Independent Submission                                             J. Wu
Request for Comments: 5747                                        Y. Cui
Category: Experimental                                             X. Li
ISSN: 2070-1721                                                    M. Xu
                                                    Tsinghua University
                                                                C. Metz
                                                    Cisco Systems, Inc.
                                                             March 2010


 4over6 Transit Solution Using IP Encapsulation and MP-BGP Extensions

Abstract

  The emerging and growing deployment of IPv6 networks will introduce
  cases where connectivity with IPv4 networks crossing IPv6 transit
  backbones is desired.  This document describes a mechanism for
  automatic discovery and creation of IPv4-over-IPv6 tunnels via
  extensions to multiprotocol BGP.  It is targeted at connecting
  islands of IPv4 networks across an IPv6-only backbone without the
  need for a manually configured overlay of tunnels.  The mechanisms
  described in this document have been implemented, tested, and
  deployed on the large research IPv6 network in China.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This is a contribution to the RFC Series, independently
  of any other RFC stream.  The RFC Editor has chosen to publish this
  document at its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5747.

IESG Note

  The mechanisms and techniques described in this document are related
  to specifications developed by the IETF softwire working group and
  published as Standards Track documents by the IETF, but the
  relationship does not prevent publication of this document.



Wu, et al.                    Experimental                      [Page 1]

RFC 5747                         4over6                       March 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1. Introduction ....................................................3
  2. 4over6 Framework Overview .......................................3
  3. Prototype Implementation ........................................5
     3.1. 4over6 Packet Forwarding ...................................5
     3.2. Encapsulation Table ........................................6
     3.3. MP-BGP 4over6 Protocol Extensions ..........................7
          3.3.1. Receiving Routing Information from Local CE .........8
          3.3.2. Receiving 4over6 Routing Information from a
                 Remote 4over6 PE ....................................8
  4. 4over6 Deployment Experience ....................................9
     4.1. CNGI-CERNET2 ...............................................9
     4.2. 4over6 Testbed on the CNGI-CERNET2 IPv6 Network ............9
     4.3. Deployment Experiences ....................................10
  5. Ongoing Experiment .............................................11
  6. Relationship to Softwire Mesh Effort ...........................12
  7. IANA Considerations ............................................12
  8. Security Considerations ........................................13
  9. Conclusion .....................................................13
  10. Acknowledgements ..............................................13
  11. Normative References ..........................................14

















Wu, et al.                    Experimental                      [Page 2]

RFC 5747                         4over6                       March 2010


1.  Introduction

  Due to the lack of IPv4 address space, more and more IPv6 networks
  have been deployed not only on edge networks but also on backbone
  networks.  However, there are still a large number of legacy IPv4
  hosts and applications.  As a result, IPv6 networks and IPv4
  applications/hosts will have to coexist for a long period of time.

  The emerging and growing deployment of IPv6 networks will introduce
  cases where connectivity with IPv4 networks is desired.  Some IPv6
  backbones will need to offer transit services to attached IPv4 access
  networks.  The method to achieve this would be to encapsulate and
  then transport the IPv4 payloads inside IPv6 tunnels spanning the
  backbone.  There are some IPv6/IPv4-related tunneling protocols and
  mechanisms defined in the literature.  But at the time that the
  mechanism described in this document was introduced, most of these
  existing techniques focused on the problem of IPv6 over IPv4, rather
  than the case of IPv4 over IPv6.  Encapsulation methods alone, such
  as those defined in [RFC2473], require manual configuration in order
  to operate.  When a large number of tunnels are necessary, manual
  configuration can become burdensome.  To the above problem, this
  document describes an approach, referred to as "4over6".

