Network Working Group                                          A. Akhter
Request for Comments: 5695                                      R. Asati
Category: Informational                                     C. Pignataro
                                                          Cisco Systems
                                                          November 2009


        MPLS Forwarding Benchmarking Methodology for IP Flows

Abstract

  This document describes a methodology specific to the benchmarking
  of Multiprotocol Label Switching (MPLS) forwarding devices, limited
  to the most common MPLS packet forwarding scenarios and delay
  measurements for each, considering IP flows.  It builds upon the
  tenets set forth in RFC 2544, RFC 1242, and other IETF Benchmarking
  Methodology Working Group (BMWG) efforts.  This document seeks to
  extend these efforts to the MPLS paradigm.

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may



Akhter, et al.               Informational                      [Page 1]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................2
  2. Document Scope ..................................................3
  3. Key Words To Reflect Requirements ...............................4
  4. Test Methodology ................................................4
     4.1. Test Considerations ........................................5
          4.1.1. Abbreviations Used ..................................5
          4.1.2. IGP Support .........................................6
          4.1.3. Label Distribution Support ..........................6
          4.1.4. Frame Formats .......................................7
          4.1.5. Frame Sizes .........................................9
          4.1.6. Time-to-Live (TTL) or Hop Limit ....................12
          4.1.7. Trial Duration .....................................12
          4.1.8. Traffic Verification ...............................12
          4.1.9. Address Resolution and Dynamic Protocol State ......13
  5. Reporting Format ...............................................13
  6. MPLS Forwarding Benchmarking Tests .............................14
     6.1. Throughput ................................................15
          6.1.1. Throughput for MPLS Label Push .....................16
          6.1.2. Throughput for MPLS Label Swap .....................17
          6.1.3. Throughput for MPLS Label Pop (Unlabeled) ..........18
          6.1.4. Throughput for MPLS Label Pop (Aggregate) ..........19
          6.1.5. Throughput for MPLS Label Pop (PHP) ................20
     6.2. Latency Measurement .......................................21
     6.3. Frame-Loss Rate (FLR) Measurement .........................22
     6.4. System Recovery ...........................................23
     6.5. Reset .....................................................23
  7. Security Considerations ........................................25
  8. Acknowledgement ................................................25
  9. References .....................................................25
     9.1. Normative References ......................................25
     9.2. Informative References ....................................26

1.  Introduction

  Over the past several years, there has been an increase in the use of
  MPLS as a forwarding architecture in new and existing network
  designs.  MPLS, defined in [RFC3031], is a foundation technology and
  the basis for many advanced technologies such as Layer 3 MPLS VPNs,
  Layer 2 MPLS VPNs, and MPLS Traffic Engineering.






Akhter, et al.               Informational                      [Page 2]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  However, there is no standard method defined to compare and contrast
  the foundational MPLS packet forwarding capabilities of network
  devices.  This document proposes a methodology using common criteria
  (such as throughput, latency, frame-loss rate, system recovery,
  reset, etc.) to evaluate MPLS forwarding of any implementation.

2.  Document Scope

  The benchmarking methodology principles outlined in RFC 2544
  [RFC2544] are independent of forwarding techniques; however, they
  don't fully address MPLS benchmarking.  The workload on network
  forwarding device resources that MPLS forwarding places is different
  from that of IP forwarding; therefore, MPLS forwarding benchmarking
  specifics are desired.

  The purpose of this document is to describe a methodology specific to
  the benchmarking of MPLS forwarding devices.  The methods described
  are limited in scope to the most common MPLS packet forwarding
  scenarios and corresponding performance measurements in a laboratory
  setting.  It builds upon the tenets set forth in RFC 2544 [RFC2544],
  RFC 1242 [RFC1242], and other IETF Benchmarking Methodology Working
  Group (BMWG) efforts.  In other words, this document is not a
  replacement for, but a complement to, RFC 2544.

  This document focuses on the MPLS label stack [RFC3032] that has only
  one entry, as it is the fundamental of MPLS forwarding.  It is
  expected that future documents may cover the benchmarking of MPLS
  applications such as Layer 3 VPN (L3VPN) [RFC4364], Layer 2 VPN
  (L2VPN) [RFC4664], Fast ReRoute [RFC4090], etc., which require more
  than one entry in the MPLS label stack.

  Moreover, to address the majority of current deployments' needs, this
  document focuses on having IP packets as the MPLS payload.  In other
  words, label distribution for IP Forwarding Equivalence Class (FEC)
  [RFC3031] is prescribed (see Section 4.1.3) by this document.  It is
  expected that future documents may focus on having non-IP packets as
  the MPLS payload.

  Note that the presence of an MPLS label stack does not require the
  length of MPLS payload (which is an IP packet, per this document) to
  be changed; hence, the effective maximum size of a frame can increase
  by Z octets (where Z = 4 x number of label stack entries), as
  observed in current deployments.  This document focuses on
  benchmarking such a scenario.







Akhter, et al.               Informational                      [Page 3]

RFC 5695             MPLS Benchmarking Methodology         November 2009


3.  Key Words To Reflect Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [RFC2119].  RFC 2119 defines the use of these key words to help make
  the intent of Standards Track documents as clear as possible.  While
  this document uses these keywords, this document is not a Standards
  Track document.

4.  Test Methodology

  The set of methodologies described in this document will use the
  topology described in this section.  An effort has been made to
  exclude superfluous equipment needs such that each test can be
  carried out with a minimal number of devices.  Figure 1 illustrates
  the sample topology in which the Device Under Test (DUT) is connected
  to the test ports on the test tool in accord with Figure 1 of RFC
  2544.

                         +-----------------+
         +---------+     |                 |     +---------+
         | Test    |     |                 |     | Test    |
         | Port A1 +-----+ DA1         DB1 +-----+ Port B1 |
         +---------+     |                 |     +---------+
         +---------+     |       DUT       |     +---------+
         | Test    |     |                 |     | Test    |
         | Port A2 +-----+ DA2         DB2 +-----+ Port B2 |
         +---------+     |                 |     +---------+
              ...        | ...         ... |        ...
         +---------+     |                 |     +---------+
         | Test    |     |                 |     | Test    |
         | Port Ap +-----+ DAp         DBp +-----+ Port Bp |
         +---------+     +-----------------+     +---------+

         Figure 1: Topology for MPLS Forwarding Benchmarking

  A represents a Tx-side Module of the test tool, whereas B represents
  an Rx-side Module of the same test tool.  Of course, the suffixed
  numbers (1, 2, ..., p) represent ports on a Module.

