Internet Engineering Task Force (IETF)                       E. Rescorla
Request for Comments: 5746                                    RTFM, Inc.
Updates: 5246, 4366, 4347, 4346, 2246                             M. Ray
Category: Standards Track                                    S. Dispensa
ISSN: 2070-1721                                              PhoneFactor
                                                               N. Oskov
                                                              Microsoft
                                                          February 2010


  Transport Layer Security (TLS) Renegotiation Indication Extension

Abstract

  Secure Socket Layer (SSL) and Transport Layer Security (TLS)
  renegotiation are vulnerable to an attack in which the attacker forms
  a TLS connection with the target server, injects content of his
  choice, and then splices in a new TLS connection from a client.  The
  server treats the client's initial TLS handshake as a renegotiation
  and thus believes that the initial data transmitted by the attacker
  is from the same entity as the subsequent client data.  This
  specification defines a TLS extension to cryptographically tie
  renegotiations to the TLS connections they are being performed over,
  thus preventing this attack.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc5746.













Rescorla, et al.             Standards Track                    [Page 1]

RFC 5746               TLS Renegotiation Extension         February 2010


Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................4
  3. Secure Renegotiation Definition .................................4
     3.1. Additional Connection State ................................4
     3.2. Extension Definition .......................................5
     3.3. Renegotiation Protection Request Signaling Cipher
          Suite Value ................................................6
     3.4. Client Behavior: Initial Handshake .........................6
     3.5. Client Behavior: Secure Renegotiation ......................7
     3.6. Server Behavior: Initial Handshake .........................7
     3.7. Server Behavior: Secure Renegotiation ......................8
  4. Backward Compatibility ..........................................9
     4.1. Client Considerations ......................................9
     4.2. Client Behavior: Legacy (Insecure) Renegotiation ..........10
     4.3. Server Considerations .....................................10
     4.4. Server Behavior: Legacy (Insecure) Renegotiation ..........11
     4.5. SSLv3 .....................................................11
  5. Security Considerations ........................................12
  6. IANA Considerations ............................................13
  7. Acknowledgements ...............................................13
  8. References .....................................................13
     8.1. Normative References ......................................13
     8.2. Informative References ....................................13











Rescorla, et al.             Standards Track                    [Page 2]

RFC 5746               TLS Renegotiation Extension         February 2010


1.  Introduction

  TLS [RFC5246] allows either the client or the server to initiate
  renegotiation -- a new handshake that establishes new cryptographic
  parameters.  Unfortunately, although the new handshake is carried out
  using the cryptographic parameters established by the original
  handshake, there is no cryptographic binding between the two.  This
  creates the opportunity for an attack in which the attacker who can
  intercept a client's transport layer connection can inject traffic of
  his own as a prefix to the client's interaction with the server.  One
  form of this attack [Ray09] proceeds as shown below:

  Client                        Attacker                        Server
  ------                        -------                         ------
                                    <----------- Handshake ---------->
                                    <======= Initial Traffic ========>
  <--------------------------  Handshake ============================>
  <======================== Client Traffic ==========================>

  To start the attack, the attacker forms a TLS connection to the
  server (perhaps in response to an initial intercepted connection from
  the client).  He then sends any traffic of his choice to the server.
  This may involve multiple requests and responses at the application
  layer, or may simply be a partial application layer request intended
  to prefix the client's data.  This traffic is shown with == to
  indicate it is encrypted.  He then allows the client's TLS handshake
  to proceed with the server.  The handshake is in the clear to the
  attacker but encrypted over the attacker's TLS connection to the
  server.  Once the handshake has completed, the client communicates
  with the server over the newly established security parameters with
  the server.  The attacker cannot read this traffic, but the server
  believes that the initial traffic to and from the attacker is the
  same as that to and from the client.

  If certificate-based client authentication is used, the server will
  see a stream of bytes where the initial bytes are protected but
  unauthenticated by TLS and subsequent bytes are authenticated by TLS
  and bound to the client's certificate.  In some protocols (notably
  HTTPS), no distinction is made between pre- and post-authentication
  stages and the bytes are handled uniformly, resulting in the server
  believing that the initial traffic corresponds to the authenticated
  client identity.  Even without certificate-based authentication, a
  variety of attacks may be possible in which the attacker convinces
  the server to accept data from it as data from the client.  For
  instance, if HTTPS [RFC2818] is in use with HTTP cookies [RFC2965],
  the attacker may be able to generate a request of his choice
  validated by the client's cookie.




