Internet Engineering Task Force (IETF)                       E. Rescorla
Request for Comments: 5705                                    RTFM, Inc.
Category: Standards Track                                     March 2010
ISSN: 2070-1721


     Keying Material Exporters for Transport Layer Security (TLS)

Abstract

  A number of protocols wish to leverage Transport Layer Security (TLS)
  to perform key establishment but then use some of the keying material
  for their own purposes.  This document describes a general mechanism
  for allowing that.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/5705.

Copyright Notice

  Copyright (c) 2010 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow



Rescorla                     Standards Track                    [Page 1]

RFC 5705                      TLS Exporters                   March 2010


  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
  2.  Conventions Used In This Document . . . . . . . . . . . . . . . 3
  3.  Binding to Application Contexts . . . . . . . . . . . . . . . . 3
  4.  Exporter Definition . . . . . . . . . . . . . . . . . . . . . . 4
  5.  Security Considerations . . . . . . . . . . . . . . . . . . . . 5
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 6
  7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 6
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 7
    8.1.  Normative References  . . . . . . . . . . . . . . . . . . . 7
    8.2.  Informative References  . . . . . . . . . . . . . . . . . . 7

1.  Introduction

  Note:  The mechanism described in this document was previously known
         as "TLS Extractors" but was changed to avoid a name conflict
         with the use of the term "Extractor" in the cryptographic
         community.

  A number of protocols wish to leverage Transport Layer Security (TLS)
  [RFC5246] or Datagram TLS (DTLS) [RFC4347] to perform key
  establishment but then use some of the keying material for their own
  purposes.  A typical example is DTLS-SRTP [DTLS-SRTP], a key
  management scheme for the Secure Real-time Transport Protocol (SRTP)
  that uses DTLS to perform a key exchange and negotiate the SRTP
  [RFC3711] protection suite and then uses the DTLS master_secret to
  generate the SRTP keys.

  These applications imply a need to be able to export keying material
  (later called Exported Keying Material or EKM) from TLS/DTLS to an
  application or protocol residing at an upper layer, and to securely
  agree on the upper-layer context where the keying material will be
  used.  The mechanism for exporting the keying material has the
  following requirements:

  o  Both client and server need to be able to export the same EKM
     value.





Rescorla                     Standards Track                    [Page 2]

RFC 5705                      TLS Exporters                   March 2010


  o  EKM values should be indistinguishable from random data to
     attackers who don't know the master_secret.

  o  It should be possible to export multiple EKM values from the same
     TLS/DTLS association.

  o  Knowing one EKM value should not reveal any useful information
     about the master_secret or about other EKM values.

  The mechanism described in this document is intended to fulfill these
  requirements.  This mechanism is compatible with all versions of TLS.

2.  Conventions Used In This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Binding to Application Contexts

  In addition to using an exporter to obtain keying material, an
  application using the keying material has to securely establish the
  upper-layer context where the keying material will be used.  The
  details of this context depend on the application, but it could
  include things such as algorithms and parameters that will be used
  with the keys, identifier(s) for the endpoint(s) who will use the
  keys, identifier(s) for the session(s) where the keys will be used,
  and the lifetime(s) for the context and/or keys.  At a minimum, there
  should be some mechanism for signaling that an exporter will be used.

  This specification does not mandate a single mechanism for agreeing
  on such context; instead, there are several possibilities that can be
  used (and can complement each other).  For example:

  o  Information about the upper-layer context can be included in the
     optional data after the exporter label (see Section 4).

  o  Information about the upper-layer context can be exchanged in TLS
     extensions included in the ClientHello and ServerHello messages.
     This approach is used in [DTLS-SRTP].  The handshake messages are
     protected by the Finished messages, so once the handshake
     completes, the peers will have the same view of the information.
     Extensions also allow a limited form of negotiation: for example,
     the TLS client could propose several alternatives for some context
     parameters, and the TLS server could select one of them.

  o  The upper-layer protocol can include its own handshake, which can
     be protected using the keys exported by TLS.



Rescorla                     Standards Track                    [Page 3]

RFC 5705                      TLS Exporters                   March 2010


  No matter how the context is agreed, it is required that it has one
  part that indicates which application will use the exported keys.
  This part is the disambiguating label string (see Section 4).

  It is important to note that just embedding TLS messages in the
  upper-layer protocol may not automatically secure all the important
  context information, since the upper-layer messages are not covered
  by TLS Finished messages.

4.  Exporter Definition

  The output of the exporter is intended to be used in a single scope,
  which is associated with the TLS session, the label, and the context
  value.

  The exporter takes three input values:

  o  a disambiguating label string,

  o  a per-association context value provided by the application using
     the exporter, and

  o  a length value.

  If no context is provided, it then computes:

          PRF(SecurityParameters.master_secret, label,
              SecurityParameters.client_random +
              SecurityParameters.server_random
              )[length]

  If context is provided, it computes:

          PRF(SecurityParameters.master_secret, label,
              SecurityParameters.client_random +
              SecurityParameters.server_random +
              context_value_length + context_value
              )[length]

  Where PRF is the TLS Pseudorandom Function in use for the session.
  The output is a pseudorandom bit string of length bytes generated
  from the master_secret.  (This construction allows for
  interoperability with older exporter-type constructions which do not
  use context values, e.g., [RFC5281]).

  Labels here have the same definition as in TLS, i.e., an ASCII string
  with no terminating NULL.  Label values beginning with "EXPERIMENTAL"
  MAY be used for private use without registration.  All other label



Rescorla                     Standards Track                    [Page 4]

RFC 5705                      TLS Exporters                   March 2010


  values MUST be registered via Specification Required as described by
  RFC 5226 [RFC5226].  Note that exporter labels have the potential to
  collide with existing PRF labels.  In order to prevent this, labels
  SHOULD begin with "EXPORTER".  This is not a MUST because there are
  existing uses that have labels which do not begin with this prefix.

