Network Working Group                                            T. Kunz
Request for Comments: 5698                                Fraunhofer SIT
Category: Standards Track                                     S. Okunick
                                                   pawisda systems GmbH
                                                            U. Pordesch
                                                Fraunhofer Gesellschaft
                                                          November 2009


             Data Structure for the Security Suitability
                  of Cryptographic Algorithms (DSSC)

Abstract

  Since cryptographic algorithms can become weak over the years, it is
  necessary to evaluate their security suitability.  When signing or
  verifying data, or when encrypting or decrypting data, these
  evaluations must be considered.  This document specifies a data
  structure that enables an automated analysis of the security
  suitability of a given cryptographic algorithm at a given point of
  time, which may be in the past, the present, or the future.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.







Kunz, et al.                Standards Track                     [Page 1]

RFC 5698                          DSSC                     November 2009


  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.








































Kunz, et al.                Standards Track                     [Page 2]

RFC 5698                          DSSC                     November 2009


Table of Contents

  1. Introduction ....................................................4
     1.1. Motivation .................................................4
     1.2. Terminology ................................................5
          1.2.1. Conventions Used in This Document ...................5
     1.3. Use Cases ..................................................5
  2. Requirements and Assumptions ....................................5
     2.1. Requirements ...............................................6
     2.2. Assumptions ................................................6
  3. Data Structures .................................................7
     3.1. SecuritySuitabilityPolicy ..................................7
     3.2. PolicyName .................................................8
     3.3. Publisher ..................................................9
     3.4. PolicyIssueDate ............................................9
     3.5. NextUpdate .................................................9
     3.6. Usage ......................................................9
     3.7. Algorithm ..................................................9
     3.8. AlgorithmIdentifier .......................................10
     3.9. Evaluation ................................................10
     3.10. Parameter ................................................11
     3.11. Validity .................................................12
     3.12. Information ..............................................12
     3.13. Signature ................................................12
  4. DSSC Policies ..................................................13
  5. Definition of Parameters .......................................13
  6. Processing .....................................................14
     6.1. Inputs ....................................................14
     6.2. Verify Policy .............................................14
     6.3. Algorithm Evaluation ......................................15
     6.4. Evaluation of Parameters ..................................15
     6.5. Output ....................................................16
  7. Security Considerations ........................................16
  8. IANA Considerations ............................................18
  9. References .....................................................23
     9.1. Normative References ......................................23
     9.2. Informative References ....................................24
  Appendix A.  DSSC and ERS .........................................27
    A.1.  Verification of Evidence Records Using DSSC
          (Informative) .............................................27
    A.2.  Storing DSSC Policies in Evidence Records (Normative) .....27
  Appendix B.  XML Schema (Normative) ...............................28
  Appendix C.  ASN.1 Module in 1988 Syntax (Informative) ............30
  Appendix D.  ASN.1 Module in 1997 Syntax (Normative) ..............32
  Appendix E.  Example ..............................................34






Kunz, et al.                Standards Track                     [Page 3]

RFC 5698                          DSSC                     November 2009


1.  Introduction

1.1.  Motivation

  Digital signatures can provide data integrity and authentication.
  They are based on cryptographic algorithms that are required to have
  certain security properties.  For example, hash algorithms must be
  resistant to collisions, and in case of public key algorithms,
  computation of the private key that corresponds to a given public key
  must be infeasible.  If algorithms lack the required properties,
  signatures could be forged, unless they are protected by a strong
  cryptographic algorithm.

  Cryptographic algorithms that are used in signatures shall be
  selected to resist such attacks during their period of use.  For
  signature keys included in public key certificates, this period of
  use is the validity period of the certificate.  Cryptographic
  algorithms that are used for encryption shall resist such attacks
  during the period it is planned to keep the information confidential.

  Only very few algorithms satisfy the security requirements.  Besides,
  because of the increasing performance of computers and progresses in
  cryptography, algorithms or their parameters become insecure over the
  years.  The hash algorithm MD5, for example, is unsuitable today for
  many purposes.  A digital signature using a "weak" algorithm has no
  probative value, unless the "weak" algorithm has been protected by a
  strong algorithm before the time it was considered to be weak.  Many
  kinds of digital signed data (including signed documents, timestamps,
  certificates, and revocation lists) are affected, particularly in the
  case of long-term archiving.  Over long periods of time, it is
  assumed that the algorithms used in signatures become insecure.

  For this reason, it is important to periodically evaluate an
  algorithm's fitness and to consider the results of these evaluations
  when creating and verifying signatures, or when maintaining the
  validity of signatures made in the past.  One result is a projected
  validity period for the algorithm, i.e., a prediction of the period
  of time during which the algorithm is fit for use.  This prediction
  can help to detect whether a weak algorithm is used in a signature
  and whether that signature has been properly protected in due time by
  another signature made using an algorithm that is suitable at the
  present point of time.  Algorithm evaluations are made by expert
  committees.  In Germany, the Federal Network Agency annually
  publishes evaluations of cryptographic algorithms [BNetzAg.2008].
  Examples of other European and international evaluations are
  [ETSI-TS102176-1-2005] and [NIST.800-57-Part1.2006].





Kunz, et al.                Standards Track                     [Page 4]

RFC 5698                          DSSC                     November 2009


  These evaluations are published in documents intended to be read by
  humans.  Therefore, to enable automated processing, it is necessary
  to define a data structure that expresses the content of the
  evaluations.  This standardized data structure can be used for
  publication and can be interpreted by signature generation and
  verification tools.  Algorithm evaluations are pooled in a security
  suitability policy.  In this document, a data structure for a
  security suitability policy is specified.  Therefore, the document
  provides a framework for expressing evaluations of cryptographic
  algorithms.  This document does not attempt to catalog the security
  properties of cryptographic algorithms.  Furthermore, no guidelines
  are made about which kind of algorithms shall be evaluated, for
  example, security suitability policies may be used to evaluate public
  key and hash algorithms, signature schemes, and encryption schemes.

1.2.  Terminology

  Algorithm:  A cryptographic algorithm, i.e., a public key or hash
     algorithm.  For public key algorithms, this is the algorithm with
     its parameters, if any.  Furthermore, the term "algorithm" is used
     for cryptographic schemes and for actually padding functions.

  Operator:  Instance that uses and interprets a policy, e.g., a
     signature-verification component.

  Policy:  An abbreviation for security suitability policy.

  Publisher:  Instance that publishes the policy containing the
     evaluation of algorithms.

  Security suitability policy:  The evaluation of cryptographic
     algorithms with regard to their security in a specific application
     area, e.g., signing or verifying data.  The evaluation is
     published in an electronic format.

  Suitable algorithm:  An algorithm that is evaluated against a policy
     and determined to be valid, i.e., resistant against attacks, at a
     particular point of time.

1.2.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].







Kunz, et al.                Standards Track                     [Page 5]

RFC 5698                          DSSC                     November 2009


1.3.  Use Cases

  Some use cases for a security suitability policy are presented here.

  Long-term archiving:  The most important use case is long-term
     archiving of signed data.  Algorithms or their parameters become
     insecure over long periods of time.  Therefore, signatures of
     archived data and timestamps have to be periodically renewed.  A
     policy provides information about suitable and threatened
     algorithms.  Additionally, the policy assists in verifying
     archived as well as re-signed documents.

  Services:  Services may provide information about cryptographic
     algorithms.  On the basis of a policy, a service is able to
     provide the date when an algorithm became insecure or presumably
     will become insecure, as well as information regarding which
     algorithms are presently valid.  Verification tools or long-term
     archiving systems can request such services and therefore do not
     need to deal with the algorithm security by themselves.

     Long-term Archive Services (LTA) as defined in [RFC4810] may use
     the policy for signature renewal.

  Signing and verifying:  When signing documents or certificates, it
     must be assured that the algorithms used for signing or verifying
     are suitable.  Accordingly, when verifying Cryptographic Message
     Syntax (CMS) [RFC5652] or XML signatures ([RFC3275],
     [ETSI-TS101903]), not only the validity of the certificates but
     also the validity of all involved algorithms may be checked.