Rescorla, et al.             Standards Track                    [Page 3]

RFC 5746               TLS Renegotiation Extension         February 2010


  Some protocols -- such as IMAP or SMTP -- have more explicit
  transitions between authenticated and unauthenticated phases and
  require that the protocol state machine be partly or fully reset at
  such transitions.  If strictly followed, these rules may limit the
  effect of attacks.  Unfortunately, there is no requirement for state
  machine resets at TLS renegotiation, and thus there is still a
  potential window of vulnerability, for instance, by prefixing a
  command that writes to an area visible by the attacker with a command
  by the client that includes his password, thus making the client's
  password visible to the attacker (note that this precise attack does
  not work with challenge-response authentication schemes, but other
  attacks may be possible).  Similar attacks are available with SMTP,
  and in fact do not necessarily require the attacker to have an
  account on the target server.

  It is important to note that in both cases these attacks are possible
  because the client sends unsolicited authentication information
  without requiring any specific data from the server over the TLS
  connection.  Protocols that require a round trip to the server over
  TLS before the client sends sensitive information are likely to be
  less vulnerable.

  These attacks can be prevented by cryptographically binding
  renegotiation handshakes to the enclosing TLS cryptographic
  parameters, thus allowing the server to differentiate renegotiation
  from initial negotiation, as well as preventing renegotiations from
  being spliced in between connections.  An attempt by an attacker to
  inject himself as described above will result in a mismatch of the
  cryptographic binding and can thus be detected.  The data used in the
  extension is similar to, but not the same as, the data used in the
  tls-unique and/or tls-unique-for-telnet channel bindings described in
  [TLS-CHANNEL-BINDINGS]; however, this extension is not a general-
  purpose RFC 5056 [RFC5056] channel binding facility.

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Secure Renegotiation Definition

3.1.  Additional Connection State

  Both client and server need to store three additional values for each
  TLS connection state (see RFC 5246, Section 6.1).  Note that these
  values are specific to connection (not a TLS session cache entry).




Rescorla, et al.             Standards Track                    [Page 4]

RFC 5746               TLS Renegotiation Extension         February 2010


  o  a "secure_renegotiation" flag, indicating whether secure
     renegotiation is in use for this connection.

  o  "client_verify_data":  the verify_data from the Finished message
     sent by the client on the immediately previous handshake.  For
     currently defined TLS versions and cipher suites, this will be a
     12-byte value; for SSLv3, this will be a 36-byte value.

  o  "server_verify_data":  the verify_data from the Finished message
     sent by the server on the immediately previous handshake.

3.2.  Extension Definition

  This document defines a new TLS extension, "renegotiation_info" (with
  extension type 0xff01), which contains a cryptographic binding to the
  enclosing TLS connection (if any) for which the renegotiation is
  being performed.  The "extension data" field of this extension
  contains a "RenegotiationInfo" structure:

     struct {
         opaque renegotiated_connection<0..255>;
     } RenegotiationInfo;

  The contents of this extension are specified as follows.

  o  If this is the initial handshake for a connection, then the
     "renegotiated_connection" field is of zero length in both the
     ClientHello and the ServerHello.  Thus, the entire encoding of the
     extension is ff 01 00 01 00.  The first two octets represent the
     extension type, the third and fourth octets the length of the
     extension itself, and the final octet the zero length byte for the
     "renegotiated_connection" field.

  o  For ClientHellos that are renegotiating, this field contains the
     "client_verify_data" specified in Section 3.1.

  o  For ServerHellos that are renegotiating, this field contains the
     concatenation of client_verify_data and server_verify_data.  For
     current versions of TLS, this will be a 24-byte value (for SSLv3,
     it will be a 72-byte value).

  This extension also can be used with Datagram TLS (DTLS) [RFC4347].
  Although, for editorial simplicity, this document refers to TLS, all
  requirements in this document apply equally to DTLS.