  The 4over6 mechanism concerns two aspects: the control plane and the
  data plane.  The control plane needs to address the problem of how to
  set up an IPv4-over-IPv6 tunnel in an automatic and scalable fashion
  between a large number of edge routers.  This document describes
  experimental extensions to Multiprotocol Extension for BGP (MP-BGP)
  [RFC4271] [RFC4760] employed to communicate tunnel endpoint
  information and establish 4over6 tunnels between dual-stack Provider
  Edge (PE) routers positioned at the edge of the IPv6 backbone
  network.  Once the 4over6 tunnel is in place, the data plane focuses
  on the packet forwarding processes of encapsulation and
  decapsulation.

2.  4over6 Framework Overview

  In the topology shown in Figure 1, a number of IPv6-only P routers
  compose a native IPv6 backbone.  The PE routers are dual stack and
  referred to as 4over6 PE routers.  The IPv6 backbone acts as a
  transit core to transport IPv4 packets across the IPv6 backbone.
  This enables each of the IPv4 access islands to communicate with one
  another via 4over6 tunnels spanning the IPv6 transit core.








Wu, et al.                    Experimental                      [Page 3]

RFC 5747                         4over6                       March 2010


                      _._._._._            _._._._._
                     |  IPv4   |          |  IPv4   |
                     | access  |          | access  |
                     | island  |          | island  |
                      _._._._._            _._._._._
                          |                    |
                      Dual-Stack           Dual-Stack
                      "4over6 PE"          "4over6 PE"
                          |                    |
                          |                    |
                        __+____________________+__
           4over6      /   :   :           :   :  \    IPv6 only
           Tunnels    |    :      :      :     :   |  transit core
           between    |    :        [P]        :   |  with multiple
             PEs      |    :     :       :     :   |   [P routers]
                      |    :   :            :  :   |
                       \_._._._._._._._._._._._._./
                          | /                \ |
                          |                    |
                       Dual-Stack          Dual-Stack
                       "4over6 PE"         "4over6 PE"
                         |  |                  |
                      _._._._._            _._._._._
                     |  IPv4   |          |  IPv4   |
                     | access  |          | access  |
                     | island  |          | island  |
                      _._._._._            _._._._._

                 Figure 1: IPv4 over IPv6 Network Topology

  As shown in Figure 1, there are multiple dual-stack PE routers
  connected to the IPv6 transit core.  In order for the ingress 4over6
  PE router to forward an IPv4 packet across the IPv6 backbone to the
  correct egress 4over6 PE router, the ingress 4over6 PE router must
  learn which IPv4 destination prefixes are reachable through each
  egress 4over6 PE router.  MP-BGP will be extended to distribute the
  destination IPv4 prefix information between peering dual-stack PE
  routers.  Section 4 of this document presents the definition of the
  4over6 protocol field in MP-BGP, and Section 5 describes MP-BGP's
  extended behavior in support of this capability.

  After the ingress 4over6 PE router learns the correct egress 4over6
  PE router via MP-BGP, it will forward the packet across the IPv6
  backbone using IP encapsulation.  The egress 4over6 PE router will
  receive the encapsulated packet, remove the IPv6 header, and then
  forward the original IPv4 packet to its final IPv4 destination.
  Section 6 describes the procedure of packet forwarding.




Wu, et al.                    Experimental                      [Page 4]

RFC 5747                         4over6                       March 2010


3.  Prototype Implementation

  An implementation of the 4over6 mechanisms described in this document
  was developed, tested, and deployed on Linux with kernel version 2.4.
  The prototype system is composed of three components: packet
  forwarding, the encapsulation table, and MP-BGP extensions.  The
  packet forwarding and encapsulation table are Linux kernel modules,
  and the MP-BGP extension was developed by extending Zebra routing
  software.

  The following sections will discuss these parts in detail.

3.1.  4over6 Packet Forwarding

  Forwarding an IPv4 packet through the IPv6 transit core includes
  three parts: encapsulation of the incoming IPv4 packet with the IPv6
  tunnel header, transmission of the encapsulated packet over the IPv6
  transit backbone, and decapsulation of the IPv6 header and forwarding
  of the original IPv4 packet.  Native IPv6 routing and forwarding are
  employed in the backbone network since the P routers take the 4over6
  tunneled packets as just native IPv6 packets.  Therefore, 4over6
  packet forwarding involves only the encapsulation process and the
  decapsulation process, both of which are performed on the 4over6 PE
  routers.