  Re-encryption:  A security suitability policy can also be used to
     decide if encrypted documents must be re-encrypted because the
     encryption algorithm is no longer secure.

2.  Requirements and Assumptions

  Section 2.1 describes general requirements for a data structure
  containing the security suitability of algorithms.  In Section 2.2,
  assumptions are specified concerning both the design and the usage of
  the data structure.

  A policy contains a list of algorithms that have been evaluated by a
  publisher.  An algorithm evaluation is described by its identifier,
  security constraints, and validity period.  By these constraints, the
  requirements for algorithm properties must be defined, e.g., a public
  key algorithm is evaluated on the basis of its parameters.





Kunz, et al.                Standards Track                     [Page 6]

RFC 5698                          DSSC                     November 2009


2.1.  Requirements

  Automatic interpretation:  The data structure of the policy must
     allow automated evaluation of the security suitability of an
     algorithm.

  Flexibility:  The data structure must be flexible enough to support
     new algorithms.  Future policy publications may include
     evaluations of algorithms that are currently unknown.  It must be
     possible to add new algorithms with the corresponding security
     constraints in the data structure.  Additionally, the data
     structure must be independent of the intended use, e.g.,
     encryption, signing, verifying, and signature renewing.  Thus, the
     data structure is usable in every use case.

  Source authentication:  Policies may be published by different
     institutions, e.g., on the national or European Union (EU) level,
     whereas one policy needs not to be in agreement with the other
     one.  Furthermore, organizations may undertake their own
     evaluations for internal purposes.  For this reason a policy must
     be attributable to its publisher.

  Integrity and authenticity:  It must be possible to assure the
     integrity and authenticity of a published security suitability
     policy.  Additionally, the date of issue must be identifiable.

2.2.  Assumptions

  It is assumed that a policy contains the evaluations of all currently
  known algorithms, including the expired ones.

  An algorithm is suitable at a time of interest if it is contained in
  the current policy and the time of interest is within the validity
  period.  Additionally, if the algorithm has any parameters, these
  parameters must meet the requirements defined in the security
  constraints.

  If an algorithm appears in a policy for the first time, it may be
  assumed that the algorithm has already been suitable in the past.
  Generally, algorithms are used in practice prior to evaluation.

  To avoid inconsistencies, multiple instances of the same algorithm
  are prohibited.  The publisher must take care to prevent conflicts
  within a policy.

  Assertions made in the policy are suitable at least until the next
  policy is published.




Kunz, et al.                Standards Track                     [Page 7]

RFC 5698                          DSSC                     November 2009


  Publishers may extend the lifetime of an algorithm prior to reaching
  the end of the algorithm's validity period by publishing a revised
  policy.  Publishers should not resurrect algorithms that are expired
  at the time a revised policy is published.

3.  Data Structures

  This section describes the syntax of a security suitability policy
  defined as an XML schema [W3C.REC-xmlschema-1-20041028].  ASN.1
  modules are defined in Appendix C and Appendix D.  The schema uses
  the following XML namespace [W3C.REC-xml-names-20060816]:

     urn:ietf:params:xml:ns:dssc

  Within this document, the prefix "dssc" is used for this namespace.
  The schema starts with the following schema definition:

  <?xml version="1.0" encoding="UTF-8"?>
  <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
             xmlns:dssc="urn:ietf:params:xml:ns:dssc"
             xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
             targetNamespace="urn:ietf:params:xml:ns:dssc"
             elementFormDefault="qualified"
             attributeFormDefault="unqualified">
  <xs:import namespace="http://www.w3.org/XML/1998/namespace"
             schemaLocation="http://www.w3.org/2001/xml.xsd"/>
  <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
             schemaLocation="xmldsig-core-schema.xsd"/>

3.1.  SecuritySuitabilityPolicy

  The SecuritySuitabilityPolicy element is the root element of a
  policy.  It has an optional id attribute, which MUST be used as a
  reference when signing the policy (Section 3.13).  The optional lang
  attribute defines the language according to [RFC5646].  The language
  is applied to all human-readable text within the policy.  If the lang
  attribute is omitted, the default language is English ("en").  The
  element is defined by the following schema:













Kunz, et al.                Standards Track                     [Page 8]

RFC 5698                          DSSC                     November 2009


  <xs:element name="SecuritySuitabilityPolicy"
              type="dssc:SecuritySuitabilityPolicyType"/>
  <xs:complexType name="SecuritySuitabilityPolicyType">
    <xs:sequence>
      <xs:element ref="dssc:PolicyName"/>
      <xs:element ref="dssc:Publisher"/>
      <xs:element name="PolicyIssueDate" type="xs:dateTime"/>
      <xs:element name="NextUpdate" type="xs:dateTime" minOccurs="0"/>
      <xs:element name="Usage" type="xs:string" minOccurs="0"/>
      <xs:element ref="dssc:Algorithm" maxOccurs="unbounded"/>
      <xs:element ref="ds:Signature" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="version" type="xs:string" default="1"/>
    <xs:attribute name="lang" default="en"/>
    <xs:attribute name="id" type="xs:ID"/>
  </xs:complexType>

3.2.  PolicyName

  The PolicyName element contains an arbitrary name for the policy.
  The optional elements Object Identifier (OID) and Uniform Resource
  Identifier (URI) MAY be used for the identification of the policy.
  OIDs MUST be expressed in the dot notation.

  <xs:element name="PolicyName" type="dssc:PolicyNameType"/>
  <xs:complexType name="PolicyNameType">
    <xs:sequence>
      <xs:element ref="dssc:Name"/>
      <xs:element ref="dssc:ObjectIdentifier" minOccurs="0"/>
      <xs:element ref="dssc:URI" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

  <xs:element name="Name" type="xs:string"/>
  <xs:element name="ObjectIdentifier">
    <xs:simpleType>
      <xs:restriction base="xs:string">
        <xs:pattern value="(\d+\.)+\d+"/>
      </xs:restriction>
    </xs:simpleType>
  </xs:element>
  <xs:element name="URI" type="xs:anyURI"/>









Kunz, et al.                Standards Track                     [Page 9]

RFC 5698                          DSSC                     November 2009


3.3.  Publisher

  The Publisher element contains information about the publisher of the
  policy.  It is composed of the name (e.g., name of institution), an
  optional address, and an optional URI.  The Address element contains
  arbitrary free-format text not intended for automatic processing.

  <xs:element name="Publisher" type="dssc:PublisherType"/>
  <xs:complexType name="PublisherType">
    <xs:sequence>
      <xs:element ref="dssc:Name"/>
      <xs:element name="Address" type="xs:string" minOccurs="0"/>
      <xs:element ref="dssc:URI" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

3.4.  PolicyIssueDate

  The PolicyIssueDate element indicates the point of time when the
  policy was issued.

3.5.  NextUpdate

  The optional NextUpdate element MAY be used to indicate when the next
  policy will be issued.

3.6.  Usage

  The optional Usage element determines the intended use of the policy
  (e.g., certificate validation, signing and verifying documents).  The
  element contains free-format text intended only for human
  readability.