Rescorla, et al.             Standards Track                    [Page 5]

RFC 5746               TLS Renegotiation Extension         February 2010


3.3.  Renegotiation Protection Request Signaling Cipher Suite Value

  Both the SSLv3 and TLS 1.0/TLS 1.1 specifications require
  implementations to ignore data following the ClientHello (i.e.,
  extensions) if they do not understand it.  However, some SSLv3 and
  TLS 1.0 implementations incorrectly fail the handshake in such a
  case.  This means that clients that offer the "renegotiation_info"
  extension may encounter handshake failures.  In order to enhance
  compatibility with such servers, this document defines a second
  signaling mechanism via a special Signaling Cipher Suite Value (SCSV)
  "TLS_EMPTY_RENEGOTIATION_INFO_SCSV", with code point {0x00, 0xFF}.
  This SCSV is not a true cipher suite (it does not correspond to any
  valid set of algorithms) and cannot be negotiated.  Instead, it has
  the same semantics as an empty "renegotiation_info" extension, as
  described in the following sections.  Because SSLv3 and TLS
  implementations reliably ignore unknown cipher suites, the SCSV may
  be safely sent to any server.  The SCSV can also be included in the
  SSLv2 backward compatible CLIENT-HELLO (see Appendix E.2 of
  [RFC5246]).

  Note:  a minimal client that does not support renegotiation at all
  can simply use the SCSV in all initial handshakes.  The rules in the
  following sections will cause any compliant server to abort the
  handshake when it sees an apparent attempt at renegotiation by such a
  client.

3.4.  Client Behavior: Initial Handshake

  Note that this section and Section 3.5 apply to both full handshakes
  and session resumption handshakes.

  o  The client MUST include either an empty "renegotiation_info"
     extension, or the TLS_EMPTY_RENEGOTIATION_INFO_SCSV signaling
     cipher suite value in the ClientHello.  Including both is NOT
     RECOMMENDED.

  o  When a ServerHello is received, the client MUST check if it
     includes the "renegotiation_info" extension:

     *  If the extension is not present, the server does not support
        secure renegotiation; set secure_renegotiation flag to FALSE.
        In this case, some clients may want to terminate the handshake
        instead of continuing; see Section 4.1 for discussion.








Rescorla, et al.             Standards Track                    [Page 6]

RFC 5746               TLS Renegotiation Extension         February 2010


     *  If the extension is present, set the secure_renegotiation flag
        to TRUE.  The client MUST then verify that the length of the
        "renegotiated_connection" field is zero, and if it is not, MUST
        abort the handshake (by sending a fatal handshake_failure
        alert).

        Note: later in Section 3, "abort the handshake" is used as
        shorthand for "send a fatal handshake_failure alert and
        terminate the connection".

  o  When the handshake has completed, the client needs to save the
     client_verify_data and server_verify_data values for future use.

3.5.  Client Behavior: Secure Renegotiation

  This text applies if the connection's "secure_renegotiation" flag is
  set to TRUE (if it is set to FALSE, see Section 4.2).

  o  The client MUST include the "renegotiation_info" extension in the
     ClientHello, containing the saved client_verify_data.  The SCSV
     MUST NOT be included.

  o  When a ServerHello is received, the client MUST verify that the
     "renegotiation_info" extension is present; if it is not, the
     client MUST abort the handshake.

  o  The client MUST then verify that the first half of the
     "renegotiated_connection" field is equal to the saved
     client_verify_data value, and the second half is equal to the
     saved server_verify_data value.  If they are not, the client MUST
     abort the handshake.

  o  When the handshake has completed, the client needs to save the new
     client_verify_data and server_verify_data values.

3.6.  Server Behavior: Initial Handshake

  Note that this section and Section 3.7 apply to both full handshakes
  and session-resumption handshakes.

  o  When a ClientHello is received, the server MUST check if it
     includes the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV.  If it does,
     set the secure_renegotiation flag to TRUE.








Rescorla, et al.             Standards Track                    [Page 7]

RFC 5746               TLS Renegotiation Extension         February 2010


  o  The server MUST check if the "renegotiation_info" extension is
     included in the ClientHello.  If the extension is present, set
     secure_renegotiation flag to TRUE.  The server MUST then verify
     that the length of the "renegotiated_connection" field is zero,
     and if it is not, MUST abort the handshake.

  o  If neither the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV nor the
     "renegotiation_info" extension was included, set the
     secure_renegotiation flag to FALSE.  In this case, some servers
     may want to terminate the handshake instead of continuing; see
     Section 4.3 for discussion.

  o  If the secure_renegotiation flag is set to TRUE, the server MUST
     include an empty "renegotiation_info" extension in the ServerHello
     message.

  o  When the handshake has completed, the server needs to save the
     client_verify_data and server_verify_data values for future use.