               Tunnel from Ingress PE to Egress PE
                  ---------------------------->
                Tunnel                      Tunnel
                Entry-Point                 Exit-Point
                Node                        Node
  +-+    IPv4    +--+   IPv6 Transit Core    +--+    IPv4    +-+
  |S|-->--//-->--|PE|=====>=====//=====>=====|PE|-->--//-->--|D|
  +-+            +--+                        +--+            +-+
  Original    Ingress PE                   Egress PE        Original
  Packet    (Encapsulation)              (Decapsulation)    Packet
  Source                                                    Destination
  Node                                                      Node

             Figure 2: Packet Forwarding along 4over6 Tunnel

  As shown in Figure 2, packet encapsulation and decapsulation are both
  on the dual-stack 4over6 PE routers.  Figure 3 shows the format of
  packet encapsulation and decapsulation.








Wu, et al.                    Experimental                      [Page 5]

RFC 5747                         4over6                       March 2010


                          +----------------------------------//-----+
                          | IPv4 Header |   Packet Payload          |
                          +----------------------------------//-----+
                           <         Original IPv4 Packet           >
                                        |
                                        |(Encapsulation on ingress PE)
                                        |
                                        v
   < Tunnel IPv6 Headers > <         Original IPv4 Packet           >
  +-----------+ - - - - - +-------------+-----------//--------------+
  |   IPv6    | IPv6      |   IPv4      |                           |
  |           | Extension |             |      Packet Payload       |
  |   Header  | Headers   |  Header     |                           |
  +-----------+ - - - - - +-------------+-----------//--------------+
   <                      Tunnel IPv6 Packet                       >
                                        |
                                        |(Decapsulation on egress PE)
                                        |
                                        v
                          +----------------------------------//-----+
                          | IPv4 Header |   Packet Payload          |
                          +----------------------------------//-----+
                           <         Original IPv4 Packet           >

  Figure 3: Packet Encapsulation and Decapsulation on Dual-Stack 4over6
            PE Router

  The encapsulation format to apply is IPv4 encapsulated in IPv6, as
  outlined in [RFC2473].

3.2.  Encapsulation Table

  Each 4over6 PE router maintains an encapsulation table as depicted in
  Figure 4.  Each entry in the encapsulation table consists of an IPv4
  prefix and its corresponding IPv6 address.  The IPv4 prefix is a
  particular network located in an IPv4 access island network.  The
  IPv6 address is the 4over6 virtual interface (VIF) address of the
  4over6 PE router that the IPv4 prefix is reachable through.  The
  encapsulation table is built and maintained using local configuration
  information and MP-BGP advertisements received from remote 4over6 PE
  routers.

  The 4over6 VIF is an IPv6 /128 address that is locally configured on
  each 4over6 router.  This address, as an ordinary global IPv6
  address, must also be injected into the IPv6 IGP so that it is
  reachable across the IPv6 backbone.





Wu, et al.                    Experimental                      [Page 6]

RFC 5747                         4over6                       March 2010


       +-------------+------------------------------------------------+
       | IPv4 Prefix | IPv6 Advertising Address Family Border Router  |
       +-------------+------------------------------------------------+

                     Figure 4: Encapsulation Table

  When an IPv4 packet arrives at the ingress 4over6 PE router, a lookup
  in the local IPv4 routing table will result in a pointer to the local
  encapsulation table entry with the matching destination IPv4 prefix.
  There is a corresponding IPv6 address in the encapsulation table.
  The IPv4 packet is encapsulated in an IPv6 header.  The source
  address in the IPv6 header is the IPv6 VIF address of the local
  4over6 PE router and the destination address is the IPv6 VIF address
  of the remote 4over6 PE router contained in the local encapsulation
  table.  The packet is then subjected to normal IPv6 forwarding for
  transport across the IPv6 backbone.