  Similarly, DA represents an Rx-side Module of the DUT, whereas DB
  represents a Tx-side Module.  The suffixed numbers (1, 2, ..., p)
  represent ports on a Module.







Akhter, et al.               Informational                      [Page 4]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  p = the number of {DA, DB} pair ports on the DUT.  It is determined
  by the maximum unidirectional forwarding throughput of the DUT and
  the load capacity of the port media (e.g., interface) connecting the
  DUT to the test tool.

  For example, if the DUT's maximum forwarding throughput is 100 frames
  per second (fps) and the load capacity of the port media (e.g.,
  interface) is 50 fps, then p >= 2 is needed to sufficiently test the
  maximum frame forwarding.

  The exact throughput is a measured quantity obtained through testing.
  Throughput may vary depending on the number of ports used and other
  factors.  The number of ports (p) used SHOULD be reported.  Please
  see "Test Setup" in Section 6.  Following Figure 1 from Section 6 of
  RFC 2544 is recommended.

4.1.  Test Considerations

  This methodology assumes a full-duplex, uniform medium topology.  The
  medium used MUST be reported in each test result.  Issues regarding
  mixed transmission media, speed mismatches, media header differences,
  etc., are not under consideration.  Traffic affecting features such
  as Flow control, Quality of Service (QoS), Graceful Restart, etc.
  MUST be disabled, unless explicitly requested in the test case.
  Additionally, any non-essential traffic MUST also be avoided.

4.1.1.  Abbreviations Used

  The terms used in this document remain consistent with those defined
  in "Benchmarking Terminology for Network Interconnect Devices" RFC
  1242 [RFC1242].  This terminology SHOULD be consulted before using or
  applying the recommendations of this document.

  Please refer to Figure 1 for a topology view of the network.  The
  following abbreviations are used in this document:

  M  := Module on a device (i.e., Line-Card or Slot; could be A or B)

  p  := Port number (i.e., port on the Module; could be 1, 2, etc.)

  RN := Remote Network (i.e., network that is reachable via a port of a
  module; could be B1RN1 or B2RN5 to mean the first network reachable
  via port 1 of module B, e.g., B1, or the fifth network reachable via
  port 2 of module B, etc.).  RN is considered to be the IP Prefix FEC
  from the MPLS perspective.






Akhter, et al.               Informational                      [Page 5]

RFC 5695             MPLS Benchmarking Methodology         November 2009


4.1.2.  IGP Support

  It is RECOMMENDED that all of the ports (A1, DA1, DB1, and A2) on the
  DUT and test tool support a dynamic Interior Gateway Protocol (IGP)
  for routing such as IS-IS, OSPF, RIP, etc.  Furthermore, there are
  testing considerations in this document that the device be able to
  provide a stable control plane during heavy forwarding workloads.  In
  particular, the procedures defined in Section 11.3 of RFC 2544 must
  be followed.  This is to ensure that control plane instability during
  load conditions is not the contributing factor towards frame
  forwarding performance.

  The route distribution method (OSPF, IS-IS, Enhanced Interior Gateway
  Routing Protocol (EIGRP), RIP, Static, etc.), if used, MUST be
  reported.  Furthermore, if any specific configuration is used to
  maintain control plane stability during the test (i.e., Control Plane
  Protection, Control Plane Rate Limiting, etc.), then it MUST also be
  reported.

4.1.3.  Label Distribution Support

  The DUT and test tool must support at least one protocol for
  exchanging MPLS label/FEC bindings for Prefix Forwarding Equivalence
  Class (FEC) [RFC3031].  The DUT and test tool MUST be capable of
  learning and advertising MPLS label/FEC bindings via the chosen
  protocol(s) and use them during packet forwarding all the time
  (including when the label/FEC bindings change).  The most commonly
  used protocols are Label Distribution Protocol (LDP) [RFC5036],
  Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
  [RFC3209], and Border Gateway Protocol (BGP) [RFC3107].

  All of the ports (A1, DA1, DB1, B1, etc.) either on the DUT or the
  test tool used in the testing SHOULD support LDP, RSVP-TE, and BGP
  for IPv4 or IPv6 Prefix Forwarding Equivalence Classes (FECs).

  Static labels SHOULD NOT be used to establish the MPLS label switched
  paths (LSPs), unless specified explicitly by the test case.

  This is because the use of a static label is quite uncommon in the
  production networks.

  The IPv4 and IPv6 Explicit NULL labels (label values 0 and 2) are
  sometimes used to identify the payload of an MPLS packet on an LSP
  [RFC3032].  Explicit NULL labels are not used in the tests described
  in this document because the tests are limited to the use of no more
  than one non-reserved MPLS label in the label stack of all packets
  to, from, or through the DUT.




Akhter, et al.               Informational                      [Page 6]

RFC 5695             MPLS Benchmarking Methodology         November 2009


4.1.4.  Frame Formats

  This section explains the frame formats for IP and MPLS packets
  (Section 4.1.4.1), the usage of IP as the mandatory Layer 3 protocol
  and as the MPLS packet payload (Section 4.1.4.2), change in frame
  format during forwarding (Section 4.1.4.3), and recommended frame
  formats for the MPLS benchmarking (Section 4.1.4.4).

4.1.4.1.  Frame Format for IP versus MPLS

  A test frame carrying an IP packet is illustrated in Figure 2 below.
  Note that RFC 2544 [RFC2544] prescribes using such a frame as the
  test frame over the chosen Layer 2 media.

        +---------+--------------+-----------------------+
        | Layer 2 | Layer 3 = IP | Layer 4 = UDP         |
        +---------+--------------+-----------------------+

                Figure 2: Frame Format for IP Packets

  Unlike a test frame carrying an IP packet, a test frame carrying an
  MPLS packet contains an "MPLS label stack" [RFC3032] immediately
  after the Layer 2 header (and before the IP header, if any) as
  illustrated in Figure 3 below.