  TLS servers implementing this specification MUST ignore any unknown
  extensions offered by the client and they MUST accept version numbers
  higher than their highest version number and negotiate the highest
  common version.  These two requirements reiterate preexisting
  requirements in RFC 5246 and are merely stated here in the interest
  of forward compatibility.

  Note that sending a "renegotiation_info" extension in response to a
  ClientHello containing only the SCSV is an explicit exception to the
  prohibition in RFC 5246, Section 7.4.1.4, on the server sending
  unsolicited extensions and is only allowed because the client is
  signaling its willingness to receive the extension via the
  TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV.  TLS implementations MUST
  continue to comply with Section 7.4.1.4 for all other extensions.

3.7.  Server Behavior: Secure Renegotiation

  This text applies if the connection's "secure_renegotiation" flag is
  set to TRUE (if it is set to FALSE, see Section 4.4).

  o  When a ClientHello is received, the server MUST verify that it
     does not contain the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV.  If
     the SCSV is present, the server MUST abort the handshake.

  o  The server MUST verify that the "renegotiation_info" extension is
     present; if it is not, the server MUST abort the handshake.






Rescorla, et al.             Standards Track                    [Page 8]

RFC 5746               TLS Renegotiation Extension         February 2010


  o  The server MUST verify that the value of the
     "renegotiated_connection" field is equal to the saved
     client_verify_data value; if it is not, the server MUST abort the
     handshake.

  o  The server MUST include a "renegotiation_info" extension
     containing the saved client_verify_data and server_verify_data in
     the ServerHello.

  o  When the handshake has completed, the server needs to save the new
     client_verify_data and server_verify_data values.

4.  Backward Compatibility

  Existing implementations that do not support this extension are
  widely deployed and, in general, must interoperate with newer
  implementations that do support it.  This section describes
  considerations for backward compatible interoperation.

4.1.  Client Considerations

  If a client offers the "renegotiation_info" extension or the
  TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV and the server does not reply
  with "renegotiation_info" in the ServerHello, then this indicates
  that the server does not support secure renegotiation.  Because some
  attacks (see Section 1) look like a single handshake to the client,
  the client cannot determine whether or not the connection is under
  attack.  Note, however, that merely because the server does not
  acknowledge the extension does not mean that it is vulnerable; it
  might choose to reject all renegotiations and simply not signal it.
  However, it is not possible for the client to determine purely via
  TLS mechanisms whether or not this is the case.

  If clients wish to ensure that such attacks are impossible, they need
  to terminate the connection immediately upon failure to receive the
  extension without completing the handshake.  Such clients MUST
  generate a fatal "handshake_failure" alert prior to terminating the
  connection.  However, it is expected that many TLS servers that do
  not support renegotiation (and thus are not vulnerable) will not
  support this extension either, so in general, clients that implement
  this behavior will encounter interoperability problems.  There is no
  set of client behaviors that will guarantee security and achieve
  maximum interoperability during the transition period.  Clients need
  to choose one or the other preference when dealing with potentially
  un-upgraded servers.






Rescorla, et al.             Standards Track                    [Page 9]

RFC 5746               TLS Renegotiation Extension         February 2010


4.2.  Client Behavior: Legacy (Insecure) Renegotiation

  This text applies if the connection's "secure_renegotiation" flag is
  set to FALSE.

  It is possible that un-upgraded servers will request that the client
  renegotiate.  It is RECOMMENDED that clients refuse this
  renegotiation request.  Clients that do so MUST respond to such
  requests with a "no_renegotiation" alert (RFC 5246 requires this
  alert to be at the "warning" level).  It is possible that the
  apparently un-upgraded server is in fact an attacker who is then
  allowing the client to renegotiate with a different, legitimate,
  upgraded server.  If clients nevertheless choose to renegotiate, they
  MUST behave as described below.

  Clients that choose to renegotiate MUST provide either the
  TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV or "renegotiation_info" in
  their ClientHello.  In a legitimate renegotiation with an un-upgraded
  server, that server should ignore both of these signals.  However, if
  the server (incorrectly) fails to ignore extensions, sending the
  "renegotiation_info" extension may cause a handshake failure.  Thus,
  it is permitted, though NOT RECOMMENDED, for the client to simply
  send the SCSV.  This is the only situation in which clients are
  permitted to not send the "renegotiation_info" extension in a
  ClientHello that is used for renegotiation.