  When the encapsulated packet arrives at the egress 4over6 PE router,
  the IPv6 header is removed and the original IPv4 packet is forwarded
  to the destination IPv4 network based on the outcome of the lookup in
  the IPv4 routing table contained in the egress 4over6 PE router.

3.3.  MP-BGP 4over6 Protocol Extensions

  Each 4over6 PE router possesses an IPv4 interface connected to an
  IPv4 access network(s).  It can peer with other IPv4 routers using
  IGP or BGP routing protocols to exchange local IPv4 routing
  information.  Routing information can also be installed on the 4over6
  PE router using static configuration methods.

  Each 4over6 PE also possesses at least one IPv6 interface to connect
  it into the IPv6 transit backbone.  The 4over6 PE typically uses IGP
  routing protocols to exchange IPv6 backbone routing information with
  other IPv6 P routers.  The 4over6 PE router will also form an MP-iBGP
  (Internal BGP) peering relationship with other 4over6 PE routers
  connected to the IPv6 backbone network.

  The use of MP-iBGP suggests that the participating 4over6 PE routers
  that share a route reflector or form a full mesh of TCP connections
  are contained in the same autonomous system (AS).  This
  implementation is in fact only deployed over a single AS.  This was
  not an intentional design constraint but rather reflected the single
  AS topology of the CNGI-CERNET2 (China Next Generation Internet -
  China Education and Research Network) national IPv6 backbone used in
  the testing and deployment of this solution.






Wu, et al.                    Experimental                      [Page 7]

RFC 5747                         4over6                       March 2010


3.3.1.  Receiving Routing Information from Local CE

  When a 4over6 PE router learns routing information from the locally
  attached IPv4 access networks, the 4over6 MP-iBGP entity should
  process the information as follows:

  1.  Install and maintain local IPv4 routing information in the IPv4
      routing database.

  2.  Install and maintain new entries in the encapsulation table.
      Each entry should consist of the IPv4 prefix and the local IPv6
      VIF address.

  3.  Advertise the new contents of the local encapsulation table in
      the form of MP_REACH_NLRI update information to remote 4over6 PE
      routers.  The format of these updates is as follows:

      *  AFI = 1 (IPv4)

      *  SAFI = 67 (4over6)

      *  NLRI = IPv4 network prefix

      *  Network Address of Next Hop = IPv6 address of its 4over6 VIF

  4.  A new Subsequent Address Family Identifier (SAFI) BGP 4over6 (67)
      has been assigned by IANA.  We call a BGP update with a SAFI of
      67 as 4over6 routing information.

3.3.2.  Receiving 4over6 Routing Information from a Remote 4over6 PE

  A local 4over6 PE router will receive MP_REACH_NLRI updates from
  remote 4over6 routers and use that information to populate the local
  encapsulation table and the BGP routing database.  After validating
  the correctness of the received attribute, the following procedures
  are used to update the local encapsulation table and redistribute new
  information to the local IPv4 routing table:

  1.  Validate the received BGP update packet as 4over6 routing
      information by AFI = 1 (IPv4) and SAFI = 67 (4over6).

  2.  Extract the IPv4 network address from the NLRI field and install
      as the IPv4 network prefix.

  3.  Extract the IPv6 address from the Network Address of the Next Hop
      field and place that as an associated entry next to the IPv4
      network index.  (Note, this describes the update of the local
      encapsulation table.)



Wu, et al.                    Experimental                      [Page 8]

RFC 5747                         4over6                       March 2010


  4.  Install and maintain a new entry in the encapsulation table with
      the extracted IPv4 prefix and its corresponding IPv6 address.

  5.  Redistribute the new 4over6 routing information to the local IPv4
      routing table.  Set the destination network prefix as the
      extracted IPv4 prefix, set the Next Hop as Null, and Set the
      OUTPUT Interface as the 4over6 VIF on the local 4over6 PE router.