3.7.  Algorithm

  A security suitability policy MUST contain at least one Algorithm
  element.  An algorithm is identified by an AlgorithmIdentifier
  element.  Additionally, the Algorithm element contains all
  evaluations of the specific cryptographic algorithm.  More than one
  evaluation may be necessary if the evaluation depends on the
  parameter constraints.  The optional Information element MAY be used
  to provide additional information like references on algorithm
  specifications.  In order to give the option to extend the Algorithm
  element, it additionally contains a wildcard.  The Algorithm element
  is defined by the following schema:






Kunz, et al.                Standards Track                    [Page 10]

RFC 5698                          DSSC                     November 2009


  <xs:element name="Algorithm" type="dssc:AlgorithmType"/>
  <xs:complexType name="AlgorithmType">
    <xs:sequence>
      <xs:element ref="dssc:AlgorithmIdentifier"/>
      <xs:element ref="dssc:Evaluation" maxOccurs="unbounded"/>
      <xs:element ref="dssc:Information" minOccurs="0"/>
      <xs:any namespace="##other" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

3.8.  AlgorithmIdentifier

  The AlgorithmIdentifier element is used to identify a cryptographic
  algorithm.  It consists of the algorithm name, at least one OID, and
  optional URIs.  The algorithm name is not intended to be parsed by
  automatic processes.  It is only intended to be read by humans.  The
  OID MUST be expressed in dot notation (e.g., "1.3.14.3.2.26").  The
  element is defined as follows:

  <xs:element name="AlgorithmIdentifier"
              type="dssc:AlgorithmIdentifierType"/>
  <xs:complexType name="AlgorithmIdentifierType">
    <xs:sequence>
      <xs:element ref="dssc:Name"/>
      <xs:element ref="dssc:ObjectIdentifier" maxOccurs="unbounded"/>
      <xs:element ref="dssc:URI" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>

3.9.  Evaluation

  The Evaluation element contains the evaluation of one cryptographic
  algorithm in dependence of its parameter constraints.  For example,
  the suitability of the RSA algorithm depends on the modulus length
  (RSA with a modulus length of 1024 may have another suitability
  period as RSA with a modulus length of 2048).  Current hash
  algorithms like SHA-1 or RIPEMD-160 do not have any parameters.
  Therefore, the Parameter element is optional.  The suitability of the
  algorithm is expressed by a validity period, which is defined by the
  Validity element.  An optional wildcard MAY be used to extend the
  Evaluation element.










Kunz, et al.                Standards Track                    [Page 11]

RFC 5698                          DSSC                     November 2009


  <xs:element name="Evaluation" type="dssc:EvaluationType"/>
  <xs:complexType name="EvaluationType">
    <xs:sequence>
      <xs:element ref="dssc:Parameter" minOccurs="0"
                                       maxOccurs="unbounded"/>
      <xs:element ref="dssc:Validity"/>
      <xs:any namespace="##other" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

3.10.  Parameter

  The Parameter element is used to express constraints on algorithm-
  specific parameters.

  The Parameter element has a name attribute, which holds the name of
  the parameter (e.g., "moduluslength" for RSA [RFC3447]).  Section 5
  defines parameter names for currently known public key algorithms;
  these parameter names SHOULD be used.  For the actual parameter, a
  range of values or an exact value may be defined.  These constraints
  are expressed by the following elements:

  Min:  The Min element defines the minimum value of the parameter.
     That means values equal or greater than the given value meet the
     requirements.

  Max:  The Max element defines the maximum value the parameter may
     take.

  At least one of both elements MUST be set to define a range of
  values.  A range MAY also be specified by a combination of both
  elements, whereas the value of the Min element MUST be less than or
  equal to the value of the Max element.  The parameter may have any
  value within the defined range, including the minimum and maximum
  values.  An exact value is expressed by using the same value in both
  the Min and the Max element.

  These constraints are sufficient for all current algorithms.  If
  future algorithms need constraints that cannot be expressed by the
  elements above, an arbitrary XML structure MAY be inserted that meets
  the new constraints.  For this reason, the Parameter element contains
  a wildcard.  A parameter MUST contain at least one constraint.  The
  schema for the Parameter element is as follows:








Kunz, et al.                Standards Track                    [Page 12]

RFC 5698                          DSSC                     November 2009


  <xs:element name="Parameter" type="dssc:ParameterType"/>
  <xs:complexType name="ParameterType">
    <xs:sequence>
      <xs:element name="Min" type="xs:int" minOccurs="0"/>
      <xs:element name="Max" type="xs:int" minOccurs="0"/>
      <xs:any namespace="##other" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="name" type="xs:string" use="required"/>
  </xs:complexType>


3.11.  Validity

  The Validity element is used to define the period of the (predicted)
  suitability of the algorithm.  It is composed of an optional start
  date and an optional end date.  Defining no end date means the
  algorithm has an open-end validity.  Of course, this may be
  restricted by a future policy that sets an end date for the
  algorithm.  If the end of the validity period is in the past, the
  algorithm was suitable until that end date.  The element is defined
  by the following schema:

  <xs:element name="Validity" type="dssc:ValidityType"/>
  <xs:complexType name="ValidityType">
    <xs:sequence>
      <xs:element name="Start" type="xs:date" minOccurs="0"/>
      <xs:element name="End" type="xs:date" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

3.12.  Information

  The Information element MAY be used to give additional textual
  information about the algorithm or the evaluation, e.g., references
  on algorithm specifications.  The element is defined as follows:

  <xs:element name="Information" type="dssc:InformationType"/>
  <xs:complexType name="InformationType">
    <xs:sequence>
      <xs:element name="Text" type="xs:string" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>









Kunz, et al.                Standards Track                    [Page 13]

RFC 5698                          DSSC                     November 2009


3.13.  Signature

  The optional Signature element MAY be used to guarantee the integrity
  and authenticity of the policy.  It is an XML signature specified in
  [RFC3275].  The signature MUST relate to the
  SecuritySuitabilityPolicy element.  If the Signature element is set,
  the SecuritySuitabilityPolicy element MUST have the optional id
  attribute.  This attribute MUST be used to reference the
  SecuritySuitabilityPolicy element within the Signature element.
  Since it is an enveloped signature, the signature MUST use the
  transformation algorithm identified by the following URI:

     http://www.w3.org/2000/09/xmldsig#enveloped-signature

4.  DSSC Policies

  DSSC policies MUST be expressed either in XML or ASN.1.  However, in
  order to reach interoperability, DSSC policies SHOULD be published in
  both XML and ASN.1.

  In the case of XML, a DSSC policy is an XML document that MUST be
  well-formed and SHOULD be valid.  XML-encoded DSSC policies MUST be
  based on XML 1.0 [W3C.REC-xml-20081126] and MUST be encoded using
  UTF-8 [RFC3629].  This specification makes use of XML namespaces
  [W3C.REC-xml-names-20060816] for identifying DSSC policies.  The
  namespace URI for elements defined by this specification is a URN
  [RFC2141] using the namespace prefix "dssc".  This URN is:

     urn:ietf:params:xml:ns:dssc

  XML-encoded DSSC policies are identified with the MIME type
  "application/dssc+xml" and are instances of the XML schema
  [W3C.REC-xmlschema-1-20041028] defined in Appendix B.

  A file containing a DSSC policy in ASN.1 representation (for
  specification of ASN.1 refer to [CCITT.x208.1988], [CCITT.x209.1988],
  [CCITT.x680.2002] and [CCITT.x690.2002]) MUST contain only the DER
  encoding of one DSSC policy, i.e., there MUST NOT be extraneous
  header or trailer information in the file.  ASN.1-based DSSC policies
  are identified with the MIME type "application/dssc+der".
  Appropriate ASN.1 modules are defined in Appendices C (1988-ASN.1
  syntax) and D (1997-ASN.1 syntax).









Kunz, et al.                Standards Track                    [Page 14]

RFC 5698                          DSSC                     November 2009


5.  Definition of Parameters

  This section defines the parameter names for the currently known
  public key algorithms.  The following parameters also refer to
  cryptographic schemes based on these public key algorithms (e.g., the
  PKCS#1 v1.5 signature scheme SHA-256 with RSA [RFC3447]).

     The parameter of RSA [RFC3447] SHOULD be named "moduluslength".

     The parameters for the Digital Signature Algorithm (DSA)
     [FIPS186-2] SHOULD be "plength" and "qlength".

  These parameter names have been registered by IANA (see Section 8).
  It may be necessary to register further algorithms not given in this
  section (in particular, future algorithms).  The process for
  registering parameter names of further algorithms is described in
  Section 8.  Publishers of policies SHOULD use these parameter names
  so that the correct interpretation is guaranteed.