  Note that in the case of a downgrade attack, if this is an initial
  handshake from the server's perspective, then use of the SCSV from
  the client precludes detection of this attack by the server (if this
  is a renegotiation from the server's perspective, then it will detect
  the attack).  However, the attack will be detected by the client when
  the server sends an empty "renegotiation_info" extension and the
  client is expecting one containing the previous verify_data.  By
  contrast, if the client sends the "renegotiation_info" extension,
  then the server will immediately detect the attack.

  When the ServerHello is received, the client MUST verify that it does
  not contain the "renegotiation_info" extension.  If it does, the
  client MUST abort the handshake.  (Because the server has already
  indicated it does not support secure renegotiation, the only way that
  this can happen is if the server is broken or there is an attack.)

4.3.  Server Considerations

  If the client does not offer the "renegotiation_info" extension or
  the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV, then this indicates that
  the client does not support secure renegotiation.  Although the
  attack described in Section 1 looks like two handshakes to the



Rescorla, et al.             Standards Track                   [Page 10]

RFC 5746               TLS Renegotiation Extension         February 2010


  server, other attacks may be possible in which the renegotiation is
  seen only by the client.  If servers wish to ensure that such attacks
  are impossible, they need to terminate the connection immediately
  upon failure to negotiate the use of secure renegotiation.  Servers
  that do choose to allow connections from unpatched clients can still
  prevent the attack described in Section 1 by refusing to renegotiate
  over those connections.

  In order to enable clients to probe, even servers that do not support
  renegotiation MUST implement the minimal version of the extension
  described in this document for initial handshakes, thus signaling
  that they have been upgraded.

4.4.  Server Behavior: Legacy (Insecure) Renegotiation

  This text applies if the connection's "secure_renegotiation" flag is
  set to FALSE.

  It is RECOMMENDED that servers not permit legacy renegotiation.  If
  servers nevertheless do permit it, they MUST follow the requirements
  in this section.

  o  When a ClientHello is received, the server MUST verify that it
     does not contain the TLS_EMPTY_RENEGOTIATION_INFO_SCSV SCSV.  If
     the SCSV is present, the server MUST abort the handshake.

  o  The server MUST verify that the "renegotiation_info" extension is
     not present; if it is, the server MUST abort the handshake.

4.5.  SSLv3

  While SSLv3 is not a protocol under IETF change control (see
  [SSLv3]), it was the original basis for TLS and most TLS
  implementations also support SSLv3.  The IETF encourages SSLv3
  implementations to adopt the "renegotiation_info" extension and SCSV
  as defined in this document.  The semantics of the SCSV and extension
  are identical to TLS stacks except for the size of the verify_data
  values, which are 36 bytes long each.  Note that this will require
  adding at least minimal extension processing to such stacks.  Clients
  that support SSLv3 and offer secure renegotiation (either via SCSV or
  "renegotiation_info") MUST accept the "renegotiation_info" extension
  from the server, even if the server version is {0x03, 0x00}, and
  behave as described in this specification.  TLS servers that support
  secure renegotiation and support SSLv3 MUST accept SCSV or the
  "renegotiation_info" extension and respond as described in this
  specification even if the offered client version is {0x03, 0x00}.
  SSLv3 does not define the "no_renegotiation" alert (and does




Rescorla, et al.             Standards Track                   [Page 11]

RFC 5746               TLS Renegotiation Extension         February 2010


  not offer a way to indicate a refusal to renegotiate at a "warning"
  level).  SSLv3 clients that refuse renegotiation SHOULD use a fatal
  handshake_failure alert.

5.  Security Considerations

  The extension described in this document prevents an attack on TLS.
  If this extension is not used, TLS renegotiation is subject to an
  attack in which the attacker can inject their own conversation with
  the TLS server as a prefix to the client's conversation.  This attack
  is invisible to the client and looks like an ordinary renegotiation
  to the server.  The extension defined in this document allows
  renegotiation to be performed safely.  Servers SHOULD NOT allow
  clients to renegotiate without using this extension.  Many servers
  can mitigate this attack simply by refusing to renegotiate at all.