        +---------+-------+--------------+-----------------------+
        | Layer 2 | MPLS  | Layer 3 = IP | Layer 4 = UDP         |
        +---------+-------+--------------+-----------------------+

               Figure 3: Frame Format for MPLS Packets

  The MPLS label stack is represented as a sequence of "label stack
  entries", where each label stack entry is 4 octets, as illustrated in
  Figure 1 of [RFC3032].  This document requires exactly one entry in
  the MPLS label stack in an MPLS packet.

  MPLS label values used in any test case MUST be outside the reserved
  label value (0-15) unless stated otherwise.

4.1.4.2.  MPLS Packet Payload

  This document prescribes using an IP packet as the MPLS payload (as
  illustrated in Figure 3 above).  Generically speaking, this document
  mandates the test frame to include IP (either IPv4 or IPv6) as the
  Layer 3 protocol, in accord with Section 8 of [RFC2544] and
  independent of the MPLS label stack presence, for three reasons:





Akhter, et al.               Informational                      [Page 7]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  1. This enables using IP Prefix Forwarding Equivalence Class (FEC)
     [RFC3031], which is a must for every MPLS network.

  2. This provides the foundation or baseline for the benchmarking of
     various other MPLS applications such as L3VPN, L2VPN, TE-FRR, etc.

  3. This enables leveraging RFC 2544 [RFC2544], which prescribes using
     IP packets with UDP data as the test frames.  (Note that [RFC5180]
     also uses this prescription for IPv6 benchmarking).

  While the usage of non-IP payloads is possible, it requires an MPLS
  application, e.g., L2VPN, whose benchmarking may be covered in
  separate BMWG documents (MPLS L2VPN Benchmarking, for example) in the
  future.  This is also explained in Section 2.

4.1.4.3.  Change in Frame Format Due to MPLS Push and Pop

  A frame carrying an IP or MPLS packet may go through any of the three
  MPLS forwarding operations: label push (or LSP Ingress), label swap,
  and label pop (or LSP Egress), as defined in [RFC3031].  It is
  important to understand the change of the frame format from IP to
  MPLS or vice versa depending on the forwarding operation.

  In a label push (or LSP Ingress) operation, the DUT receives a frame
  containing an IP packet and forwards a frame containing an MPLS
  packet if the corresponding forwarding lookup for the IP destination
  points to a label push operation.

  In a label swap operation, the DUT receives a frame containing an
  MPLS packet and forwards a frame containing an MPLS packet if the
  corresponding forwarding lookup for the label value points to a label
  swap operation.

  In a label pop (or LSP Egress) operation, the DUT receives a frame
  containing an MPLS packet and forwards a frame containing an IP
  packet if the corresponding forwarding lookup for the label value
  points to a label pop operation.

4.1.4.4.  Frame Formats to Be Used for Benchmarking

  This document prescribes using two test frame formats to
  appropriately test the forwarding operations: (1) Frame format for IP
  and (2) Frame format for MPLS.  Both formats are explained in Section
  4.1.4.1.  Additionally, the format of the test frame may change
  depending on the forwarding operation.






Akhter, et al.               Informational                      [Page 8]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  1. For test cases involving the label push operation, the test tool
     must use the frame format for IP packets (Figure 2) to send the
     test frames to the DUT, and must use the frame format for MPLS
     packets (Figure 3) to receive the test frames from the DUT.

  2. For test cases involving the label swap operation, the test tool
     must use the frame format for MPLS packets (Figure 3) to send the
     test frames to the DUT, and must use the frame format for MPLS
     packets (Figure 3) to receive the test frames from the DUT.

  3. For test cases involving the label pop operation, the test tool
     must use the frame format for MPLS packets (Figure 3) to send the
     test frames to the DUT, and must use the frame format for IP
     packets (Figure 2) to receive the test frames from the DUT.

4.1.5.  Frame Sizes

  Two types of port media are commonly deployed: Ethernet and POS
  (Packet Over Synchronous Optical Network).  This section identifies
  the frame sizes that SHOULD be used for each media type, if supported
  by the DUT; Section 4.1.5.1 covers Ethernet and Section 4.1.5.2
  covers POS.

  First, it is important to note the possible increase in frame size
  due to the presence of an MPLS label stack in the frame (as explained
  in Section 4.1.4.3).

  As observed in the current deployments, presence of an MPLS label
  stack in a Layer 2 frame is assumed to be transparent to Layer3=IP,
  which continues to follow the conventional maximum frame payload size
  [RFC3032] (1500 octets for Ethernet, say).  This means that the
  effective maximum frame payload size [RFC3032] of the resulting Layer
  2 frame is Z octets more than the conventional maximum frame payload
  size, where Z = 4 x number of entries in the label stack.

  Hence, to ensure successful delivery of Layer 2 frames carrying MPLS
  packets and realistic benchmarking, it is RECOMMENDED to set the
  media MTU value to the effective maximum frame payload size
  [RFC3032], which equals Z octets + conventional maximum frame payload
  size.  It is expected that such a change in the media MTU value only
  impacts the effective Maximum Frame Payload Size for MPLS packets,
  but not for IP packets.

  Note that this document requires exactly a single entry in the MPLS
  label stack in an MPLS packet.  In other words, the depth of the
  label stack is set to one, e.g., Z = 4 x 1 = 4 octets.  Furthermore,
  in accord with Sections 9 and 9.1 of RFC 2544, this document
  prescribes that each test case is run with different (Layer 2) frame



Akhter, et al.               Informational                      [Page 9]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  sizes in different trials.  Additionally, results MAY also be
  collected with multiple simultaneous frame sizes (sometimes referred
  to as an Interactive Multimodal Information Extraction (IMIX) to
  simulate real network traffic according to the frame size ordering
  and usage).  There is no standard for mixtures of frame sizes, and
  the results are subject to wide interpretation (see Section 18 of RFC
  2544).  When running trials using multiple simultaneous frame sizes,
  the DUT configuration MUST remain the same.

4.1.5.1.  Frame Sizes To Be Used on Ethernet Media

  Ethernet media, in all its types, has become the most commonly
  deployed port media in MPLS networks.  If any test case execution
  (such as the Label Push case) requires the test tool to send (or
  receive) a Layer 2 frame containing an IP packet, then the following
  frame sizes SHOULD be used for benchmarking over Ethernet media: 64,
  128, 256, 512, 1024, 1280, and 1518 octets.  This is in-line with
  Sections 9 and 9.1 of RFC 2544.  Figure 4 illustrates the header
  sizes for an untagged Ethernet frame containing an IP payload (per
  RFC 2544).

