Network Working Group                                      S. Hollenbeck
Request for Comments: 5734                                VeriSign, Inc.
STD: 69                                                      August 2009
Obsoletes: 4934
Category: Standards Track


      Extensible Provisioning Protocol (EPP) Transport over TCP

Abstract

  This document describes how an Extensible Provisioning Protocol (EPP)
  session is mapped onto a single Transmission Control Protocol (TCP)
  connection.  This mapping requires use of the Transport Layer
  Security (TLS) protocol to protect information exchanged between an
  EPP client and an EPP server.  This document obsoletes RFC 4934.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.
















Hollenbeck                  Standards Track                     [Page 1]

RFC 5734                   EPP TCP Transport                 August 2009


Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................2
  2. Session Management ..............................................2
  3. Message Exchange ................................................3
  4. Data Unit Format ................................................6
  5. Transport Considerations ........................................6
  6. Internationalization Considerations .............................7
  7. IANA Considerations .............................................7
  8. Security Considerations .........................................7
  9. TLS Usage Profile ...............................................8
  10. Acknowledgements ..............................................11
  11. References ....................................................11
     11.1. Normative References .....................................11
     11.2. Informative References ...................................12
  Appendix A.  Changes from RFC 4934 ................................13

1.  Introduction

  This document describes how the Extensible Provisioning Protocol
  (EPP) is mapped onto a single client-server TCP connection.  Security
  services beyond those defined in EPP are provided by the Transport
  Layer Security (TLS) Protocol [RFC2246].  EPP is described in
  [RFC5730].  TCP is described in [RFC0793].  This document obsoletes
  RFC 4934 [RFC4934].

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Session Management

  Mapping EPP session management facilities onto the TCP service is
  straightforward.  An EPP session first requires creation of a TCP
  connection between two peers, one that initiates the connection
  request and one that responds to the connection request.  The
  initiating peer is called the "client", and the responding peer is
  called the "server".  An EPP server MUST listen for TCP connection
  requests on a standard TCP port assigned by IANA.

  The client MUST issue an active OPEN call, specifying the TCP port
  number on which the server is listening for EPP connection attempts.
  The EPP server MUST return an EPP <greeting> to the client after the
  TCP session has been established.




Hollenbeck                  Standards Track                     [Page 2]

RFC 5734                   EPP TCP Transport                 August 2009


  An EPP session is normally ended by the client issuing an EPP
  <logout> command.  A server receiving an EPP <logout> command MUST
  end the EPP session and close the TCP connection with a CLOSE call.
  A client MAY end an EPP session by issuing a CLOSE call.

  A server MAY limit the life span of an established TCP connection.
  EPP sessions that are inactive for more than a server-defined period
  MAY be ended by a server issuing a CLOSE call.  A server MAY also
  close TCP connections that have been open and active for longer than
  a server-defined period.

3.  Message Exchange

  With the exception of the EPP server greeting, EPP messages are
  initiated by the EPP client in the form of EPP commands.  An EPP
  server MUST return an EPP response to an EPP command on the same TCP
  connection that carried the command.  If the TCP connection is closed
  after a server receives and successfully processes a command but
  before the response can be returned to the client, the server MAY
  attempt to undo the effects of the command to ensure a consistent
  state between the client and the server.  EPP commands are
  idempotent, so processing a command more than once produces the same
  net effect on the repository as successfully processing the command
  once.

  An EPP client streams EPP commands to an EPP server on an established
  TCP connection.  A client MUST NOT distribute commands from a single
  EPP session over multiple TCP connections.  A client MAY establish
  multiple TCP connections to support multiple EPP sessions with each
  session mapped to a single connection.  A server SHOULD limit a
  client to a maximum number of TCP connections based on server
  capabilities and operational load.