6.  Processing

  Evaluation of an algorithm's security suitability is described in
  three parts: verification of the policy, determination of algorithm
  validity, and evaluation of algorithm parameters, if any.

  In the following sections, a process is described

  o  to determine if an algorithm was suitable at a particular point of
     time, and

  o  to determine until what time an algorithm was or will be suitable.

6.1.  Inputs

  To determine the security suitability of an algorithm, the following
  information is required:

  o  Policy

  o  Current time

  o  Algorithm identifier and parameter constraints (if associated)

  o  Time of interest (optional).  Providing no time of interest means
     determination of the validity end date of the algorithm.






Kunz, et al.                Standards Track                    [Page 15]

RFC 5698                          DSSC                     November 2009


6.2.  Verify Policy

  The signature on the policy SHOULD be verified and a certification
  path from the policy signer's certificate to a current trust anchor
  SHOULD be constructed and validated [RFC5280].  The algorithms used
  to verify the digital signature and validate the certification path
  MUST be suitable per the contents of the policy being verified.  If
  signature verification fails, certification path validation fails or
  an unsuitable algorithm is required to perform these checks, then the
  policy MUST be rejected.

  The nextUpdate time in the policy MUST be either greater than the
  current time or absent.  If the nextUpdate time is less than the
  current time, the policy MUST be rejected.

6.3.  Algorithm Evaluation

  To determine the validity period of an algorithm, locate the
  Algorithm element in the policy that corresponds to the algorithm
  identifier provided as input.  The Algorithm element is located by
  comparing the OID in the element to the OID included in the algorithm
  identifier provided as input.

  If no matching Algorithm element is found, then the algorithm is
  unknown.

  If the time of interest was provided as input, the validity of each
  Evaluation element MUST be checked in order to determine if the
  algorithm was suitable at the time of interest.  For each Evaluation
  element:

  o  Confirm the Start time is either less than the time of interest or
     absent.  Discard the entry if the Start time is present and
     greater than the time of interest.

  o  Confirm the End time is either greater than the time of interest
     or absent.  Discard the entry if the End time is present and less
     than the time of interest.

  If all Evaluation elements were rejected, the algorithm is not
  suitable according to the policy.

  Any entries not rejected will be used for the evaluation of the
  parameters, if any.







Kunz, et al.                Standards Track                    [Page 16]

RFC 5698                          DSSC                     November 2009


6.4.  Evaluation of Parameters

  Any necessary parameters of the entries not rejected MUST be
  evaluated within the context of the type and usage of the algorithm.
  Details of parameter evaluation are defined on a per-algorithm basis.

  To evaluate the parameters, the Parameter elements of each Evaluation
  element that has not been rejected in the process described in
  Section 6.3 MUST be checked.  For each Parameter element:

  o  Confirm that the parameter was provided as input.  Discard the
     Evaluation element if the parameter does not match to any of the
     parameters provided as input.

  o  If the Parameter element has a Min element, confirm that the
     parameter value is less than or equal to the corresponding
     parameter provided as input.  Discard the Evaluation element if
     the parameter value does not meet the constraint.

  o  If the Parameter element has a Max element, confirm that the
     parameter value is greater than or equal to the corresponding
     parameter provided as input.  Discard the Evaluation element if
     the parameter value does not meet the constraint.

  o  If the Parameter has another constraint, confirm that the value of
     the corresponding parameter provided as input meets this
     constraint.  If it does not or if the constraint is unrecognized,
     discard the Evaluation element.

  If all Evaluation elements were rejected, the algorithm is not
  suitable according to the policy.

  Any entries not rejected will be provided as output.

6.5.  Output

  If the algorithm is not in the policy, return an error "algorithm
  unknown".

  If no time of interest was provided as input, return the maximum End
  time of the Evaluation elements that were not discarded.  If at least
  one End time of these Evaluation elements is absent, return
  "algorithm has an indefinite End time".

  Otherwise, if the algorithm is not suitable relative to the time of
  interest, return an error "algorithm unsuitable".





Kunz, et al.                Standards Track                    [Page 17]

RFC 5698                          DSSC                     November 2009


  If the algorithm is suitable relative to the time of interest, return
  the Evaluation elements that were not discarded.

7.  Security Considerations

  The policy for an algorithm's security suitability has a great impact
  on the quality of the results of signature generation and
  verification operations.  If an algorithm is incorrectly evaluated
  against a policy, signatures with a low probative force could be
  created or verification results could be incorrect.  The following
  security considerations have been identified:

  1.  Publishers MUST ensure unauthorized manipulation of any security
      suitability is not possible prior to a policy being signed and
      published.  There is no mechanism provided to revoke a policy
      after publication.  Since the algorithm evaluations change
      infrequently, the lifespan of a policy should be carefully
      considered prior to publication.

  2.  Operators SHOULD only accept policies issued by a trusted
      publisher.  Furthermore, the validity of the certificate used to
      sign the policy SHOULD be verifiable by Certificate Revocation
      List (CRL) [RFC5280] or Online Certificate Status Protocol (OCSP)
      [RFC2560].  The certificate used to sign the policy SHOULD be
      revoked if the algorithms used in this certificate are no longer
      suitable.  It MUST NOT be possible to alter or replace a policy
      once accepted by an operator.

  3.  Operators SHOULD periodically check to see if a new policy has
      been published to avoid using obsolete policy information.  For
      publishers, it is suggested not to omit the NextUpdate element in
      order to give operators a hint regarding when the next policy
      will be published.

  4.  When signing a policy, algorithms that are suitable according to
      this policy SHOULD be used.

  5.  The processing rule described in Section 6 is about one
      cryptographic algorithm independent of the use case.  Depending
      upon the use case, an algorithm that is no longer suitable at the
      time of interest, does not necessarily mean that the data
      structure where it is used is no longer secure.  For example, a
      signature has been made with an RSA signer's key of 1024 bits.
      This signature is timestamped with a timestamp token that uses an
      RSA key of 2048 bits, before an RSA key size of 1024 bits will be
      broken.  The fact that the signature key of 1024 bits is no
      longer suitable at the time of interest does not mean that the




Kunz, et al.                Standards Track                    [Page 18]

RFC 5698                          DSSC                     November 2009


      whole data structure is no longer secure, if an RSA key size of
      2048 bits is still suitable at the time of interest.

  6.  In addition to the key size considerations, other considerations
      must be applied, like whether a timestamp token has been provided
      by a trusted authority.  This means that the simple use of a
      suitability policy is not the single element to consider when
      evaluating the security of a complex data structure that uses
      several cryptographic algorithms.

  7.  The policies described in this document are suitable to evaluate
      basic cryptographic algorithms, like public key or hash
      algorithms, as well as cryptographic schemes (e.g., the PKCS#1
      v1.5 signature schemes [RFC3447]).  But it MUST be kept in mind
      that a basic cryptographic algorithm that is suitable according
      to the policy does not necessarily mean that any cryptographic
      schemes based on this algorithm are also secure.  For example, a
      signature scheme based on RSA must not necessarily be secure if
      RSA is suitable.  In case of a complete signature verification,
      including validation of the certificate path, various algorithms
      have to be checked against the policy (i.e., signature schemes of
      signed data objects and revocation information, public key
      algorithms of the involved certificates, etc.).  Thus, a policy
      SHOULD contain evaluations of public key and hash algorithms as
      well as of signature schemes.

  8.  Re-encrypting documents that were originally encrypted using an
      algorithm that is no longer suitable will not protect the
      semantics of the document if the document has been intercepted.
      However, for documents stored in an encrypted form, re-encryption
      must be considered, unless the document has lost its original
      value.

8.  IANA Considerations

  This document defines the XML namespace "urn:ietf:params:xml:ns:dssc"
  according to the guidelines in [RFC3688].  This namespace has been
  registered in the IANA XML Registry.