           <----------------64-1518B------------------------>
           <--18B---><-----------46-1500B------------------->
           +---------+---------+----------------------------+
           | Layer 2 | Layer 3 | Layer 4 (and higher)       |
           +---------+---------+----------------------------+

              Figure 4: Frame Size for Label Push Cases

     Note 1: The 64- and 1518-octet frame size represents the minimum
     and maximum length of an untagged Ethernet frame, as per IEEE
     802.3 [IEE8023].  A frame size commonly used in operational
     environments may range from 68 to 1522 octets, which are the
     minimum and maximum lengths of a single VLAN-tagged frame, as per
     IEEE 802.1D [IEE8021].

     Note 2: While jumbo frames are outside the scope of the 802.3 IEEE
     standard, tests SHOULD be executed with the frame sizes that are
     supported by the DUT.  Examples of commonly used jumbo (Ethernet)
     frame sizes are: 4096, 8192, and 9216 octets.

  If any test case execution (such as Label Swap and Label Pop cases)
  requires the test tool to transmit (or receive) a Layer 2 frame
  containing an MPLS packet, then the untagged Layer 2 frame must







Akhter, et al.               Informational                     [Page 10]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  include an additional 4 octets for the MPLS header, resulting in the
  following frame sizes to be used for benchmarking over Ethernet
  media: 68, 132, 260, 516, 1028, 1284, and 1522 octets.  Figure 5
  illustrates the header sizes for an untagged Ethernet frame
  containing an MPLS packet.

           <------------------68-1522B------------------------------>
           <--18B---><--4B--><-----------46-1500B------------------->
           +---------+-------+---------+----------------------------+
           | Layer 2 | MPLS  | Layer 3 | Layer 4 (and higher)       |
           +---------+-------+---------+----------------------------+

                Figure 5: Frame Size for Label Swap and Pop Cases

     Note: The Media MTU on the link between the test tool and the DUT
     must be changed, if needed, to accommodate the effective maximum
     frame payload size [RFC3032] resulting from adding an MPLS label
     stack to the IP packet.  As clarified in Section 3.1 of RFC 3032,
     most Layer 2 media drivers are capable of sending and receiving
     Layer 2 frames with effective maximum frame payload size.  Many
     vendors also allow the Media MTU to be changed for MPLS, without
     changing it for IP.  The recommended link MTU value for MPLS is Z
     octets more than the conventional maximum frame payload size
     [RFC3032] (for example, the conventional maximum frame payload
     size for Ethernet is 1500 octets).  This document prescribes Z=4
     octets.  If a vendor DUT doesn't allow such an MTU change, then
     the benchmarking cannot be performed for the true maximum frame
     payload size [RFC3032] and this must be reported.

4.1.5.2.  Frame Sizes to Be Used on POS Media

  Packet over SONET (POS) media are commonly used for edge uplinks and
  high-bandwidth core links.  POS may use one of various encapsulations
  techniques (such as PPP, High-Level Data Link Control (HDLC), Frame
  Relay, etc.), resulting in the Layer 2 header (~4 octets) being less
  than that of the Ethernet media.  The rest of the frame format
  (illustrated in Figures 2 and 3) remains pretty much unchanged.

  If the MPLS forwarding characterization of POS interfaces on the DUT
  is desired, then the following frame sizes SHOULD be used:

     Label Push test cases:          47, 64, 128, 256, 512, 1024,
                                     1280, 1518, 2048, and 4096 octets.

     Label Swap and Pop test cases:  51, 68, 132, 260, 516, 1028,
                                     1284, 1522, 2052, and 4100 octets.





Akhter, et al.               Informational                     [Page 11]

RFC 5695             MPLS Benchmarking Methodology         November 2009


4.1.6.  Time-to-Live (TTL) or Hop Limit

  The TTL value in the frame header MUST be large enough to allow a TTL
  decrement to happen and still be forwarded through the DUT.  The
  aforementioned TTL field may be referring to either the MPLS TTL,
  IPv4 TTL, or IPv6 Hop Limit depending on the exact forwarding
  scenario under evaluation.

  If TTL/Hop Limit decrement, as specified in [RFC3443], is a
  configurable option on the DUT, the setting SHOULD be reported.

4.1.7.  Trial Duration

  Unless otherwise specified, the test portion of each trial SHOULD be
  no less than 30 seconds when static routing is in place, and no less
  than 200 seconds when a dynamic routing protocol and LDP (default LDP
  holddown timer is 180 seconds) are being used.  If the holddown timer
  default value is changed, then it should be reported and the trial
  duration should still be 20 seconds more than the holddown timer
  value.

  The longer trial time used for dynamic routing protocols is to verify
  that the DUT is able to maintain a stable control plane when the
  data-forwarding plane is under stress.

4.1.8.  Traffic Verification

  In all cases, sent traffic MUST be accounted for, whether it was
  received on the wrong port, the correct port, or not received at all.
  Specifically, traffic loss (also referred to as frame loss) is
  defined as the traffic (i.e., one or more frames) not received where
  expected (i.e., received on the incorrect port, or received with
  incorrect Layer 2 or above header information, etc.).  In addition,
  the presence or absence of the MPLS label stack, every field value
  inside the label stack, if present, ethertype (0x8847 or 0x8848
  versus 0x0800 or 0x86DD), frame sequencing, and frame check sequence
  (FCS) MUST be verified in the received frame.

  Many test tools may, by default, only verify that they have received
  the embedded signature on the receive side.  However, for MPLS header
  presence verification, some tests will require the MPLS header to be
  pushed while others will require a swap or pop.  Hence, this document
  requires the test tool to verify the MPLS stack depth.  An even
  greater level of verification would be to check if the correct label
  was pushed.  However, some test tools are not capable of checking the
  received label value for correctness.  Test tools SHOULD verify that
  the packets received carry the expected MPLS label.




Akhter, et al.               Informational                     [Page 12]

RFC 5695             MPLS Benchmarking Methodology         November 2009


4.1.9.  Address Resolution and Dynamic Protocol State

  If a test setup utilizes any dynamic protocols for control plane
  signaling (e.g., ARP, PPP (including MPLSCP), OSPF, LDP, etc.), then
  all state for the protocols MUST be pre-established before the test
  case is executed (i.e., packet streams are started).