  EPP describes client-server interaction as a command-response
  exchange where the client sends one command to the server and the
  server returns one response to the client.  A client might be able to
  realize a slight performance gain by pipelining (sending more than
  one command before a response for the first command is received)
  commands with TCP transport, but this feature does not change the
  basic single command, single response operating mode of the core
  protocol.

  Each EPP data unit MUST contain a single EPP message.  Commands MUST
  be processed independently and in the same order as sent from the
  client.






Hollenbeck                  Standards Track                     [Page 3]

RFC 5734                   EPP TCP Transport                 August 2009


  A server SHOULD impose a limit on the amount of time required for a
  client to issue a well-formed EPP command.  A server SHOULD end an
  EPP session and close an open TCP connection if a well-formed command
  is not received within the time limit.

  A general state machine for an EPP server is described in Section 2
  of [RFC5730].  General client-server message exchange using TCP
  transport is illustrated in Figure 1.











































Hollenbeck                  Standards Track                     [Page 4]

RFC 5734                   EPP TCP Transport                 August 2009


                      Client                  Server
                 |                                     |
                 |                Connect              |
                 | >>------------------------------->> |
                 |                                     |
                 |             Send Greeting           |
                 | <<-------------------------------<< |
                 |                                     |
                 |             Send <login>            |
                 | >>------------------------------->> |
                 |                                     |
                 |             Send Response           |
                 | <<-------------------------------<< |
                 |                                     |
                 |             Send Command            |
                 | >>------------------------------->> |
                 |                                     |
                 |             Send Response           |
                 | <<-------------------------------<< |
                 |                                     |
                 |            Send Command X           |
                 | >>------------------------------->> |
                 |                                     |
                 |    Send Command Y                   |
                 | >>---------------+                  |
                 |                  |                  |
                 |                  |                  |
                 |            Send Response X          |
                 | <<---------------(---------------<< |
                 |                  |                  |
                 |                  |                  |
                 |                  +--------------->> |
                 |                                     |
                 |            Send Response Y          |
                 | <<-------------------------------<< |
                 |                                     |
                 |             Send <logout>           |
                 | >>------------------------------->> |
                 |                                     |
                 |     Send Response & Disconnect      |
                 | <<-------------------------------<< |
                 |                                     |

              Figure 1: TCP Client-Server Message Exchange







Hollenbeck                  Standards Track                     [Page 5]

RFC 5734                   EPP TCP Transport                 August 2009


4.  Data Unit Format

  The EPP data unit contains two fields: a 32-bit header that describes
  the total length of the data unit, and the EPP XML instance.  The
  length of the EPP XML instance is determined by subtracting four
  octets from the total length of the data unit.  A receiver must
  successfully read that many octets to retrieve the complete EPP XML
  instance before processing the EPP message.

  EPP Data Unit Format (one tick mark represents one bit position):

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Total Length                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         EPP XML Instance                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+//-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Total Length (32 bits): The total length of the EPP data unit
  measured in octets in network (big endian) byte order.  The octets
  contained in this field MUST be included in the total length
  calculation.

  EPP XML Instance (variable length): The EPP XML instance carried in
  the data unit.

5.  Transport Considerations

  Section 2.1 of the EPP core protocol specification [RFC5730]
  describes considerations to be addressed by protocol transport
  mappings.  This document addresses each of the considerations using a
  combination of features described in this document and features
  provided by TCP as follows:

  -  TCP includes features to provide reliability, flow control,
     ordered delivery, and congestion control.  Section 1.5 of RFC 793
     [RFC0793] describes these features in detail; congestion control
     principles are described further in RFC 2581 [RFC2581] and RFC
     2914 [RFC2914].  TCP is a connection-oriented protocol, and
     Section 2 of this document describes how EPP sessions are mapped
     to TCP connections.

  -  Sections 2 and 3 of this document describe how the stateful nature
     of EPP is preserved through managed sessions and controlled
     message exchanges.