  Therefore, when an ingress 4over6 PE router receives an IPv4 packet,
  the lookup in its IPv4 routing table will have a result of the output
  interface as the local 4over6 VIF, where the incoming IPv4 packet
  will be encapsulated with a new IPv6 header, as indicated in the
  encapsulation table.

4.  4over6 Deployment Experience

4.1.  CNGI-CERNET2

  A prototype of the 4over6 solution is implemented and deployed on
  CNGI-CERNET2.  CNGI-CERNET2 is one of the China Next Generation
  Internet (CNGI) backbones, operated by the China Education and
  Research Network (CERNET).  CNGI-CERNET2 connects approximately 25
  core nodes distributed in 20 cities in China at speeds of 2.5-10
  Gb/s.  The CNGI-CERNET2 backbone is IPv6-only with some attached
  customer premise networks (CPNs) being dual stack.  The CNGI-CERNET2
  backbone, attached CNGI-CERNET2 CPNs, and CNGI-6IX Exchange all have
  globally unique AS numbers.  This IPv6 backbone is used to provide
  transit IPv4 services for customer IPv4 networks connected via 4over6
  PE routers to the backbone.

4.2.  4over6 Testbed on the CNGI-CERNET2 IPv6 Network

  Figure 5 shows 4over6 deployment network topology.


















Wu, et al.                    Experimental                      [Page 9]

RFC 5747                         4over6                       March 2010


        +-----------------------------------------------------+
        |                    IPv6 (CERNET2)                   |
        |                                                     |
        +-----------------------------------------------------+
        |                  |                   |              |
Tsinghua|Univ.       Peking|Univ.          SJTU|     Southeast|Univ.
     +------+           +------+           +------+        +------+
     |4over6|    ...    |4over6|           |4over6|   ...  |4over6|
     |router|           |router|           |router|        |router|
     +------+           +------+           +------+        +------+
        |                  |                  |                |
        |                  |                  |                |
        |                  |                  |                |
  +-----------+      +-----------+      +-----------+     +-----------+
  |IPv4 access| ...  |IPv4 access|      |IPv4 access| ... |IPv4 access|
  |  network  |      |  network  |      |  network  |     |  network  |
  +-----------+      +-----------+      +-----------+     +-----------+
        |
  +----------------------+
  |    IPv4 (Internet)   |
  |                      |
  +----------------------+

             Figure 5: 4over6 Deployment Network Topology

  The IPv4-only access networks are equipped with servers and clients
  running different applications.  The 4over6 PE routers are deployed
  at 8 x IPv6 nodes of CNGI-CERNET2, located in seven universities and
  five cities across China.  As suggested in Figure 5, some of the IPv4
  access networks are connected to both IPv6 and IPv4 networks, and
  others are only connected to the IPv6 backbone.  In the deployment,
  users in different IPv4 networks can communicate with each other
  through 4over6 tunnels.

4.3.  Deployment Experiences

  A number of 4over6 PE routers were deployed and configured to support
  the 4over6 transit solution.  MP-BGP peerings were established, and
  successful distribution of 4over6 SAFI information occurred.
  Inspection of the BGP routing and encapsulation tables confirmed that
  the correct entries were sent and received.  ICMP ping traffic
  indicated that IPv4 packets were successfully transiting the IPv6
  backbone.

  In addition, other application protocols were successfully tested per
  the following:





Wu, et al.                    Experimental                     [Page 10]

RFC 5747                         4over6                       March 2010


  o  HTTP.  A client running Internet Explorer in one IPv4 client
     network was able to access and download multiple objects from an
     HTTP server located in another IPv4 client network.

  o  P2P. BitComet software running on several PCs placed in different
     IPv4 client networks were able to find each other and share files.

  Other protocols, including FTP, SSH, IM (e.g., MSN, Google Talk), and
  Multimedia Streaming, all functioned correctly.

5.  Ongoing Experiment

  Based on the above successful experiment, we are going to have
  further experiments in the following two aspects.