5.  Reporting Format

  For each test case, it is RECOMMENDED that the following variables be
  reported in addition to the specific parameters requested by the test
  case:

     Parameter                        Units or Examples

     Prefix Forwarding Equivalence    IPv4, IPv6, Both
     Class (FEC)

     Label Distribution Protocol      LDP, RSVP-TE, BGP (or
                                      combinations)

     MPLS Forwarding Operation        Push, Swap, Pop

     IGP                              ISIS, OSPF, EIGRP, RIP,
                                      static.

     Throughput                       Frames per second and
                                      bits per second

     Port Media                       GigE (Gigabit Ethernet),
                                      POS, ATM, etc.

     Port Speed                       1 gbps, 100 Mbps, etc.

     Interface Encapsulation          Ethernet, Ethernet
                                      VLAN, PPP, HDLC, etc.

     Frame Size (Section 4.1.5)       Octets

     p (Number of {DA, DB} pair       1,2, etc.
     ports per Figure 1)

  The individual test cases may have additional reporting requirements
  that may refer to other RFCs.







Akhter, et al.               Informational                     [Page 13]

RFC 5695             MPLS Benchmarking Methodology         November 2009


6.  MPLS Forwarding Benchmarking Tests

  MPLS is a different forwarding paradigm from IP.  Unlike IP packets
  and IP forwarding, an MPLS packet may contain more than one MPLS
  header and may go through one of three forwarding operations: push
  (or LSP Ingress), swap, or pop (or LSP Egress), as defined in
  [RFC3031].  Such characteristics desire further granularity in MPLS
  forwarding benchmarking than those described in RFC 2544.  Thus, the
  benchmarking may include, but is not limited to:

     1. Throughput

     2. Latency

     3. Frame-Loss Rate

     4. System Recovery

     5. Reset

     6. MPLS TC (previously known as EXP [RFC5462]) field Operations
        (including explicit-null cases)

     7. Negative Scenarios (TTL expiry, etc.)

     8. Multicast

  However, this document focuses only on the first five categories,
  inline with the spirit of RFC 2544.  All the benchmarking test cases
  described in this document are expected to, at a minimum, follow the
  "Test Setup" and "Test Procedure" below:

  Test Setup

     Referring to Figure 1, a single port (p = 1) on both A and B
     Modules SHOULD be used.  However, if the forwarding throughput of
     the DUT is more than that of the media rate of a single port, then
     additional ports on A and B Modules MUST be enabled as follows: if
     the DUT can be configured with the A and B ports so as to exceed
     the DUT's forwarding throughput without overloading any B ports,
     then those MUST be enabled; if, on the other hand, the DUT's
     forwarding throughput capacity is greater than what can be
     achieved enabling all ports, then all An and Bn ports MUST be
     enabled.  In the case where more than one A and B port is enabled,
     the procedures described in Section 16 of RFC 2544 must be






Akhter, et al.               Informational                     [Page 14]

RFC 5695             MPLS Benchmarking Methodology         November 2009


     followed to accommodate the multi-port scenario.  The frame
     formats transmitted and received must be in accord with Sections
     4.1.4.3 and 4.1.4.4, and frame sizes must be in accord with
     Section 4.1.5.

     Note: The test tool must be configured not to advertise a prefix
     or FEC to the DUT on more than one port.  In other words, the DUT
     must associate a FEC with one and only one DB port.  The Equal
     Cost Multi-Path (ECMP) behavior in MPLS networks uses heuristics
     [RFC4928]; hence, the usage of ECMP is NOT permitted by this
     document to ensure the deterministic forwarding behavior during
     benchmarking.

  Test Procedure

     In accord with Section 26 of RFC 2544 [RFC2544], the traffic is
     sent from test tool port(s) Ap to the DUT at a constant load for a
     fixed-time interval, and is received from the DUT on test tool
     port(s) Bp.  As described in Section 4.1.4.3, the frame may
     contain either an IP packet or an MPLS packet depending on the
     test case need.  Furthermore, the IP packet must be either an IPv4
     or IPv6 packet, depending on whether the MPLS benchmarking is done
     for IPv4 or IPv6.

     If any frame loss is detected, then a new iteration is needed
     where the offered load is decreased and the sender will transmit
     again.  An iterative search algorithm MUST be used to determine
     the maximum offered frame rate with a zero frame loss.

     This maximum offered frame rate that results in zero frame loss
     through the DUT is defined as the Throughput in Section 3.17 of
     [RFC1242] for that test case.  Informally, this rate is referred
     to as the No-Drop Rate (NDR).

     Each iteration should involve varying the offered load of the
     traffic, while keeping the other parameters (test duration, number
     of ports, number of addresses, frame size, etc.) constant, until
     the maximum rate at which none of the offered frames are dropped
     is determined.

6.1.  Throughput

  This section contains the description of the tests that are related
  to the characterization of a DUT's MPLS traffic forwarding.







Akhter, et al.               Informational                     [Page 15]

RFC 5695             MPLS Benchmarking Methodology         November 2009


6.1.1.  Throughput for MPLS Label Push

  Objective

     To obtain the DUT's Throughput (as per RFC 2544) during label push
     or LSP Ingress forwarding operation (i.e., IP to MPLS).

  Test Setup

     In addition to the "Test Setup" described in Section 6, the test
     tool must advertise the IP prefix(es), i.e., RNx (using a routing
     protocol as per Section 4.1.2) and associated MPLS label-FEC
     binding(s) (using a label distribution protocol as per Section
     4.1.3) on its receive ports Bp to the DUT.  The test tool may
     learn the IP prefix(es) on its transmit ports Ap from the DUT.

     MPLS and/or the label distribution protocol must be enabled only
     on the test tool receive ports Bp and DUT transmit ports DBp.

  Discussion

     The DUT's MPLS forwarding table (also referred to as Incoming
     Label Map (ILM) to Next Hop Label Forwarding Entry (NHLFE) mapping
     table per Section 3.11 of [RFC3031]) must contain a non-reserved
     MPLS label value as the outgoing label for each learned IP prefix
     corresponding to the label-FEC binding, resulting in the DUT
     performing the IP-to-MPLS forwarding operation.  The test tool
     must receive MPLS packets on receive ports Bp (from the DUT) with
     the same label values that were advertised.