Hollenbeck                  Standards Track                     [Page 6]

RFC 5734                   EPP TCP Transport                 August 2009


  -  Section 3 of this document notes that command pipelining is
     possible with TCP, though batch-oriented processing (combining
     multiple EPP commands in a single data unit) is not permitted.

  -  Section 4 of this document describes features to frame data units
     by explicitly specifying the number of octets used to represent a
     data unit.

6.  Internationalization Considerations

  This document does not introduce or present any internationalization
  or localization issues.

7.  IANA Considerations

  System port number 700 has been assigned by the IANA for mapping EPP
  onto TCP.

  User port number 3121 (which was used for development and test
  purposes) has been reclaimed by the IANA.

8.  Security Considerations

  EPP as-is provides only simple client authentication services using
  identifiers and plain text passwords.  A passive attack is sufficient
  to recover client identifiers and passwords, allowing trivial command
  forgery.  Protection against most other common attacks MUST be
  provided by other layered protocols.

  When layered over TCP, the Transport Layer Security (TLS) Protocol
  version 1.0 [RFC2246] or its successors (such as TLS 1.2 [RFC5246]),
  using the latest version supported by both parties, MUST be used to
  provide integrity, confidentiality, and mutual strong client-server
  authentication.  Implementations of TLS often contain a weak
  cryptographic mode that SHOULD NOT be used to protect EPP.  Clients
  and servers desiring high security SHOULD instead use TLS with
  cryptographic algorithms that are less susceptible to compromise.

  Authentication using the TLS Handshake Protocol confirms the identity
  of the client and server machines.  EPP uses an additional client
  identifier and password to identify and authenticate the client's
  user identity to the server, supplementing the machine authentication
  provided by TLS.  The identity described in the client certificate
  and the identity described in the EPP client identifier can differ,
  as a server can assign multiple user identities for use from any
  particular client machine.  Acceptable certificate identities MUST be





Hollenbeck                  Standards Track                     [Page 7]

RFC 5734                   EPP TCP Transport                 August 2009


  negotiated between client operators and server operators using an
  out-of-band mechanism.  Presented certificate identities MUST match
  negotiated identities before EPP service is granted.

  There is a risk of login credential compromise if a client does not
  properly identify a server before attempting to establish an EPP
  session.  Before sending login credentials to the server, a client
  needs to confirm that the server certificate received in the TLS
  handshake is an expected certificate for the server.  A client also
  needs to confirm that the greeting received from the server contains
  expected identification information.  After establishing a TLS
  session and receiving an EPP greeting on a protected TCP connection,
  clients MUST compare the certificate subject and/or subjectAltName to
  expected server identification information and abort processing if a
  mismatch is detected.  If certificate validation is successful, the
  client then needs to ensure that the information contained in the
  received certificate and greeting is consistent and appropriate.  As
  described above, both checks typically require an out-of-band
  exchange of information between client and server to identify
  expected values before in-band connections are attempted.

  EPP TCP servers are vulnerable to common TCP denial-of-service
  attacks including TCP SYN flooding.  Servers SHOULD take steps to
  minimize the impact of a denial-of-service attack using combinations
  of easily implemented solutions, such as deployment of firewall
  technology and border router filters to restrict inbound server
  access to known, trusted clients.

9.  TLS Usage Profile

  The client should initiate a connection to the server and then send
  the TLS Client Hello to begin the TLS handshake.  When the TLS
  handshake has finished, the client can then send the first EPP
  message.

  TLS implementations are REQUIRED to support the mandatory cipher
  suite specified in the implemented version:

  o  TLS 1.0 [RFC2246]: TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

  o  TLS 1.1 [RFC4346]: TLS_RSA_WITH_3DES_EDE_CBC_SHA

  o  TLS 1.2 [RFC5246]: TLS_RSA_WITH_AES_128_CBC_SHA

  This document is assumed to apply to future versions of TLS, in which
  case the mandatory cipher suite for the implemented version MUST be
  supported.