  This document defines an XML schema (see Appendix B) according to the
  guidelines in [RFC3688].  This XML schema has been registered in the
  IANA XML Registry and can be identified with the URN
  "urn:ietf:params:xml:schema:dssc".

  This document defines the MIME type "application/dssc+xml".  This
  MIME type has been registered by IANA under "MIME Media Types"
  according to the procedures of [RFC4288].




Kunz, et al.                Standards Track                    [Page 19]

RFC 5698                          DSSC                     November 2009


     Type name: application

     Subtype name: dssc+xml

     Required parameters: none

     Optional parameters: "charset" as specified for "application/xml"
     in [RFC3023].

     Encoding considerations: Same as specified for "application/xml"
     in [RFC3023].

     Security considerations: Same as specified for "application/xml"
     in Section 10 of [RFC3023].  For further security considerations,
     see Section 7 of this document.

     Interoperability considerations: Same as specified for
     "application/xml" in [RFC3023].

     Published specification: This document.

     Applications that use this media: Applications for long-term
     archiving of signed data, applications for signing data /
     verifying signed data, and applications for encrypting /
     decrypting data.

     Additional information:

        Magic number(s): none

        File extension(s): .xdssc

        Macintosh file type code: "TEXT"

        Object Identifiers: none

     Person to contact for further information: Thomas Kunz
     ([email protected])

     Intended usage: COMMON

     Restrictions on usage: none

     Author/Change controller: IETF

  This document defines the MIME type "application/dssc+der".  This
  MIME type has been registered by IANA under "MIME Media Types"
  according to the procedures of [RFC4288].



Kunz, et al.                Standards Track                    [Page 20]

RFC 5698                          DSSC                     November 2009


     Type name: application

     Subtype name: dssc+der

     Required parameters: none

     Optional parameters: none

     Encoding considerations: binary

     Security considerations: See Section 7 of this document.

     Interoperability considerations: none

     Published specification: This document.

     Applications that use this media: Applications for long-term
     archiving of signed data, applications for signing data /
     verifying signed data, and applications for encrypting /
     decrypting data.

     Additional information:

        Magic number(s): none

        File extension(s): .dssc

        Macintosh file type code: none

        Object Identifiers: none

     Person to contact for further information: Thomas Kunz
     ([email protected])

     Intended usage: COMMON

     Restrictions on usage: none

     Author/Change controller: IETF

  This specification creates a new IANA registry entitled "Data
  Structure for the Security Suitability of Cryptographic Algorithms
  (DSSC)".  This registry contains two sub-registries entitled
  "Parameter Definitions" and "Cryptographic Algorithms".  The policy
  for future assignments to the sub-registry "Parameter Definitions" is
  "RFC Required".





Kunz, et al.                Standards Track                    [Page 21]

RFC 5698                          DSSC                     November 2009


  The initial values for the "Parameter Definitions" sub-registry are:

  Value              Description                     Reference
  --------------     ------------------------------- ------------------
  moduluslength      Parameter for RSA               RFC 5698
                     (integer value)
  plength            Parameter for DSA               RFC 5698
                     (integer value, used together
                     with parameter "qlength")
  qlength            Parameter for DSA               RFC 5698
                     (integer value, used together
                     with parameter "plength")

  The sub-registry "Cryptographic Algorithms" contains textual names as
  well as Object Identifiers (OIDs) and Uniform Resource Identifiers
  (URIs) of cryptographic algorithms.  It serves as assistance when
  creating a new policy.  The policy for future assignments is "First
  Come First Served".  When registering a new algorithm, the following
  information MUST be provided:

  o  The textual name of the algorithm.

  o  The OID of the algorithm.

  o  A reference to a publicly available specification that defines the
     algorithm and its identifiers.

  Optionally, a URI MAY be provided if possible.

  The initial values for the "Cryptographic Algorithms" sub-registry
  are:




















Kunz, et al.                Standards Track                    [Page 22]

RFC 5698                          DSSC                     November 2009


 Name                      OID / URI                         Reference
 -----------------------   --------------------------------- ----------
 rsaEncryption             1.2.840.113549.1.1.1              [RFC3447]

 dsa                       1.2.840.10040.4.1                 [RFC3279]

 md2                       1.2.840.113549.2.2                [RFC3279]

 md5                       1.2.840.113549.2.5                [RFC3279]
           http://www.w3.org/2001/04/xmldsig-more#md5        [RFC4051]

 sha-1                     1.3.14.3.2.26                     [RFC3279]
           http://www.w3.org/2000/09/xmldsig#sha1            [RFC3275]

 sha-224                   2.16.840.1.101.3.4.2.4            [RFC4055]
           http://www.w3.org/2001/04/xmldsig-more#sha224     [RFC4051]

 sha-256                   2.16.840.1.101.3.4.2.1            [RFC4055]

 sha-384                   2.16.840.1.101.3.4.2.2            [RFC4055]
           http://www.w3.org/2001/04/xmldsig-more#sha384     [RFC4051]

 sha-512                   2.16.840.1.101.3.4.2.3            [RFC4055]

 md2WithRSAEncryption      1.2.840.113549.1.1.2              [RFC3443]

 md5WithRSAEncryption      1.2.840.113549.1.1.4              [RFC3443]
           http://www.w3.org/2001/04/xmldsig-more#rsa-md5    [RFC4051]

 sha1WithRSAEncryption     1.2.840.113549.1.1.5              [RFC3443]
           http://www.w3.org/2000/09/xmldsig#rsa-sha1        [RFC3275]

 sha256WithRSAEncryption   1.2.840.113549.1.1.11             [RFC3443]
           http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 [RFC4051]

 sha384WithRSAEncryption   1.2.840.113549.1.1.12             [RFC3443]
           http://www.w3.org/2001/04/xmldsig-more#rsa-sha384 [RFC4051]

 sha512WithRSAEncryption   1.2.840.113549.1.1.13             [RFC3443]
           http://www.w3.org/2001/04/xmldsig-more#rsa-sha512 [RFC4051]

 sha1WithDSA               1.2.840.10040.4.3                 [RFC3279]
           http://www.w3.org/2000/09/xmldsig#dsa-sha1        [RFC3275]








Kunz, et al.                Standards Track                    [Page 23]

RFC 5698                          DSSC                     November 2009


9.  References

9.1.  Normative References

  [CCITT.x680.2002]
             International Telephone and Telegraph Consultative
             Committee, "Abstract Syntax Notation One (ASN.1):
             Specification of basic notation", CCITT Recommendation
             X.680, July 2002.

  [CCITT.x690.2002]
             International Telephone and Telegraph Consultative
             Committee, "AASN.1 encoding rules:  Specification of basic
             encoding Rules (BER), Canonical encoding rules (CER) and
             Distinguished encoding rules (DER)", CCITT Recommendation
             X.690, July 2002.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2141]  Moats, R., "URN Syntax", RFC 2141, May 1997.

  [RFC2560]  Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
             Adams, "X.509 Internet Public Key Infrastructure Online
             Certificate Status Protocol - OCSP", RFC 2560, June 1999.

  [RFC3023]  Murata, M., St. Laurent, S., and D. Kohn, "XML Media
             Types", RFC 3023, January 2001.

  [RFC3275]  Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
             Language) XML-Signature Syntax and Processing", RFC 3275,
             March 2002.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, November 2003.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             January 2004.

  [RFC4288]  Freed, N. and J. Klensin, "Media Type Specifications and
             Registration Procedures", BCP 13, RFC 4288, December 2005.

  [RFC4998]  Gondrom, T., Brandner, R., and U. Pordesch, "Evidence
             Record Syntax (ERS)", RFC 4998, August 2007.







Kunz, et al.                Standards Track                    [Page 24]

RFC 5698                          DSSC                     November 2009


  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, May 2008.

  [RFC5646]  Phillips, A. and M. Davis, "Tags for Identifying
             Languages", BCP 47, RFC 5646, September 2009.

  [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)",
             RFC 5652, September 2009.