  Procedure

     Please see "Test Procedure" in Section 6.  Additionally, the test
     tool MUST send the frames containing IP packets (with the IP
     destination belonging to the advertised IP prefix(es)) on transmit
     ports Ap, and expect to receive frames containing MPLS packets on
     receive ports Bp, as described in Section 4.1.4.4.

  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

     Results for each test SHOULD be in the form of a table with a row
     for each of the tested frame sizes.  Additional columns SHOULD
     include offered load and measured throughput.






Akhter, et al.               Informational                     [Page 16]

RFC 5695             MPLS Benchmarking Methodology         November 2009


6.1.2.  Throughput for MPLS Label Swap

  Objective

     To obtain the DUT's Throughput (as per RFC 2544) during label
     swapping operation (i.e., MPLS-to-MPLS).

  Test Setup

     In addition to the setup described in Section 6, the test tool
     must advertise IP prefix(es) (using a routing protocol as per
     Section 4.1.2) and associated MPLS label-FEC bindings (using a
     label distribution protocol as per Section 4.1.3) on the receive
     ports Bp, and then learn the IP prefix(es) as well as the label-
     FEC binding(s) on the transmit ports Ap.  The test tool must use
     the learned MPLS label values and learned IP prefix values in the
     frames transmitted on ports Ap to the DUT.

     MPLS and/or label distribution protocol must be enabled on the
     test tool ports Bp and Ap, and the DUT ports DBp and DAp.

  Discussion

     The DUT's MPLS forwarding table (also referred to as ILM to NHLFE
     mapping table per Section 3.11 of [RFC3031]) must contain non-
     reserved MPLS label values as the outgoing and incoming labels for
     the learned IP prefixes, resulting in an MPLS-to-MPLS forwarding
     operation, e.g., label swap.  The test tool must receive MPLS
     packets on receive ports Bp (from the DUT) with the same label
     values that were advertised using the label distribution protocol.
     The received frames must contain the same number of MPLS headers
     as those of transmitted frames.

  Procedure

     Please see "Test Procedure" in Section 6.  Additionally, the test
     tool must send frames containing MPLS packets (with the IP
     destination belonging to the advertised IP prefix(es)) on its
     transmit ports Ap, and expect to receive frames containing MPLS
     packets on its receive ports Bp, as described in Section 4.1.4.4.

  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

     Results for each test SHOULD be in the form of a table with a row
     for each of the tested frame sizes.




Akhter, et al.               Informational                     [Page 17]

RFC 5695             MPLS Benchmarking Methodology         November 2009


6.1.3.  Throughput for MPLS Label Pop (Unlabeled)

  Objective

     To obtain the DUT's Throughput (as per RFC 2544) during label pop
     or LSP Egress forwarding operation (i.e., MPLS-to-IP) using
     "Unlabeled" outgoing label.

  Test Setup

     In addition to the setup described in Section 6, the test tool
     must advertise the IP prefix(es) (using a routing protocol as per
     Section 4.1.2) without any MPLS label-FEC bindings on the receive
     ports Bp, and then learn the IP prefix(es) as well as the FEC-
     label binding(s) on the transmit ports Ap.  The test tool must use
     the learned MPLS label values and learned IP prefix values in the
     frames transmitted on ports Ap.

     MPLS and/or label distribution protocol must be enabled only on
     the test tool port(s) Ap and DUT port(s) DAp.

  Discussion

     The DUT's MPLS forwarding table (also referred to as ILM to NHLFE
     mapping table per Section 3.11 of [RFC3031]) must contain an
     Unlabeled outgoing label (also known as untagged) for the learned
     IP prefix, resulting in an MPLS-to-IP forwarding operation.

  Procedure

     Please see "Test Procedure" in Section 6.  Additionally, the test
     tool must send frames containing MPLS packets on its transmit
     ports Ap (with the IP destination belonging to the IP prefix(es)
     advertised on port Bp), and expect to receive frames containing IP
     packets on its receive ports Bp, as described in Section 4.1.4.4.

  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

     Results for each test SHOULD be in the form of a table with a row
     for each of the tested frame sizes.









Akhter, et al.               Informational                     [Page 18]

RFC 5695             MPLS Benchmarking Methodology         November 2009


6.1.4.  Throughput for MPLS Label Pop (Aggregate)

  Objective

     To obtain the DUT's Throughput (as per RFC 2544) during label pop
     or LSP Egress forwarding operation (i.e., MPLS-to-IP) using the
     "Aggregate" outgoing label [RFC3031].

  Test Setup

     In addition to the setup described in Section 6, the DUT must be
     provisioned such that it allocates an aggregate outgoing label
     (please see Section 3.20 in [RFC3031]) to an IP prefix, which
     aggregates a set of prefixes learned on ports DBp from the test
     tool.  The prefix aggregation can be performed using BGP
     aggregation (Section 9.2.2.2 of [RFC4271]), IGP aggregation
     (Section 16.5 of [RFC2328]), etc.

     The DUT must advertise the aggregating IP prefix along with the
     associated MPLS label-FEC binding on ports DAp to the test tool.

     The test tool then must use the learned MPLS label values and
     learned IP prefix values in frames transmitted on ports Ap to the
     DUT.  The test tool must receive frames containing IP packets on
     ports Bp from the DUT.

     MPLS and/or label distribution protocol must be enabled only on
     the test tool port(s) Ap and DUT port(s) DAp.

  Discussion

     The DUT's MPLS forwarding table (also referred to as ILM to NHLFE
     mapping table per Section 3.11 of [RFC3031]) must contain an
     aggregate outgoing label and IP forwarding table must contain a
     valid entry for the learned prefix(es), resulting in MPLS-to-IP
     forwarding operation (i.e., MPLS header removal followed by IP
     lookup).

  Procedure

     Please see "Test Procedure" in Section 6.  Additionally, the test
     tool must send frames containing MPLS packets on its transmit
     ports Ap (with IP destination belonging to the IP prefix(es)
     advertised on port Bp), and expect to receive frames containing IP
     packets on its receive ports Bp, as described in Section 4.1.4.4.






Akhter, et al.               Informational                     [Page 19]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

     Results for each test SHOULD be in the form of a table with a row
     for each of the tested frame sizes.

6.1.5.  Throughput for MPLS Label Pop (PHP)

  Objective

     To obtain the DUT's Throughput (as per RFC 2544) during label pop
     (i.e., MPLS-to-IP) or penultimate hop popping (PHP) using the
     "imp-null" outgoing label.