Hollenbeck                  Standards Track                     [Page 8]

RFC 5734                   EPP TCP Transport                 August 2009


  Mutual client and server authentication using the TLS Handshake
  Protocol is REQUIRED.  Signatures on the complete certification path
  for both client machine and server machine MUST be validated as part
  of the TLS handshake.  Information included in the client and server
  certificates, such as validity periods and machine names, MUST also
  be validated.  A complete description of the issues associated with
  certification path validation can be found in RFC 5280 [RFC5280].
  EPP service MUST NOT be granted until successful completion of a TLS
  handshake and certificate validation, ensuring that both the client
  machine and the server machine have been authenticated and
  cryptographic protections are in place.

  If the client has external information as to the expected identity of
  the server, the server name check MAY be omitted.  For instance, a
  client may be connecting to a machine whose address and server name
  are dynamic, but the client knows the certificate that the server
  will present.  In such cases, it is important to narrow the scope of
  acceptable certificates as much as possible in order to prevent man-
  in-the-middle attacks.  In special cases, it might be appropriate for
  the client to simply ignore the server's identity, but it needs to be
  understood that this leaves the connection open to active attack.

  During the TLS negotiation, the EPP client MUST check its
  understanding of the server name / IP address against the server's
  identity as presented in the server Certificate message in order to
  prevent man-in-the-middle attacks.  In this section, the client's
  understanding of the server's identity is called the "reference
  identity".  Checking is performed according to the following rules in
  the specified order:

  o  If the reference identity is a server name:

     *  If a subjectAltName extension of the dNSName [CCITT.X509.1988]
        type is present in the server's certificate, then it SHOULD be
        used as the source of the server's identity.  Matching is
        performed as described in Section 7.2 of [RFC5280], with the
        exception that wildcard matching (see below) is allowed for
        dNSName type.  If the certificate contains multiple names
        (e.g., more than one dNSName field), then a match with any one
        of the fields is considered acceptable.

     *  The '*' (ASCII 42) wildcard character is allowed in
        subjectAltName values of type dNSName, and then only as the
        left-most (least significant) DNS label in that value.  This
        wildcard matches any left-most DNS label in the server name.
        That is, the subject *.example.com matches the server names
        a.example.com and b.example.com, but does not match example.com
        or a.b.example.com.



Hollenbeck                  Standards Track                     [Page 9]

RFC 5734                   EPP TCP Transport                 August 2009


     *  The server's identity MAY also be verified by comparing the
        reference identity to the Common Name (CN) [RFC4519] value in
        the leaf Relative Distinguished Name (RDN) of the subjectName
        field of the server's certificate.  This comparison is
        performed using the rules for comparison of DNS names in bullet
        1 above (including wildcard matching).  Although the use of the
        Common Name value is existing practice, it is deprecated, and
        Certification Authorities are encouraged to provide
        subjectAltName values instead.  Note that the TLS
        implementation may represent DNs in certificates according to
        X.500 or other conventions.  For example, some X.500
        implementations order the RDNs in a DN using a left-to-right
        (most significant to least significant) convention instead of
        LDAP's right-to-left convention.

  o  If the reference identity is an IP address:

     *  The iPAddress subjectAltName SHOULD be used by the client for
        comparison.  In such a case, the reference identity MUST be
        converted to the "network byte order" octet string
        representation.  For IP Version 4 (as specified in RFC 791
        [RFC0791]), the octet string will contain exactly four octets.
        For IP Version 6 (as specified in RFC 2460 [RFC2460]), the
        octet string will contain exactly sixteen octets.  This octet
        string is then compared against subjectAltName values of type
        iPAddress.  A match occurs if the reference identity octet
        string and value octet strings are identical.