  [W3C.REC-xml-20081126]
             Yergeau, F., Maler, E., Paoli, J., Sperberg-McQueen, C.,
             and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
             Edition)", World Wide Web Consortium Recommendation REC-
             xml-20081126, November 2008,
             <http://www.w3.org/TR/2008/REC-xml-20081126>.

  [W3C.REC-xml-names-20060816]
             Layman, A., Hollander, D., Tobin, R., and T. Bray,
             "Namespaces in XML 1.0 (Second Edition)", World Wide Web
             Consortium Recommendation REC-xml-names-20060816,
             August 2006,
             <http://www.w3.org/TR/2006/REC-xml-names-20060816>.

  [W3C.REC-xmlschema-1-20041028]
             Thompson, H., Beech, D., Mendelsohn, N., and M. Maloney,
             "XML Schema Part 1: Structures Second Edition", World Wide
             Web Consortium Recommendation REC-xmlschema-1-20041028,
             October 2004,
             <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

9.2.  Informative References

  [BNetzAg.2008]
             Federal Network Agency for Electricity, Gas,
             Telecommunications, Post and Railway, "Bekanntmachung zur
             elektronischen Signatur nach dem Signaturgesetz und der
             Signaturverordnung (Uebersicht ueber geeignete
             Algorithmen)", December 2007,
             <http://www.bundesnetzagentur.de/media/archive/12198.pdf>.

  [CCITT.x208.1988]
             International Telephone and Telegraph Consultative
             Committee, "Specification of Abstract Syntax Notation One
             (ASN.1)", CCITT Recommendation X.208, November 1988.





Kunz, et al.                Standards Track                    [Page 25]

RFC 5698                          DSSC                     November 2009


  [CCITT.x209.1988]
             International Telephone and Telegraph Consultative
             Committee, "Specification of Basic Encoding Rules for
             Abstract Syntax Notation One (ASN.1)",
             CCITT Recommendation X.209, November 1988.

  [ETSI-TS101903]
             European Telecommunication Standards Institute (ETSI),
             "XML Advanced Electronic Signatures (XAdES)", ETSI TS 101
             903 V1.3.2, March 2006.

  [ETSI-TS102176-1-2005]
             European Telecommunication Standards Institute (ETSI),
             "Electronic Signatures and Infrastructures (ESI);
             "Algorithms and Parameters for Secure Electronic
             Signatures; Part 1: Hash functions and asymmetric
             algorithms"", ETSI TS 102 176-1 V2.0.0, November 2007.

  [FIPS186-2]
             National Institute of Standards and Technology, "Digital
             Signature Standard (DSS)", FIPS PUB 186-2 with Change
             Notice, January 2000.

  [NIST.800-57-Part1.2006]
             National Institute of Standards and Technology,
             "Recommendation for Key Management - Part 1: General
             (Revised)", NIST 800-57 Part 1, May 2006.

  [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
             Identifiers for the Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 3279, April 2002.

  [RFC3443]  Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
             in Multi-Protocol Label Switching (MPLS) Networks", RFC
             3443, January 2003.

  [RFC3447]  Jonsson, J. and B. Kaliski, "Public-Key Cryptography
             Standards (PKCS) #1: RSA Cryptography Specifications
             Version 2.1", RFC 3447, February 2003.

  [RFC4051]  Eastlake, D., "Additional XML Security Uniform Resource
             Identifiers (URIs)", RFC 4051, April 2005.








Kunz, et al.                Standards Track                    [Page 26]

RFC 5698                          DSSC                     November 2009


  [RFC4055]  Schaad, J., Kaliski, B., and R. Housley, "Additional
             Algorithms and Identifiers for RSA Cryptography for use in
             the Internet X.509 Public Key Infrastructure Certificate
             and Certificate Revocation List (CRL) Profile", RFC 4055,
             June 2005.

  [RFC4810]  Wallace, C., Pordesch, U., and R. Brandner, "Long-Term
             Archive Service Requirements", RFC 4810, March 2007.











































Kunz, et al.                Standards Track                    [Page 27]

RFC 5698                          DSSC                     November 2009


Appendix A.  DSSC and ERS

A.1.  Verification of Evidence Records Using DSSC (Informative)

  This section describes the verification of an Evidence Record
  according to the Evidence Record Syntax (ERS, [RFC4998]), using the
  presented data structure.

  An Evidence Record contains a sequence of ArchiveTimeStampChains,
  which consist of ArchiveTimeStamps.  For each ArchiveTimeStamp the
  hash algorithm used for the hash tree (digestAlgorithm) as well as
  the public key algorithm and hash algorithm in the timestamp
  signature have to be examined.  The relevant date is the time
  information in the timestamp (date of issue).  Starting with the
  first ArchiveTimeStamp, it has to be assured that:

  1.  The timestamp uses public key and hash algorithms that were
      suitable at the date of issue.

  2.  The hashtree was built with a hash algorithm that was suitable at
      the date of issue as well.

  3.  Algorithms for timestamp and hashtree in the preceding
      ArchiveTimeStamp must have been suitable at the issuing date of
      considered ArchiveTimeStamp.

  4.  Algorithms in the last ArchiveTimeStamp have to be suitable now.

  If the check of one of these items fails, this will lead to a failure
  of the verification.

A.2.  Storing DSSC Policies in Evidence Records (Normative)

  This section describes how to store a policy in an Evidence Record.
  ERS provides the field cryptoInfos for the storage of additional
  verification data.  For the integration of a security suitability
  policy in an Evidence Record, the following content types are defined
  for both ASN.1 and XML representation:

  DSSC_ASN1 {iso(1) identified-organization(3) dod(6)
          internet(1) security(5) mechanisms(5)
          ltans(11) id-ct(1) id-ct-dssc-asn1(2) }

  DSSC_XML {iso(1) identified-organization(3) dod(6)
          internet(1) security(5) mechanisms(5)
          ltans(11) id-ct(1) id-ct-dssc-xml(3) }





Kunz, et al.                Standards Track                    [Page 28]

RFC 5698                          DSSC                     November 2009


Appendix B.  XML Schema (Normative)

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
            xmlns:dssc="urn:ietf:params:xml:ns:dssc"
            xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
            targetNamespace="urn:ietf:params:xml:ns:dssc"
            elementFormDefault="qualified"
            attributeFormDefault="unqualified">
   <xs:import namespace="http://www.w3.org/XML/1998/namespace"
              schemaLocation="http://www.w3.org/2001/xml.xsd"/>
   <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
              schemaLocation="xmldsig-core-schema.xsd"/>
   <xs:element name="SecuritySuitabilityPolicy"
               type="dssc:SecuritySuitabilityPolicyType"/>
   <xs:complexType name="SecuritySuitabilityPolicyType">
     <xs:sequence>
       <xs:element ref="dssc:PolicyName"/>
       <xs:element ref="dssc:Publisher"/>
       <xs:element name="PolicyIssueDate" type="xs:dateTime"/>
       <xs:element name="NextUpdate" type="xs:dateTime" minOccurs="0"/>
       <xs:element name="Usage" type="xs:string" minOccurs="0"/>
       <xs:element ref="dssc:Algorithm" maxOccurs="unbounded"/>
       <xs:element ref="ds:Signature" minOccurs="0"/>
     </xs:sequence>
     <xs:attribute name="version" type="xs:string" default="1"/>
     <xs:attribute name="lang" default="en"/>
     <xs:attribute name="id" type="xs:ID"/>
   </xs:complexType>
   <xs:element name="PolicyName" type="dssc:PolicyNameType"/>
   <xs:complexType name="PolicyNameType">
     <xs:sequence>
       <xs:element ref="dssc:Name"/>
       <xs:element ref="dssc:ObjectIdentifier" minOccurs="0"/>
       <xs:element ref="dssc:URI" minOccurs="0"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="Publisher" type="dssc:PublisherType"/>
   <xs:complexType name="PublisherType">
     <xs:sequence>
       <xs:element ref="dssc:Name"/>
       <xs:element name="Address" type="xs:string" minOccurs="0"/>
       <xs:element ref="dssc:URI" minOccurs="0"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="Name" type="xs:string"/>
   <xs:element name="ObjectIdentifier">
     <xs:simpleType>