  Test Setup

     In addition to the setup described in Section 6, the test tool
     must be set up to advertise the IP prefix(es) (using a routing
     protocol as per Section 4.1.2) and associated MPLS label-FEC
     binding with a reserved MPLS label value = 3 (using a label
     distribution protocol as per Section 4.1.3) on its receive ports
     Bp.  The test tool must learn the IP prefix(es) as well as the
     MPLS label-FEC bindings on its transmit ports Ap.  The test tool
     then must use the learned MPLS label values and learned IP prefix
     values in the frames transmitted on ports Ap to the DUT.  The test
     tool must receive frames containing IP packets on receive ports Bp
     (from the DUT).

     MPLS and/or label distribution protocol must be enabled on the
     test tool ports Bp and Ap, and DUT ports DBp and DAp.

  Discussion

     This test case characterizes Penultimate Hop Popping (PHP), which
     is described in RFC 3031.

     The DUT's MPLS forwarding table (also referred to as ILM to NHLFE
     mapping table per Section 3.11 of [RFC3031]) must contain a
     reserved MPLS label value = 3 (e.g., pop or imp-null) as the
     outgoing label for the learned prefix(es), resulting in MPLS-to-IP
     forwarding operation.

     This test case characterizes DUT's penultimate hop popping (PHP)
     functionality.






Akhter, et al.               Informational                     [Page 20]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  Procedure

     Please see "Test Procedure" in Section 6.  Additionally, the test
     tool must send frames containing MPLS packets on its transmit
     ports Ap (with IP destination belonging to advertised IP
     prefix(es)), and expect to receive frames containing IP packets on
     its receive ports Bp, as described in Section 4.1.4.4.

  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

     Results for each test SHOULD be in the form of a table with a row
     for each of the tested frame sizes.

6.2.  Latency Measurement

  Latency measurement measures the time taken by the DUT to forward the
  MPLS packet during various MPLS switching paths such as IP-to-MPLS,
  MPLS-to-MPLS, or MPLS-to-IP involving an MPLS label stack.

  Objective

     To obtain the average latency induced by the DUT during MPLS
     packet forwarding for each of five forwarding operations.

  Test Setup

     Follow the "Test Setup" guidelines established for each of the
     five MPLS forwarding operations in Sections 6.1.1 (for IP-to-
     MPLS), 6.1.2 (for MPLS-to-MPLS), 6.1.3 (for MPLS-to-IP Unlabeled),
     6.1.4 (for MPLS-to-IP Aggregate), and 6.1.5 (for MPLS-to-IP PHP),
     one by one.

  Procedure

     Please refer to Section 26.2 in RFC 2544 in addition to following
     the associated procedure for each MPLS forwarding operation in
     accord with the test setup described earlier:

        IP-to-MPLS forwarding      (Push)         Section 6.1.1
        MPLS-to-MPLS forwarding    (Swap)         Section 6.1.2
        MPLS-to-IP forwarding      (Pop)          Section 6.1.3
        MPLS-to-IP forwarding      (Aggregate)    Section 6.1.4
        MPLS-to-IP forwarding      (PHP)          Section 6.1.5






Akhter, et al.               Informational                     [Page 21]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

6.3.  Frame-Loss Rate (FLR) Measurement

  Frame-Loss Rate (FLR) measurement measures the percentage of MPLS
  frames that were not forwarded during various switching paths such as
  IP-to-MPLS (push), MPLS-to-IP (swap), or MPLS-IP (pop) by the DUT
  under overloaded state.

  Please refer to RFC 2544, Section 26.3, for more details.

  Objective

     To obtain the frame-loss rate, as defined in RFC 1242, for each of
     the three MPLS forwarding operations of a DUT, throughout the
     range of input data rates and frame sizes.

  Test Setup

     Follow the "Test Setup" guidelines established for each of the
     five MPLS forwarding operations in Sections 6.1.1 (for IP-to-
     MPLS), 6.1.2 (for MPLS-to-MPLS), 6.1.3 (for MPLS-to-IP Unlabeled),
     6.1.4 (for MPLS-to-IP Aggregate), and 6.1.5 (for MPLS-to-IP PHP),
     one by one.

  Procedure

     Please refer to Section 26.3 of RFC 2544 [RFC2544] and follow the
     associated procedure for each MPLS forwarding operation one-by-one
     in accord with the test setup described earlier:

        IP-to-MPLS forwarding      (Push)         Section 6.1.1
        MPLS-to-MPLS forwarding    (Swap)         Section 6.1.2
        MPLS-to-IP forwarding      (Pop)          Section 6.1.3
        MPLS-to-IP forwarding      (Aggregate)    Section 6.1.4
        MPLS-to-IP forwarding      (PHP)          Section 6.1.5

     A misdirected frame, that is, a frame received on the wrong Bn, is
     considered lost.  If the test tool is capable of checking received
     MPLS label values, a frame with the wrong MPLS label is considered
     lost.

  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.




Akhter, et al.               Informational                     [Page 22]

RFC 5695             MPLS Benchmarking Methodology         November 2009


6.4.  System Recovery

  Objective

     To characterize the speed at which a DUT recovers from an overload
     condition.

  Test Setup

     Follow the "Test Setup" guidelines established for each of the
     five MPLS forwarding operations in Sections 6.1.1 (for IP-to-
     MPLS), 6.1.2 (for MPLS-to-MPLS), 6.1.3 (for MPLS-to-IP Unlabeled),
     6.1.4 (for MPLS-to-IP Aggregate), and 6.1.5 (for MPLS-to-IP PHP),
     one by one.

  Procedure

     Please refer to Section 26.5 of RFC 2544 and follow the associated
     procedure for each MPLS forwarding operation in the referenced
     sections one-by-one in accord with the test setup described
     earlier:

        IP-to-MPLS forwarding      (Push)         Section 6.1.1
        MPLS-to-MPLS forwarding    (Swap)         Section 6.1.2
        MPLS-to-IP forwarding      (Pop)          Section 6.1.3
        MPLS-to-IP forwarding      (Aggregate)    Section 6.1.4
        MPLS-to-IP forwarding      (PHP)          Section 6.1.5

  Reporting Format

     The result should be reported as per Section 5 and RFC 2544.

