n                        :
     |                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--

  Each local IPv6 address is encoded using the procedures in [RFC5340].
  Each IPv6 address MUST be represented by a combination of three
  fields: PrefixLength, PrefixOptions, and Address Prefix.
  PrefixLength is the length in bits of the prefix and is an 8-bit
  field.  PrefixOptions is an 8-bit field describing various
  capabilities associated with the prefix [RFC5340].  Address Prefix is
  an encoding of the prefix itself as an even multiple of 32-bit words,
  padding with zero bits as necessary.  This encoding consumes
  (PrefixLength + 31) / 32) 32-bit words.

  The Node IPv6 Local Address sub-TLV length is in octets.  It is the
  sum of the lengths of all n IPv6 Address encodings in the sub-TLV,
  where n is the number of local addresses included in the sub-TLV.

4.2.  Operation

  A router announces one or more local addresses in the Node Attribute
  TLV.  The local addresses that can be learned from TE LSAs, i.e.,
  router address and TE interface addresses SHOULD NOT be advertised in
  the node local address sub-TLV.  The local addresses advertised will
  depend on the local configuration of the advertising router.  The
  default behavior MAY be to advertise all the loopback interface
  addresses.



Aggarwal & Kompella          Standards Track                    [Page 5]

RFC 5786         Advertising a Local Router's Addresses       March 2010


  The Node Attribute TLV MUST NOT appear in more than one TE LSA
  originated by a router.  Furthermore, such an LSA MUST NOT include
  more than one Node Attribute TLV.  A Node Attribute TLV MUST NOT
  carry more than one Node IPv4 Local Address sub-TLV.  A Node
  Attribute TLV MUST NOT carry more than one Node IPv6 Local Address
  sub-TLV.

5.  Security Considerations

  This document does not introduce any further security issues other
  than those discussed in [RFC3630] and [RFC5329].

6.  IANA Considerations

  IANA has assigned the Node Attribute TLV (value 5) type from the
  range 3-32767 as specified in [RFC3630], from the top level types in
  TE LSAs registry maintained by IANA at http://www.iana.org.

  IANA has created and now maintains the registry for the sub-TLVs of
  the Node Attribute TLV.  Value 1 is reserved for Node IPv4 Local
  Address sub-TLV and value 2 for Node IPv6 Local Address sub-TLV.

  The guidelines for the assignment of types for sub-TLVs of the Node
  Attribute TLV are as follows:

     o  Types in the range 3-32767 are to be assigned via Standards
        Action.

     o  Types in the range 32768-32777 are for experimental use; these
        will not be registered with IANA, and MUST NOT be mentioned by
        RFCs.

     o  Types in the range 32778-65535 are not to be assigned at this
        time.  Before any assignments can be made in this range, there
        MUST be a Standards Track RFC that specifies IANA
        Considerations that covers the range being assigned.

7.  Acknowledgements

  We would like to thank Nischal Sheth for his contribution to this
  work.  We would also like to thank Jean Philippe Vasseur, Acee
  Lindem, Venkata Naidu, Dimitri Papadimitriou, and Adrian Farrel for
  their comments.








Aggarwal & Kompella          Standards Track                    [Page 6]

RFC 5786         Advertising a Local Router's Addresses       March 2010


8.  References

8.1.  Normative References

  [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630, September
             2003.

  [RFC5340]  Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
             for IPv6", RFC 5340, July 2008.

8.2. Informative References

  [RFC5329]  Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
             "Traffic Engineering Extensions to OSPF Version 3", RFC
             5329, September 2008.

Authors' Addresses

  Rahul Aggarwal
  Juniper Networks
  1194 North Mathilda Ave.
  Sunnyvale, CA 94089

  Phone: +1-408-936-2720
  EMail: [email protected]


  Kireeti Kompella
  Juniper Networks
  1194 North Mathilda Ave.
  Sunnyvale, CA 94089

  EMail: [email protected]












Aggarwal & Kompella          Standards Track                    [Page 7]