  1.  Inter-AS 4over6

     The above experiment is only deployed over a single AS.  With the
     growth of the network, there could be multiple ASes between the
     edge networks.  Specifically, the Next Hop field in MP-BGP
     indicates the tunnel endpoint in the current 4over6 technology.
     However, in the Inter-AS scenario, the tunnel endpoint needs to be
     separated from the field of Next Hop.  Moreover, since the
     technology of 4over6 is deployed on the router running MP-BGP, the
     supportability of 4over6 on each Autonomous System Border Router
     (ASBR) will be a main concern in the Inter-AS experiment.  We may
     consider different situations: (1) Some ASBRs do not support
     4over6; (2) ASBRs only support the 4over6 control plane (i.e., MP-
     BGP extension of 4over6) rather than 4over6 data plane; (3) ASBRs
     support both the control plane and the data plane for 4over6.

  2.  Multicast 4over6

     The current 4over6 technology only supports unicast routing and
     data forwarding.  With the deployment of network-layer multicast
     in multiple IPv4 edge networks, we need to extend the 4over6
     technology to support multicast including both multicast tree
     manipulation on the control plane and multicast traffic forwarding
     on the data plane.  Based on the current unicast 4over6 technology
     providing the unicast connectivity of edge networks over the
     backbone in another address family, the multicast 4over6 will
     focus on the mapping technologies between the multicast groups in
     the different address families.








Wu, et al.                    Experimental                     [Page 11]

RFC 5747                         4over6                       March 2010


6.  Relationship to Softwire Mesh Effort

  The 4over6 solution was presented at the IETF Softwires Working Group
  Interim meeting in Hong Kong in January 2006.  The existence of this
  large-scale implementation and deployment clearly showed that MP-BGP
  could be employed to support tunnel setup in a scalable fashion
  across an IPv6 backbone.  Perhaps most important was the use-case
  presented -- an IPv6 backbone that offers transit to attached client
  IPv4 networks.

  The 4over6 solution can be viewed as a precursor to the Softwire Mesh
  Framework proposed in the softwire problem statement [RFC4925].
  However, there are several differences with this solution and the
  effort that emerged from the Softwires Working Group called "softwire
  Mesh Framework" [RFC5565] and the related solutions [RFC5512]
  [RFC5549].

  o  MP-BGP Extensions. 4over6 employs a new SAFI (BGP 4over6) to
     convey client IPv4 prefixes between 4over6 PE routers.  Softwire
     Mesh retains the original AFI-SAFI designations, but it uses a
     modified MP_REACH_NLRI format to convey IPv4 Network Layer
     Reachability Information (NLRI) prefix information with an IPv6
     next_hop address [RFC5549].

  o  Encapsulation. 4over6 assumes IP-in-IP or it is possible to
     configure Generic Routing Encapsulation (GRE).  Softwires uses
     those two scenarios configured locally or for IP headers that
     require dynamic updating.  As a result, the BGP encapsulation SAFI
     is introduced in [RFC5512].

  o  Multicast.  The basic 4over6 solution only implemented unicast
     communications.  The multicast communications are specified in the
     Softwire Mesh Framework and are also supported by the multicast
     extension of 4over6.

  o  Use-Cases.  The 4over6 solution in this document specifies the
     4over6 use-case, which is also pretty easy to extend for the use-
     case of 6over4.  The Softwire Mesh Framework supports both 4over6
     and 6over4.

7.  IANA Considerations

  A new SAFI value (67) has been assigned by IANA for the BGP 4over6
  SAFI.







Wu, et al.                    Experimental                     [Page 12]

RFC 5747                         4over6                       March 2010


8.  Security Considerations

  Tunneling mechanisms, especially automatic ones, often have potential
  problems of Distributed Denial of Service (DDoS) attacks on the
  tunnel entry-point or tunnel exit-point.  As the advantage, the BGP
  4over6 extension doesn't allocate resources to a single flow or
  maintain the state for a flow.  However, since the IPv6 tunnel
  endpoints are globally reachable IPv6 addresses, it would be trivial
  to spoof IPv4 packets by encapsulating and sending them over IPv6 to
  the tunnel interface.  This could bypass IPv4 Reverse Path Forwarding
  (RPF) or other antispoofing techniques.  Also, any IPv4 filters may
  be bypassed.