Kunz, et al.                Standards Track                    [Page 29]

RFC 5698                          DSSC                     November 2009


       <xs:restriction base="xs:string">
         <xs:pattern value="(\d+\.)+\d+"/>
       </xs:restriction>
     </xs:simpleType>
   </xs:element>
   <xs:element name="URI" type="xs:anyURI"/>
   <xs:element name="Algorithm" type="dssc:AlgorithmType"/>
   <xs:complexType name="AlgorithmType">
     <xs:sequence>
       <xs:element ref="dssc:AlgorithmIdentifier"/>
       <xs:element ref="dssc:Evaluation" maxOccurs="unbounded"/>
       <xs:element ref="dssc:Information" minOccurs="0"/>
       <xs:any namespace="##other" minOccurs="0"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="AlgorithmIdentifier"
               type="dssc:AlgorithmIdentifierType"/>
   <xs:complexType name="AlgorithmIdentifierType">
     <xs:sequence>
       <xs:element ref="dssc:Name"/>
       <xs:element ref="dssc:ObjectIdentifier" maxOccurs="unbounded"/>
       <xs:element ref="dssc:URI" minOccurs="0" maxOccurs="unbounded"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="Validity" type="dssc:ValidityType"/>
   <xs:complexType name="ValidityType">
     <xs:sequence>
       <xs:element name="Start" type="xs:date" minOccurs="0"/>
       <xs:element name="End" type="xs:date" minOccurs="0"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="Information" type="dssc:InformationType"/>
   <xs:complexType name="InformationType">
     <xs:sequence>
       <xs:element name="Text" type="xs:string" maxOccurs="unbounded"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="Evaluation" type="dssc:EvaluationType"/>
   <xs:complexType name="EvaluationType">
     <xs:sequence>
       <xs:element ref="dssc:Parameter" minOccurs="0"
                                        maxOccurs="unbounded"/>
       <xs:element ref="dssc:Validity"/>
       <xs:any namespace="##other" minOccurs="0"/>
     </xs:sequence>
   </xs:complexType>
   <xs:element name="Parameter" type="dssc:ParameterType"/>
   <xs:complexType name="ParameterType">



Kunz, et al.                Standards Track                    [Page 30]

RFC 5698                          DSSC                     November 2009


     <xs:sequence>
       <xs:element name="Min" type="xs:int" minOccurs="0"/>
       <xs:element name="Max" type="xs:int" minOccurs="0"/>
       <xs:any namespace="##other" minOccurs="0"/>
     </xs:sequence>
     <xs:attribute name="name" type="xs:string" use="required"/>
   </xs:complexType>
 </xs:schema>

Appendix C.  ASN.1 Module in 1988 Syntax (Informative)

  ASN.1-Module

  DSSC {iso(1) identified-organization(3) dod(6)
           internet(1) security(5) mechanisms(5)
           ltans(11) id-mod(0) id-mod-dssc88(6) id-mod-dssc88-v1(1) }

  DEFINITIONS IMPLICIT TAGS ::=
  BEGIN

  -- EXPORT ALL --

  IMPORTS

  -- Import from RFC 5280 [RFC5280]
  -- Delete following import statement
  -- if "new" types are supported

  UTF8String FROM PKIX1Explicit88
              { iso(1) identified-organization(3) dod(6)
              internet(1) security(5) mechanisms(5) pkix(7)
              mod(0) pkix1-explicit(18) }

  -- Import from RFC 5652 [RFC5652]

  ContentInfo FROM CryptographicMessageSyntax2004
              { iso(1) member-body(2) us(840)
              rsadsi(113549) pkcs(1) pkcs-9(9)
              smime(16) modules(0) cms-2004(24)}

  ;

  SecuritySuitabilityPolicy ::= ContentInfo

  -- contentType is id-signedData as defined in [RFC5652]
  -- content is SignedData as defined in [RFC5652]
  -- eContentType within SignedData is id-ct-dssc
  -- eContent within SignedData is TBSPolicy



Kunz, et al.                Standards Track                    [Page 31]

RFC 5698                          DSSC                     November 2009


  id-ct-dssc  OBJECT IDENTIFIER ::= {
              iso(1) identified-organization(3) dod(6)
              internet(1) security(5) mechanisms(5)
              ltans(11) id-ct(1) id-ct-dssc-tbsPolicy(6) }

  TBSPolicy ::= SEQUENCE {
       version          INTEGER               DEFAULT   {v1(1)},
       language         UTF8String            DEFAULT   "en",
       policyName       PolicyName,
       publisher        Publisher,
       policyIssueDate  GeneralizedTime,
       nextUpdate       GeneralizedTime       OPTIONAL,
       usage            UTF8String            OPTIONAL,
       algorithms       SEQUENCE OF Algorithm
  }

  PolicyName ::= SEQUENCE {
       name  UTF8String,
       oid   OBJECT IDENTIFIER OPTIONAL,
       uri   IA5String         OPTIONAL
  }

  Publisher ::= SEQUENCE {
       name        UTF8String,
       address [0] UTF8String  OPTIONAL,
       uri     [1] IA5String   OPTIONAL
  }

  Algorithm ::= SEQUENCE {
       algorithmIdentifier     AlgID,
       evaluations             SEQUENCE OF Evaluation,
       information         [0] SEQUENCE OF UTF8String  OPTIONAL,
       other               [1] Extension               OPTIONAL
  }

  Extension ::= SEQUENCE {
       extensionType           OBJECT IDENTIFIER,
       extension               ANY DEFINED BY extensionType
  }

  AlgID ::= SEQUENCE {
       name      UTF8String,
       oid   [0] SEQUENCE OF OBJECT IDENTIFIER,
       uri   [1] SEQUENCE OF IA5String          OPTIONAL
  }

  Evaluation ::= SEQUENCE {
       parameters           [0] SEQUENCE OF Parameter OPTIONAL,



Kunz, et al.                Standards Track                    [Page 32]

RFC 5698                          DSSC                     November 2009


       validity             [1] Validity,
       other                [2] Extension             OPTIONAL
  }

  Parameter ::= SEQUENCE {
       name       UTF8String,
       min    [0] INTEGER     OPTIONAL,
       max    [1] INTEGER     OPTIONAL,
       other  [2] Extension   OPTIONAL
  }

  Validity ::= SEQUENCE {
       start  [0] GeneralizedTime OPTIONAL,
       end    [1] GeneralizedTime OPTIONAL
  }

  END

Appendix D.  ASN.1 Module in 1997 Syntax (Normative)

  ASN.1-Module

  DSSC {iso(1) identified-organization(3) dod(6)
           internet(1) security(5) mechanisms(5)
           ltans(11) id-mod(0) id-mod-dssc(7) id-mod-dssc-v1(1) }

  DEFINITIONS IMPLICIT TAGS ::=
  BEGIN

  -- EXPORT ALL --

  IMPORTS

  -- Import from RFC 5280 [RFC5280]
  -- Delete following import statement
  -- if "new" types are supported

  UTF8String FROM PKIX1Explicit88
              { iso(1) identified-organization(3) dod(6)
              internet(1) security(5) mechanisms(5) pkix(7)
              mod(0) pkix1-explicit(18) }

  -- Import from RFC 5652 [RFC5652]

  ContentInfo FROM CryptographicMessageSyntax2004
              { iso(1) member-body(2) us(840)
              rsadsi(113549) pkcs(1) pkcs-9(9)
              smime(16) modules(0) cms-2004(24)}



Kunz, et al.                Standards Track                    [Page 33]

RFC 5698                          DSSC                     November 2009


  ;