  If the server identity check fails, user-oriented clients SHOULD
  either notify the user (clients MAY give the user the opportunity to
  continue with the EPP session in this case) or close the transport
  connection and indicate that the server's identity is suspect.
  Automated clients SHOULD return or log an error indicating that the
  server's identity is suspect and/or SHOULD close the transport
  connection.  Automated clients MAY provide a configuration setting
  that disables this check, but MUST provide a setting which enables
  it.

  During the TLS negotiation, the EPP server MUST verify that the
  client certificate matches the reference identity previously
  negotiated out of band, as specified in Section 8.  The server should
  match the entire subject name or the subjectAltName as described in
  RFC 5280.  The server MAY enforce other restrictions on the
  subjectAltName, for example if it knows that a particular client is
  always connecting from a particular hostname / IP address.






Hollenbeck                  Standards Track                    [Page 10]

RFC 5734                   EPP TCP Transport                 August 2009


  All EPP messages MUST be sent as TLS "application data".  It is
  possible that multiple EPP messages are contained in one TLS record,
  or that an EPP message is transferred in multiple TLS records.

  When no data is received from a connection for a long time (where the
  application decides what "long" means), a server MAY close the
  connection.  The server MUST attempt to initiate an exchange of
  close_notify alerts with the client before closing the connection.
  Servers that are unprepared to receive any more data MAY close the
  connection after sending the close_notify alert, thus generating an
  incomplete close on the client side.

10.  Acknowledgements

  RFC 3734 is a product of the PROVREG working group, which suggested
  improvements and provided many invaluable comments.  The author
  wishes to acknowledge the efforts of WG chairs Edward Lewis and Jaap
  Akkerhuis for their process and editorial contributions.  RFC 4934
  and this document are individual submissions, based on the work done
  in RFC 3734.

  Specific suggestions that have been incorporated into this document
  were provided by Chris Bason, Randy Bush, Patrik Faltstrom, Ned
  Freed, James Gould, Dan Manley, and John Immordino.

11.  References

11.1.  Normative References

  [CCITT.X509.1988]
             International Telephone and Telegraph Consultative
             Committee, "Information Technology - Open Systems
             Interconnection - The Directory: Authentication
             Framework", CCITT Recommendation X.509, November 1988.

  [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
             September 1981.

  [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, September 1981.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2246]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, January 1999.





Hollenbeck                  Standards Track                    [Page 11]

RFC 5734                   EPP TCP Transport                 August 2009


  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC4519]  Sciberras, A., "Lightweight Directory Access Protocol
             (LDAP): Schema for User Applications", RFC 4519,
             June 2006.

  [RFC5730]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
             STD 69, RFC 5730, August 2009.

11.2.  Informative References

  [RFC2581]  Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
             Control", RFC 2581, April 1999.

  [RFC2914]  Floyd, S., "Congestion Control Principles", BCP 41,
             RFC 2914, September 2000.

  [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.1", RFC 4346, April 2006.

  [RFC4934]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
             Transport Over TCP", RFC 4934, May 2007.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, May 2008.




















Hollenbeck                  Standards Track                    [Page 12]

RFC 5734                   EPP TCP Transport                 August 2009


Appendix A.  Changes from RFC 4934

  1.  Changed "This document obsoletes RFC 3734" to "This document
      obsoletes RFC 4934".

  2.  Replaced references to RFC 3280 with references to 5280.

  3.  Replaced references to RFC 3734 with references to 4934.

  4.  Updated references to RFC 4346 and TLS 1.1 with references to
      5246 and TLS 1.2.

  5.  Replaced references to RFC 4930 with references to 5730.

  6.  Added clarifying TLS Usage Profile section and included
      references.

  7.  Moved the paragraph that begins with "Mutual client and server
      authentication" from the Security Considerations section to the
      TLS Usage Profile section.

Author's Address

  Scott Hollenbeck
  VeriSign, Inc.
  21345 Ridgetop Circle
  Dulles, VA  20166-6503
  US

  EMail: [email protected]





















Hollenbeck                  Standards Track                    [Page 13]