  An iBGP peering relationship may be maintained over IPsec or other
  secure communications.

9.  Conclusion

  The emerging and growing deployment of IPv6 networks, in particular,
  IPv6 backbone networks, will introduce cases where connectivity with
  IPv4 networks is desired.  Some IPv6 backbones will need to offer
  transit services to attached IPv4 access networks.  The 4over6
  solution outlined in this document supports such a capability through
  an extension to MP-BGP to convey IPv4 routing information along with
  an associated IPv6 address.  Basic IP encapsulation is used in the
  data plane as IPv4 packets are tunneled through the IPv6 backbone.

  An actual implementation has been developed and deployed on the CNGI-
  CERNET2 IPv6 backbone.

10.  Acknowledgements

  During the design procedure of the 4over6 framework and definition of
  BGP-MP 4over6 extension, Professor Ke Xu gave the authors many
  valuable comments.  The support of the IETF Softwires WG is also
  gratefully acknowledged with special thanks to David Ward, Alain
  Durand, and Mark Townsley for their rich experience and knowledge in
  this field.  Yakov Rekhter provided helpful comments and advice.
  Mark Townsley reviewed this document carefully and gave the authors a
  lot of valuable comments, which were very important for improving
  this document.

  The deployment and test for the prototype system was conducted among
  seven universities -- namely, Tsinghua University, Peking University,
  Beijing University of Post and Telecommunications, Shanghai Jiaotong
  University, Huazhong University of Science and Technology, Southeast





Wu, et al.                    Experimental                     [Page 13]

RFC 5747                         4over6                       March 2010


  University, and South China University of Technology.  The authors
  would like to thank everyone involved in this effort at these
  universities.

11.  Normative References

  [RFC2473]  Conta, A. and S. Deering, "Generic Packet Tunneling in
             IPv6 Specification", RFC 2473, December 1998.

  [RFC4271]  Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
             Protocol 4 (BGP-4)", RFC 4271, January 2006.

  [RFC4760]  Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
             "Multiprotocol Extensions for BGP-4", RFC 4760,
             January 2007.

  [RFC4925]  Li, X., Dawkins, S., Ward, D., and A. Durand, "Softwire
             Problem Statement", RFC 4925, July 2007.

  [RFC5512]  Mohapatra, P. and E. Rosen, "The BGP Encapsulation
             Subsequent Address Family Identifier (SAFI) and the BGP
             Tunnel Encapsulation Attribute", RFC 5512, April 2009.

  [RFC5549]  Le Faucheur, F. and E. Rosen, "Advertising IPv4 Network
             Layer Reachability Information with an IPv6 Next Hop",
             RFC 5549, May 2009.

  [RFC5565]  Wu, J., Cui, Y., Metz, C., and E. Rosen, "Softwire Mesh
             Framework", RFC 5565, June 2009.






















Wu, et al.                    Experimental                     [Page 14]

RFC 5747                         4over6                       March 2010


Authors' Addresses

  Jianping Wu
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing  100084
  P.R. China
  Phone: +86-10-6278-5983
  EMail: [email protected]

  Yong Cui
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing  100084
  P.R. China
  Phone: +86-10-6278-5822
  EMail: [email protected]

  Xing Li
  Tsinghua University
  Department of Electronic Engineering, Tsinghua University
  Beijing  100084
  P.R. China
  Phone: +86-10-6278-5983
  EMail: [email protected]

  Mingwei Xu
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing  100084
  P.R. China
  Phone: +86-10-6278-5822
  EMail: [email protected]

  Chris Metz
  Cisco Systems, Inc.
  3700 Cisco Way
  San Jose, CA  95134
  USA
  EMail: [email protected]











Wu, et al.                    Experimental                     [Page 15]