  While this extension mitigates the man-in-the-middle attack described
  in the overview, it does not resolve all possible problems an
  application may face if it is unaware of renegotiation.  For example,
  during renegotiation, either the client or the server can present a
  different certificate than was used earlier.  This may come as a
  surprise to application developers (who might have expected, for
  example, that a "getPeerCertificates()" API call returns the same
  value if called twice), and might be handled in an insecure way.

  TLS implementations SHOULD provide a mechanism to disable and enable
  renegotiation.

  TLS implementers are encouraged to clearly document how renegotiation
  interacts with the APIs offered to applications (for example, which
  API calls might return different values on different calls, or which
  callbacks might get called multiple times).

  To make life simpler for applications that use renegotiation but do
  not expect the certificate to change once it has been authenticated,
  TLS implementations may also wish to offer the applications the
  option to abort the renegotiation if the peer tries to authenticate
  with a different certificate and/or different server name (in the
  server_name extension) than was used earlier.  TLS implementations
  may alternatively offer the option to disable renegotiation once the
  client certificate has been authenticated.  However, enabling these
  options by default for all applications could break existing
  applications that depend on using renegotiation to change from one
  certificate to another.  (For example, long-lived TLS connections
  could change to a renewed certificate; or renegotiation could select
  a different cipher suite that requires using a different
  certificate.)




Rescorla, et al.             Standards Track                   [Page 12]

RFC 5746               TLS Renegotiation Extension         February 2010


  Finally, designers of applications that depend on renegotiation are
  reminded that many TLS APIs represent application data as a simple
  octet stream; applications may not be able to determine exactly which
  application data octets were received before, during, or after
  renegotiation.  Especially if the peer presents a different
  certificate during renegotiation, care is needed when specifying how
  the application should handle the data.

6.  IANA Considerations

  IANA has added the extension code point 65281 (0xff01), which has
  been used for prototype implementations, for the "renegotiation_info"
  extension to the TLS ExtensionType values registry.

  IANA has added TLS cipher suite number 0x00,0xFF with name
  TLS_EMPTY_RENEGOTIATION_INFO_SCSV to the TLS Cipher Suite registry.

7.  Acknowledgements

  This vulnerability was originally discovered by Marsh Ray and
  independently rediscovered by Martin Rex.  The general concept behind
  the extension described here was independently invented by Steve
  Dispensa, Nasko Oskov, and Eric Rescorla with refinements from Nelson
  Bolyard, Pasi Eronen, Michael D'Errico, Stephen Farrell, Michael
  Gray, David-Sarah Hopwood, Ben Laurie, David Makepeace, Bodo Moeller,
  Martin Rex, Peter Robinson, Jesse Walker, Nico Williams, and other
  members of the Project Mogul team and the TLS WG.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

8.2.  Informative References

  [RFC4347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security", RFC 4347, April 2006.

  [RFC5056]  Williams, N., "On the Use of Channel Bindings to Secure
             Channels", RFC 5056, November 2007.






Rescorla, et al.             Standards Track                   [Page 13]

RFC 5746               TLS Renegotiation Extension         February 2010


  [TLS-CHANNEL-BINDINGS]
             Altman, J., Williams, N., and L. Zhu, "Channel Bindings
             for TLS", Work in Progress, October 2009.

  [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

  [RFC2965]  Kristol, D. and L. Montulli, "HTTP State Management
             Mechanism", RFC 2965, October 2000.

  [Ray09]    Ray, M., "Authentication Gap in TLS Renegotiation",
             November 2009, <http://extendedsubset.com/?p=8>.

  [SSLv3]    Freier, A., Karlton, P., and P. Kocher, "The SSL Protocol
             Version 3.0", Work in Progress, November 1996.





































Rescorla, et al.             Standards Track                   [Page 14]

RFC 5746               TLS Renegotiation Extension         February 2010


Authors' Addresses

  Eric Rescorla
  RTFM, Inc.
  2064 Edgewood Drive
  Palo Alto, CA  94303
  USA

  EMail:  [email protected]


  Marsh Ray
  PhoneFactor
  7301 W 129th Street
  Overland Park, KS  66213
  USA

  EMail:  [email protected]


  Steve Dispensa
  PhoneFactor
  7301 W 129th Street
  Overland Park, KS  66213
  USA

  EMail:  [email protected]


  Nasko Oskov
  Microsoft
  One Microsoft Way
  Redmond, WA  98052
  USA

  EMail:  [email protected]















Rescorla, et al.             Standards Track                   [Page 15]