  The context value allows the application using the exporter to mix
  its own data with the TLS PRF for the exporter output.  One example
  of where this might be useful is an authentication setting where the
  client credentials are valid for more than one identity; the context
  value could then be used to mix the expected identity into the keying
  material, thus preventing substitution attacks.  The context value
  length is encoded as an unsigned, 16-bit quantity (uint16; see
  [RFC5246], Section 4.4) representing the length of the context value.
  The context MAY be zero length.  Because the context value is mixed
  with the master_secret via the PRF, it is safe to mix confidential
  information into the exporter, provided that the master_secret will
  not be known to the attacker.

5.  Security Considerations

  The prime security requirement for exporter outputs is that they be
  independent.  More formally, after a particular TLS session, if an
  adversary is allowed to choose multiple (label, context value) pairs
  and is given the output of the PRF for those values, the attacker is
  still unable to distinguish between the output of the PRF for a
  (label, context value) pair (different from the ones that it
  submitted) and a random value of the same length.  In particular,
  there may be settings, such as the one described in Section 4, where
  the attacker can control the context value; such an attacker MUST NOT
  be able to predict the output of the exporter.  Similarly, an
  attacker who does not know the master secret should not be able to
  distinguish valid exporter outputs from random values.  The current
  set of TLS PRFs is believed to meet this objective, provided the
  master secret is randomly generated.

  Because an exporter produces the same value if applied twice with the
  same label to the same master_secret, it is critical that two EKM
  values generated with the same label not be used for two different
  purposes -- hence, the requirement for IANA registration.  However,
  because exporters depend on the TLS PRF, it is not a threat to the
  use of an EKM value generated from one label to reveal an EKM value
  generated from another label.

  With certain TLS cipher suites, the TLS master secret is not
  necessarily unique to a single TLS session.  In particular, with RSA
  key exchange, a malicious party acting as TLS server in one session
  and as TLS client in another session can cause those two sessions to



Rescorla                     Standards Track                    [Page 5]

RFC 5705                      TLS Exporters                   March 2010


  have the same TLS master secret (though the sessions must be
  established simultaneously to get adequate control of the Random
  values).  Applications using the EKM need to consider this in how
  they use the EKM; in some cases, requiring the use of other cipher
  suites (such as those using a Diffie-Hellman key exchange) may be
  advisable.

  Designing a secure mechanism that uses exporters is not necessarily
  straightforward.  This document only provides the exporter mechanism,
  but the problem of agreeing on the surrounding context and the
  meaning of the information passed to and from the exporter remains.
  Any new uses of the exporter mechanism should be subject to careful
  review.

6.  IANA Considerations

  IANA has created a TLS Exporter Label registry for this purpose.  The
  initial contents of the registry are given below:

       Value                          Reference  Note
       -----------------------------  ---------  ----
       client finished                [RFC5246]  (1)
       server finished                [RFC5246]  (1)
       master secret                  [RFC5246]  (1)
       key expansion                  [RFC5246]  (1)
       client EAP encryption          [RFC5216]
       ttls keying material           [RFC5281]
       ttls challenge                 [RFC5281]

  Note: (1) These entries are reserved and MUST NOT be used for the
  purpose described in RFC 5705, in order to avoid confusion with
  similar, but distinct, use in RFC 5246.

  Future values are allocated via the RFC 5226 Specification Required
  policy.  The label is a string consisting of printable ASCII
  characters.  IANA MUST also verify that one label is not a prefix of
  any other label.  For example, labels "key" or "master secretary" are
  forbidden.

7.  Acknowledgments

  Thanks to Pasi Eronen for valuable comments and for the contents of
  the IANA section and Section 3.  Thanks to David McGrew for helpful
  discussion of the security considerations and to Vijay Gurbani and
  Alfred Hoenes for editorial comments.






Rescorla                     Standards Track                    [Page 6]

RFC 5705                      TLS Exporters                   March 2010


8.  References

8.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5226]    Narten, T. and H. Alvestrand, "Guidelines for Writing an
               IANA Considerations Section in RFCs", BCP 26, RFC 5226,
               May 2008.

  [RFC5246]    Dierks, T. and E. Rescorla, "The Transport Layer
               Security (TLS) Protocol Version 1.2", RFC 5246,
               August 2008.

8.2.  Informative References

  [DTLS-SRTP]  McGrew, D. and E. Rescorla, "Datagram Transport Layer
               Security (DTLS) Extension to Establish Keys for Secure
               Real-time Transport Protocol (SRTP)", Work in Progress,
               February 2009.

  [RFC3711]    Baugher, M., McGrew, D., Naslund, M., Carrara, E., and
               K. Norrman, "The Secure Real-time Transport Protocol
               (SRTP)", RFC 3711, March 2004.

  [RFC4347]    Rescorla, E. and N. Modadugu, "Datagram Transport Layer
               Security", RFC 4347, April 2006.

  [RFC5216]    Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
               Authentication Protocol", RFC 5216, March 2008.

  [RFC5281]    Funk, P. and S. Blake-Wilson, "Extensible Authentication
               Protocol Tunneled Transport Layer Security Authenticated
               Protocol Version 0 (EAP-TTLSv0)", RFC 5281, August 2008.

Author's Address

  Eric Rescorla
  RTFM, Inc.
  2064 Edgewood Drive
  Palo Alto, CA  94303
  USA

  EMail: [email protected]






Rescorla                     Standards Track                    [Page 7]