6.5.  Reset

  The "reset" aspects of benchmarking are described in [RFC2544], but
  these procedures need to be clarified in order to ensure consistency.
  This document does not specify the reset procedures.  These need to
  be addressed in a separate document and will more generally apply to
  IP and MPLS test cases.

  The text below describes the MPLS forwarding benchmarking-specific
  setup that will have to be used in conjunction with the procedures
  from the separate document to make this test case meaningful.

  Objective

     To characterize the speed at which a DUT recovers from a device or
     software reset.



Akhter, et al.               Informational                     [Page 23]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  Test Setup

     Follow the "Test Setup" guidelines established for each of the
     five MPLS forwarding operations in Sections 6.1.1 (for IP-to-
     MPLS), 6.1.2 (for MPLS-to-MPLS), 6.1.3 (for MPLS-to-IP Unlabeled),
     6.1.4 (for MPLS-to-IP Aggregate), and 6.1.5 (for MPLS-to-IP PHP),
     one by one.

     For this test case, the requirements of LDP and a routing protocol
     are removed and replaced by static configurations.  For the IP-to-
     MPLS forwarding, static route configurations should be applied.
     For the MPLS-to-MPLS and MPLS-to-IP, static label configurations
     must be applied.

     For this test, all Graceful Restart features MUST be disabled.

  Discussion

     This test case is intended to provide insight into how long an
     MPLS device could take to be fully operational after any of the
     reset events.  It is quite likely that the time an IP/MPLS device
     takes to become fully operational after any of the reset events
     may be different from that of an IP-only device.

     Modern devices now have many more reset options that were not
     available when Section 26.6 of RFC 2544 was published.  Moreover,
     different reset events on modern devices may produce different
     results, hence, needing clarity and consistency in reset
     procedures beyond what's specified in RFC 2544.

  Procedure

     Please follow the procedure from the separate document for each
     MPLS forwarding operation one-by-one:

        IP-to-MPLS forwarding      (Push)         Section 6.1.1
        MPLS-to-MPLS forwarding    (Swap)         Section 6.1.2
        MPLS-to-IP forwarding      (Pop)          Section 6.1.3
        MPLS-to-IP forwarding      (Aggregate)    Section 6.1.4
        MPLS-to-IP forwarding      (PHP)          Section 6.1.5

  Reporting Format

     The result should be reported as per Section 5 and as per the
     separate document.






Akhter, et al.               Informational                     [Page 24]

RFC 5695             MPLS Benchmarking Methodology         November 2009


7.  Security Considerations

  Benchmarking activities, as described in this memo, are limited to
  technology characterization using controlled stimuli in a laboratory
  environment, with dedicated address space and the constraints
  specified in the sections above.

  The benchmarking network topology will be an independent test setup
  and MUST NOT be connected to devices that may forward the test
  traffic into a production network or misroute traffic to the test
  management network.

  Furthermore, benchmarking is performed on a "black-box" basis,
  relying solely on measurements observable external to the DUT/SUT
  (System Under Test).

  Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
  benchmarking purposes.  Any implications for network security arising
  from the DUT/SUT SHOULD be identical in the lab and in production
  networks.

  There are no specific security considerations within the scope of
  this document.

8.  Acknowledgement

  The authors would like to thank Mo Khalid, who motivated us to write
  this document.  We would like to thank Rodney Dunn, Chip Popoviciu,
  Jeff Byzek, Jay Karthik, Rajiv Papneja, Samir Vapiwala, Silvija
  Andrijic Dry, Scott Bradner, Al Morton, and Bill Cerveny for their
  careful review and suggestions.

  This document was originally prepared using 2-Word-v2.0.template.dot.

9.  References

9.1.  Normative References

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
            Network Interconnect Devices", RFC 2544, March 1999.

  [RFC1242] Bradner, S., "Benchmarking Terminology for Network
            Interconnection Devices", RFC 1242, July 1991.





Akhter, et al.               Informational                     [Page 25]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
            Label Switching Architecture", RFC 3031, January 2001.

  [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
            Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
            Encoding", RFC 3032, January 2001.

  [RFC3107] Rekhter, Y. and E. Rosen, "Carrying Label Information in
            BGP-4", RFC 3107, May 2001.

  [RFC5036] Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
            "LDP Specification", RFC 5036, October 2007.

9.2.  Informative References

  [RFC5180] Popoviciu, C., Hamza, A., Van de Velde, G., and D.
            Dugatkin, "IPv6 Benchmarking Methodology for Network
            Interconnect Devices", RFC 5180, May 2008.

  [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
            and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
            Tunnels", RFC 3209, December 2001.

  [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
            Networks (VPNs)", RFC 4364, February 2006.

  [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border
            Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006.

  [RFC4664] Andersson, L., Ed., and E. Rosen, Ed., "Framework for Layer
            2 Virtual Private Networks (L2VPNs)", RFC 4664, September
            2006.

  [IEE8021] Mick Seaman (editor), "IEEE Std 802.1D-2004, MAC Bridges",
            Feb 2004.

  [IEE8023] LAN/MAN Standards Committee of the IEEE Computer Society,
            "IEEE Std 802.3as-2006, Part 3: Carrier Sense Multiple
            Access with Collision Detection (CSMA/CD) Access Method and
            Physical Layer Specifications, Amendment 3: Frame format
            extensions", Nov 2006.

  [RFC3443] Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing in
            Multi-Protocol Label Switching (MPLS) Networks", RFC 3443,
            January 2003.






Akhter, et al.               Informational                     [Page 26]

RFC 5695             MPLS Benchmarking Methodology         November 2009


  [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching
            (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
            Class" Field", RFC 5462, February 2009.

  [RFC4928] Swallow, G., Bryant, S., and L. Andersson, "Avoiding Equal
            Cost Multipath Treatment in MPLS Networks", BCP 128, RFC
            4928, June 2007.

  [RFC4090] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
            Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
            May 2005.

Authors' Addresses

  Aamer Akhter
  Cisco Systems
  7025 Kit Creek Road
  RTP, NC 27709
  USA

  EMail: [email protected]


  Rajiv Asati
  Cisco Systems
  7025 Kit Creek Road
  RTP, NC 27709
  USA

  EMail: [email protected]


  Carlos Pignataro
  Cisco Systems
  7200-12 Kit Creek Road
  RTP, NC 27709
  USA

  EMail: [email protected]










Akhter, et al.               Informational                     [Page 27]