  SecuritySuitabilityPolicy ::= ContentInfo

  -- contentType is id-signedData as defined in [RFC5652]
  -- content is SignedData as defined in [RFC5652]
  -- eContentType within SignedData is id-ct-dssc
  -- eContent within SignedData is TBSPolicy

  id-ct-dssc  OBJECT IDENTIFIER ::= {
              iso(1) identified-organization(3) dod(6)
              internet(1) security(5) mechanisms(5)
              ltans(11) id-ct(1) id-ct-dssc-tbsPolicy(6) }

  TBSPolicy ::= SEQUENCE {
       version          INTEGER               DEFAULT   {v1(1)},
       language         UTF8String            DEFAULT   "en",
       policyName       PolicyName,
       publisher        Publisher,
       policyIssueDate  GeneralizedTime,
       nextUpdate       GeneralizedTime       OPTIONAL,
       usage            UTF8String            OPTIONAL,
       algorithms       SEQUENCE OF Algorithm
  }

  PolicyName ::= SEQUENCE {
       name  UTF8String,
       oid   OBJECT IDENTIFIER OPTIONAL,
       uri   IA5String         OPTIONAL
  }

  Publisher ::= SEQUENCE {
       name         UTF8String,
       address  [0] UTF8String  OPTIONAL,
       uri      [1] IA5String   OPTIONAL
  }

  Algorithm ::= SEQUENCE {
       algorithmIdentifier     AlgID,
       evaluations             SEQUENCE OF Evaluation,
       information         [0] SEQUENCE OF UTF8String  OPTIONAL,
       other               [1] Extension               OPTIONAL
  }

  Extension ::= SEQUENCE {
       extensionType  EXTENSION-TYPE.&id ({SupportedExtensions}),
       extension      EXTENSION-TYPE.&Type
                           ({SupportedExtensions}{@extensionType})



Kunz, et al.                Standards Track                    [Page 34]

RFC 5698                          DSSC                     November 2009


  }

  EXTENSION-TYPE ::= TYPE-IDENTIFIER

  SupportedExtensions EXTENSION-TYPE ::= {...}

  AlgID ::= SEQUENCE {
       name      UTF8String,
       oid   [0] SEQUENCE OF OBJECT IDENTIFIER,
       uri   [1] SEQUENCE OF IA5String          OPTIONAL
  }

  Evaluation ::= SEQUENCE {
       parameters           [0] SEQUENCE OF Parameter OPTIONAL,
       validity             [1] Validity,
       other                [2] Extension             OPTIONAL
  }

  Parameter ::= SEQUENCE {
       name       UTF8String,
       min    [0] INTEGER     OPTIONAL,
       max    [1] INTEGER     OPTIONAL,
       other  [2] Extension   OPTIONAL
  }

  Validity ::= SEQUENCE {
       start  [0] GeneralizedTime OPTIONAL,
       end    [1] GeneralizedTime OPTIONAL
  }

  END

Appendix E.  Example

  The following example shows a policy that may be used for signature
  verification.  It contains hash algorithms, public key algorithms,
  and signature schemes.  SHA-1 as well as RSA with modulus length of
  1024 are examples for expired algorithms.

  <SecuritySuitabilityPolicy xmlns="urn:ietf:params:xml:ns:dssc"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <PolicyName>
    <Name>Evaluation of cryptographic algorithms</Name>
   </PolicyName>
   <Publisher>
    <Name>Some Evaluation Authority</Name>
   </Publisher>
   <PolicyIssueDate>2009-01-01T00:00:00</PolicyIssueDate>



Kunz, et al.                Standards Track                    [Page 35]

RFC 5698                          DSSC                     November 2009


   <Usage>Digital signature verification</Usage>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>SHA-1</Name>
     <ObjectIdentifier>1.3.14.3.2.26</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Validity>
      <End>2008-06-30</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>SHA-256</Name>
     <ObjectIdentifier>2.16.840.1.101.3.4.2.1</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Validity>
      <End>2014-12-31</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>SHA-512</Name>
     <ObjectIdentifier>2.16.840.1.101.3.4.2.3</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Validity>
      <End>2014-12-31</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>RSA</Name>
     <ObjectIdentifier>1.2.840.113549.1.1.1</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>1024</Min>
     </Parameter>
     <Validity>
      <End>2008-03-31</End>
     </Validity>
    </Evaluation>
    <Evaluation>



Kunz, et al.                Standards Track                    [Page 36]

RFC 5698                          DSSC                     November 2009


     <Parameter name="moduluslength">
      <Min>2048</Min>
     </Parameter>
     <Validity>
      <End>2014-12-31</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>DSA</Name>
     <ObjectIdentifier>1.2.840.10040.4.1</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Parameter name="plength">
      <Min>1024</Min>
     </Parameter>
     <Parameter name="qlength">
      <Min>160</Min>
     </Parameter>
     <Validity>
      <End>2007-12-31</End>
     </Validity>
    </Evaluation>
    <Evaluation>
     <Parameter name="plength">
      <Min>2048</Min>
     </Parameter>
     <Parameter name="qlength">
      <Min>224</Min>
     </Parameter>
     <Validity>
      <End>2014-12-31</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>PKCS#1 v1.5 SHA-1 with RSA</Name>
     <ObjectIdentifier>1.2.840.113549.1.1.5</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>1024</Min>
     </Parameter>
     <Validity>
      <End>2008-03-31</End>
     </Validity>



Kunz, et al.                Standards Track                    [Page 37]

RFC 5698                          DSSC                     November 2009


    </Evaluation>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>2048</Min>
     </Parameter>
     <Validity>
      <End>2008-06-30</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>PKCS#1 v1.5 SHA-256 with RSA</Name>
     <ObjectIdentifier>1.2.840.113549.1.1.11</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>1024</Min>
     </Parameter>
     <Validity>
      <End>2008-03-31</End>
     </Validity>
    </Evaluation>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>2048</Min>
     </Parameter>
     <Validity>
      <End>2014-12-31</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>PKCS#1 v1.5 SHA-512 with RSA</Name>
     <ObjectIdentifier>1.2.840.113549.1.1.13</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>1024</Min>
     </Parameter>
     <Validity>
      <End>2008-03-31</End>
     </Validity>
    </Evaluation>
    <Evaluation>
     <Parameter name="moduluslength">
      <Min>2048</Min>



Kunz, et al.                Standards Track                    [Page 38]

RFC 5698                          DSSC                     November 2009


     </Parameter>
     <Validity>
      <End>2014-12-31</End>
     </Validity>
    </Evaluation>
   </Algorithm>
   <Algorithm>
    <AlgorithmIdentifier>
     <Name>SHA-1 with DSA</Name>
     <ObjectIdentifier>1.2.840.10040.4.3</ObjectIdentifier>
    </AlgorithmIdentifier>
    <Evaluation>
     <Parameter name="plength">
      <Min>1024</Min>
     </Parameter>
     <Parameter name="qlength">
      <Min>160</Min>
     </Parameter>
     <Validity>
      <End>2007-12-31</End>
     </Validity>
    </Evaluation>
    <Evaluation>
     <Parameter name="plength">
      <Min>2048</Min>
     </Parameter>
     <Parameter name="qlength">
      <Min>224</Min>
     </Parameter>
     <Validity>
      <End>2008-06-30</End>
     </Validity>
    </Evaluation>
   </Algorithm>
  </SecuritySuitabilityPolicy>
















Kunz, et al.                Standards Track                    [Page 39]

RFC 5698                          DSSC                     November 2009


Authors' Addresses

  Thomas Kunz
  Fraunhofer Institute for Secure Information Technology
  Rheinstrasse 75
  Darmstadt  D-64295
  Germany

  EMail: [email protected]


  Susanne Okunick
  pawisda systems GmbH
  Robert-Koch-Strasse 9
  Weiterstadt  D-64331
  Germany

  EMail: [email protected]


  Ulrich Pordesch
  Fraunhofer Gesellschaft
  Rheinstrasse 75
  Darmstadt  D-64295
  Germany

  EMail: [email protected]
























Kunz, et al.                Standards Track                    [Page 40]